summaryrefslogtreecommitdiff
path: root/nn/common/LegacyUtils.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'nn/common/LegacyUtils.cpp')
-rw-r--r--nn/common/LegacyUtils.cpp1877
1 files changed, 1877 insertions, 0 deletions
diff --git a/nn/common/LegacyUtils.cpp b/nn/common/LegacyUtils.cpp
new file mode 100644
index 000000000..52acda864
--- /dev/null
+++ b/nn/common/LegacyUtils.cpp
@@ -0,0 +1,1877 @@
+/*
+ * Copyright (C) 2017 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "Utils"
+
+#include "LegacyUtils.h"
+
+#include <android-base/logging.h>
+#include <android-base/properties.h>
+#include <android-base/strings.h>
+#include <errno.h>
+#include <nnapi/TypeUtils.h>
+#include <poll.h>
+
+#include <algorithm>
+#include <functional>
+#include <limits>
+#include <numeric>
+#include <string>
+#include <tuple>
+#include <unordered_map>
+#include <utility>
+#include <vector>
+
+#include "ControlFlow.h"
+#include "NeuralNetworks.h"
+#include "NeuralNetworksOEM.h"
+#include "OperationResolver.h"
+
+namespace android {
+namespace nn {
+
+const char kVLogPropKey[] = "debug.nn.vlog";
+int vLogMask = ~0;
+
+// Split the space separated list of tags from verbose log setting and build the
+// logging mask from it. note that '1' and 'all' are special cases to enable all
+// verbose logging.
+//
+// NN API verbose logging setting comes from system property debug.nn.vlog.
+// Example:
+// setprop debug.nn.vlog 1 : enable all logging tags.
+// setprop debug.nn.vlog "model compilation" : only enable logging for MODEL and
+// COMPILATION tags.
+void initVLogMask() {
+ vLogMask = 0;
+ const std::string vLogSetting = android::base::GetProperty(kVLogPropKey, "");
+ if (vLogSetting.empty()) {
+ return;
+ }
+
+ std::unordered_map<std::string, int> vLogFlags = {{"1", -1},
+ {"all", -1},
+ {"model", MODEL},
+ {"compilation", COMPILATION},
+ {"execution", EXECUTION},
+ {"cpuexe", CPUEXE},
+ {"manager", MANAGER},
+ {"driver", DRIVER},
+ {"memory", MEMORY}};
+
+ std::vector<std::string> elements = android::base::Split(vLogSetting, " ,:");
+ for (const auto& elem : elements) {
+ const auto& flag = vLogFlags.find(elem);
+ if (flag == vLogFlags.end()) {
+ LOG(ERROR) << "Unknown trace flag: " << elem;
+ continue;
+ }
+
+ if (flag->second == -1) {
+ // -1 is used for the special values "1" and "all" that enable all
+ // tracing.
+ vLogMask = ~0;
+ return;
+ } else {
+ vLogMask |= 1 << flag->second;
+ }
+ }
+}
+
+TimeoutDuration makeTimeoutDuration(uint64_t nanoseconds) {
+ // According to the standard, std::chrono::nanoseconds::rep is a signed
+ // integer type of at least 64 bits. This check prevents an overflow when
+ // rep is exactly 64 bits.
+ if constexpr (sizeof(std::chrono::nanoseconds::rep) == sizeof(int64_t)) {
+ nanoseconds = std::min(nanoseconds,
+ static_cast<uint64_t>(std::chrono::nanoseconds::max().count()));
+ }
+ return std::chrono::nanoseconds{nanoseconds};
+}
+
+Deadline makeDeadline(TimeoutDuration duration) {
+ const auto maxTime = Deadline::max();
+ const auto currentTime = std::chrono::steady_clock::now();
+
+ // If there would be an overflow, use the max value.
+ if (duration > maxTime - currentTime) {
+ return maxTime;
+ }
+ return currentTime + duration;
+}
+
+bool hasDeadlinePassed(const std::optional<Deadline>& deadline) {
+ if (!deadline.has_value()) {
+ return false;
+ }
+ return std::chrono::steady_clock::now() >= *deadline;
+}
+
+static OptionalTimePoint makeTimePoint(const Deadline& deadline) {
+ return deadline;
+}
+
+OptionalTimePoint makeTimePoint(const std::optional<Deadline>& deadline) {
+ return deadline.has_value() ? makeTimePoint(*deadline) : OptionalTimePoint{};
+}
+
+static bool isExtensionOperandType(int32_t type) {
+ return (static_cast<uint32_t>(type) >> kExtensionTypeBits) != 0;
+}
+
+static bool isExtensionOperationType(ANeuralNetworksOperationType type) {
+ return (static_cast<uint32_t>(type) >> kExtensionTypeBits) != 0;
+}
+
+bool isExtensionOperandType(OperandType type) {
+ return isExtensionOperandType(static_cast<int32_t>(type));
+}
+
+bool isExtensionOperationType(OperationType type) {
+ return isExtensionOperationType(static_cast<int32_t>(type));
+}
+
+namespace {
+
+template <typename EntryType, uint32_t entryCount, uint32_t entryCountOEM>
+EntryType tableLookup(const EntryType (&table)[entryCount],
+ const EntryType (&tableOEM)[entryCountOEM], uint32_t code) {
+ if (code < entryCount) {
+ return table[code];
+ } else if (code >= kOEMCodeBase && (code - kOEMCodeBase) < entryCountOEM) {
+ return tableOEM[code - kOEMCodeBase];
+ } else {
+ nnAssert(!"tableLookup: bad code");
+ return EntryType();
+ }
+}
+
+static Version convert(HalVersion halVersion) {
+ switch (halVersion) {
+ case HalVersion::UNKNOWN:
+ break;
+ case HalVersion::V1_0:
+ return Version::ANDROID_OC_MR1;
+ case HalVersion::V1_1:
+ return Version::ANDROID_P;
+ case HalVersion::V1_2:
+ return Version::ANDROID_Q;
+ case HalVersion::V1_3:
+ return Version::ANDROID_R;
+ }
+ LOG(FATAL) << "Cannot convert " << halVersion;
+ return {};
+}
+
+class OperationValidationContext : public IOperationValidationContext {
+ DISALLOW_IMPLICIT_CONSTRUCTORS(OperationValidationContext);
+
+ public:
+ OperationValidationContext(const char* operationName, uint32_t inputCount,
+ const uint32_t* inputIndexes, uint32_t outputCount,
+ const uint32_t* outputIndexes, const Operand* operands)
+ : operationName(operationName),
+ inputCount(inputCount),
+ inputIndexes(inputIndexes),
+ outputCount(outputCount),
+ outputIndexes(outputIndexes),
+ operands(operands) {}
+
+ const char* getOperationName() const override;
+
+ uint32_t getNumInputs() const override;
+ OperandType getInputType(uint32_t index) const override;
+ Shape getInputShape(uint32_t index) const override;
+ const Operand::ExtraParams& getInputExtraParams(uint32_t index) const override;
+
+ uint32_t getNumOutputs() const override;
+ OperandType getOutputType(uint32_t index) const override;
+ Shape getOutputShape(uint32_t index) const override;
+
+ private:
+ const Operand* getInputOperand(uint32_t index) const;
+ const Operand* getOutputOperand(uint32_t index) const;
+
+ const char* operationName;
+ uint32_t inputCount;
+ const uint32_t* inputIndexes;
+ uint32_t outputCount;
+ const uint32_t* outputIndexes;
+ const Operand* operands;
+ Version version;
+};
+
+const char* OperationValidationContext::getOperationName() const {
+ return operationName;
+}
+
+const Operand* OperationValidationContext::getInputOperand(uint32_t index) const {
+ CHECK(index < static_cast<uint32_t>(inputCount));
+ return &operands[inputIndexes[index]];
+}
+
+const Operand* OperationValidationContext::getOutputOperand(uint32_t index) const {
+ CHECK(index < static_cast<uint32_t>(outputCount));
+ return &operands[outputIndexes[index]];
+}
+
+uint32_t OperationValidationContext::getNumInputs() const {
+ return inputCount;
+}
+
+uint32_t OperationValidationContext::getNumOutputs() const {
+ return outputCount;
+}
+
+OperandType OperationValidationContext::getInputType(uint32_t index) const {
+ return getInputOperand(index)->type;
+}
+
+Shape OperationValidationContext::getInputShape(uint32_t index) const {
+ const Operand* operand = getInputOperand(index);
+ return {operand->type, operand->dimensions, operand->scale, operand->zeroPoint,
+ operand->extraParams};
+}
+
+const Operand::ExtraParams& OperationValidationContext::getInputExtraParams(uint32_t index) const {
+ return getInputOperand(index)->extraParams;
+}
+
+OperandType OperationValidationContext::getOutputType(uint32_t index) const {
+ return getOutputOperand(index)->type;
+}
+
+Shape OperationValidationContext::getOutputShape(uint32_t index) const {
+ const Operand* operand = getOutputOperand(index);
+ return {operand->type, operand->dimensions, operand->scale, operand->zeroPoint,
+ operand->extraParams};
+}
+
+}; // anonymous namespace
+
+#define COUNT(X) (sizeof(X) / sizeof(X[0]))
+
+const uint32_t kSizeOfDataType[]{
+ 4, // ANEURALNETWORKS_FLOAT32
+ 4, // ANEURALNETWORKS_INT32
+ 4, // ANEURALNETWORKS_UINT32
+ 4, // ANEURALNETWORKS_TENSOR_FLOAT32
+ 4, // ANEURALNETWORKS_TENSOR_INT32
+ 1, // ANEURALNETWORKS_TENSOR_QUANT8_ASYMM
+ 1, // ANEURALNETWORKS_BOOL
+ 2, // ANEURALNETWORKS_TENSOR_QUANT16_SYMM
+ 2, // ANEURALNETWORKS_TENSOR_FLOAT16
+ 1, // ANEURALNETWORKS_TENSOR_BOOL8
+ 2, // ANEURALNETWORKS_FLOAT16
+ 1, // ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL
+ 2, // ANEURALNETWORKS_TENSOR_QUANT16_ASYMM
+ 1, // ANEURALNETWORKS_TENSOR_QUANT8_SYMM
+ 1, // ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED
+ 0, // ANEURALNETWORKS_MODEL
+};
+
+static_assert(COUNT(kSizeOfDataType) == kNumberOfDataTypes, "kSizeOfDataType is incorrect");
+
+const bool kScalarDataType[]{
+ true, // ANEURALNETWORKS_FLOAT32
+ true, // ANEURALNETWORKS_INT32
+ true, // ANEURALNETWORKS_UINT32
+ false, // ANEURALNETWORKS_TENSOR_FLOAT32
+ false, // ANEURALNETWORKS_TENSOR_INT32
+ false, // ANEURALNETWORKS_TENSOR_QUANT8_ASYMM
+ true, // ANEURALNETWORKS_BOOL
+ false, // ANEURALNETWORKS_TENSOR_QUANT16_SYMM
+ false, // ANEURALNETWORKS_TENSOR_FLOAT16
+ false, // ANEURALNETWORKS_TENSOR_BOOL8
+ true, // ANEURALNETWORKS_FLOAT16
+ false, // ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL
+ false, // ANEURALNETWORKS_TENSOR_QUANT16_ASYMM
+ false, // ANEURALNETWORKS_TENSOR_QUANT8_SYMM
+ false, // ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED
+ true, // ANEURALNETWORKS_MODEL
+};
+
+static_assert(COUNT(kScalarDataType) == kNumberOfDataTypes, "kScalarDataType is incorrect");
+
+const uint32_t kSizeOfDataTypeOEM[]{
+ 0, // ANEURALNETWORKS_OEM
+ 1, // ANEURALNETWORKS_TENSOR_OEM_BYTE
+};
+
+static_assert(COUNT(kSizeOfDataTypeOEM) == kNumberOfDataTypesOEM,
+ "kSizeOfDataTypeOEM is incorrect");
+
+const bool kScalarDataTypeOEM[]{
+ true, // ANEURALNETWORKS_OEM
+ false, // ANEURALNETWORKS_TENSOR_OEM_BYTE
+};
+
+static_assert(COUNT(kScalarDataTypeOEM) == kNumberOfDataTypesOEM,
+ "kScalarDataTypeOEM is incorrect");
+
+bool nonExtensionOperandTypeIsScalar(int type) {
+ CHECK(!isExtensionOperandType(type)) << "Extension operand types are not supported";
+ return tableLookup(kScalarDataType, kScalarDataTypeOEM, type);
+}
+
+uint32_t nonExtensionOperandSizeOfData(OperandType type, const std::vector<uint32_t>& dimensions) {
+ const size_t size = getNonExtensionSize(type, dimensions).value();
+ CHECK_LE(size, std::numeric_limits<uint32_t>::max());
+ return size;
+}
+
+// Returns a pair of {false, size} on success, {true, 0} if size overflows uint32_t.
+static std::pair<bool, uint32_t> sizeOfTensorDataHelper(uint32_t sizeOfElement,
+ const std::vector<uint32_t>& dimensions) {
+ if (dimensions.empty()) {
+ return {false, 0};
+ }
+ uint64_t size = static_cast<uint64_t>(sizeOfElement);
+ constexpr uint64_t kMaxSize = static_cast<uint64_t>(std::numeric_limits<uint32_t>::max());
+ for (uint32_t d : dimensions) {
+ size *= d;
+ if (size > kMaxSize) return {true, 0};
+ }
+ return {false, static_cast<uint32_t>(size)};
+}
+
+uint32_t sizeOfTensorData(uint32_t sizeOfElement, const std::vector<uint32_t>& dimensions) {
+ const auto [overflow, size] = sizeOfTensorDataHelper(sizeOfElement, dimensions);
+ CHECK(!overflow);
+ return size;
+}
+
+bool nonExtensionOperandSizeOfDataOverflowsUInt32(OperandType type,
+ const std::vector<uint32_t>& dimensions) {
+ CHECK(!isExtension(type)) << "Size of extension operand data is unknown";
+ int n = static_cast<int>(type);
+ uint32_t sizeOfElement = tableLookup(kSizeOfDataType, kSizeOfDataTypeOEM, n);
+ return tableLookup(kScalarDataType, kScalarDataTypeOEM, n)
+ ? false
+ : sizeOfTensorDataOverflowsUInt32(sizeOfElement, dimensions);
+}
+
+bool sizeOfTensorDataOverflowsUInt32(uint32_t sizeOfElement,
+ const std::vector<uint32_t>& dimensions) {
+ return sizeOfTensorDataHelper(sizeOfElement, dimensions).first;
+}
+
+bool tensorHasUnspecifiedDimensions(int type, const uint32_t* dim, uint32_t dimCount) {
+ if (!isExtensionOperandType(type)) {
+ CHECK(!nonExtensionOperandTypeIsScalar(type))
+ << "A scalar type can never have unspecified dimensions";
+ }
+ return dimCount == 0 || std::find(dim, dim + dimCount, 0) != (dim + dimCount);
+}
+
+bool tensorHasUnspecifiedDimensions(OperandType type, const std::vector<uint32_t>& dimensions) {
+ return tensorHasUnspecifiedDimensions(static_cast<int>(type), dimensions.data(),
+ dimensions.size());
+}
+
+bool tensorHasUnspecifiedDimensions(const ANeuralNetworksOperandType* type) {
+ return tensorHasUnspecifiedDimensions(type->type, type->dimensions, type->dimensionCount);
+}
+
+bool tensorHasUnspecifiedDimensions(const Operand& operand) {
+ return tensorHasUnspecifiedDimensions(operand.type, operand.dimensions);
+}
+
+uint32_t alignBytesNeeded(uint32_t index, size_t length) {
+ uint32_t pattern;
+ if (length < 2) {
+ pattern = 0; // No alignment necessary
+ } else if (length < 4) {
+ pattern = 1; // Align on 2-byte boundary
+ } else {
+ pattern = 3; // Align on 4-byte boundary
+ }
+ uint32_t extra = (~(index - 1)) & pattern;
+ return extra;
+}
+
+void logModelToInfo(const Model& model) {
+ LOG(INFO) << model;
+}
+
+static bool validateScalarDimensions(const ANeuralNetworksOperandType& type, const char* tag) {
+ NN_RET_CHECK_EQ(type.dimensionCount, 0u) << tag << " invalid dimensions for scalar type";
+ NN_RET_CHECK(type.dimensions == nullptr) << tag << " invalid dimensions for scalar type";
+ return true;
+}
+
+static bool validateQuant8AsymmParams(const ANeuralNetworksOperandType& type, const char* tag) {
+ NN_RET_CHECK(0 <= type.zeroPoint && type.zeroPoint <= 255)
+ << tag << " invalid zeroPoint: " << type.zeroPoint;
+ NN_RET_CHECK_GT(type.scale, 0.f) << tag << " invalid scale";
+ return true;
+}
+
+static bool validateQuant8AsymmSignedParams(const ANeuralNetworksOperandType& type,
+ const char* tag) {
+ NN_RET_CHECK(-128 <= type.zeroPoint && type.zeroPoint <= 127)
+ << tag << " invalid zeroPoint: " << type.zeroPoint;
+ NN_RET_CHECK_GT(type.scale, 0.f) << tag << " invalid scale";
+ return true;
+}
+
+static bool validateQuant8SymmParams(const ANeuralNetworksOperandType& type, const char* tag) {
+ NN_RET_CHECK_EQ(type.zeroPoint, 0) << tag << " invalid zeroPoint: " << type.zeroPoint;
+ NN_RET_CHECK_GT(type.scale, 0.f) << tag << " invalid scale";
+ return true;
+}
+
+static bool validateQuant16AsymmParams(const ANeuralNetworksOperandType& type, const char* tag) {
+ NN_RET_CHECK(0 <= type.zeroPoint && type.zeroPoint <= 65535)
+ << tag << " invalid zeroPoint: " << type.zeroPoint;
+ NN_RET_CHECK_GT(type.scale, 0.f) << tag << " invalid scale";
+ return true;
+}
+
+static bool validateQuantSymmParams(const ANeuralNetworksOperandType& type, const char* tag) {
+ NN_RET_CHECK_EQ(type.zeroPoint, 0) << tag << " zeroPoint is not zero";
+ NN_RET_CHECK_GT(type.scale, 0.f) << tag << " invalid scale";
+ return true;
+}
+
+static bool validateNoQuantParams(const ANeuralNetworksOperandType& type, const char* tag) {
+ NN_RET_CHECK_EQ(type.zeroPoint, 0) << tag << " zeroPoint is not zero";
+ NN_RET_CHECK_EQ(type.scale, 0.f) << tag << " scale is not zero";
+ return true;
+}
+
+static bool validateTensorDimensions(
+ const ANeuralNetworksOperandType& type,
+ const Extension::OperandTypeInformation* const extensionOperandTypeInfo, const char* tag,
+ bool allowPartial) {
+ if (!allowPartial) {
+ NN_RET_CHECK_GT(type.dimensionCount, 0u) << tag << " invalid operand dimensions";
+ }
+ uint64_t size =
+ isExtensionOperandType(type.type)
+ ? extensionOperandTypeInfo->byteSize
+ : tableLookup(kSizeOfDataType, kSizeOfDataTypeOEM, static_cast<int>(type.type));
+ constexpr uint64_t kMaxSize = std::numeric_limits<uint32_t>::max();
+ for (uint32_t i = 0; i < type.dimensionCount; i++) {
+ if (!allowPartial) {
+ NN_RET_CHECK_NE(type.dimensions[i], 0u) << tag << " invalid operand dimensions";
+ }
+ if (type.dimensions[i] != 0) {
+ size *= type.dimensions[i];
+ NN_RET_CHECK_LE(size, kMaxSize) << tag << " operand byte size exceeds " << kMaxSize;
+ }
+ }
+ return true;
+}
+
+static bool validateOperandTypeHelper(
+ const ANeuralNetworksOperandType& type,
+ const Extension::OperandTypeInformation* const extensionOperandTypeInfo, const char* tag,
+ bool allowPartial) {
+ NN_RET_CHECK_EQ(type.dimensionCount == 0, type.dimensions == nullptr);
+ if (isExtensionOperandType(type.type)) {
+ NN_RET_CHECK(extensionOperandTypeInfo != nullptr);
+ if (extensionOperandTypeInfo->isTensor) {
+ NN_RET_CHECK(
+ validateTensorDimensions(type, extensionOperandTypeInfo, tag, allowPartial));
+ } else {
+ NN_RET_CHECK(validateScalarDimensions(type, tag));
+ }
+ return validateNoQuantParams(type, tag);
+ }
+
+ NN_RET_CHECK(extensionOperandTypeInfo == nullptr);
+ NN_RET_CHECK(validCode(kNumberOfDataTypes, kNumberOfDataTypesOEM, type.type))
+ << tag << " invalid OperandType: " << type.type;
+
+ bool isScalar = tableLookup(kScalarDataType, kScalarDataTypeOEM, type.type);
+ if (isScalar) {
+ NN_RET_CHECK(validateScalarDimensions(type, tag));
+ if (type.type != ANEURALNETWORKS_OEM_SCALAR) { // Historically, we have allowed OEM types
+ // to use quantization parameters.
+ NN_RET_CHECK(validateNoQuantParams(type, tag));
+ }
+ } else {
+ NN_RET_CHECK(validateTensorDimensions(type, extensionOperandTypeInfo, tag, allowPartial));
+ if (type.type == ANEURALNETWORKS_TENSOR_QUANT8_ASYMM) {
+ NN_RET_CHECK(validateQuant8AsymmParams(type, tag));
+ } else if (type.type == ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED) {
+ NN_RET_CHECK(validateQuant8AsymmSignedParams(type, tag));
+ } else if (type.type == ANEURALNETWORKS_TENSOR_QUANT8_SYMM) {
+ NN_RET_CHECK(validateQuant8SymmParams(type, tag));
+ } else if (type.type == ANEURALNETWORKS_TENSOR_QUANT16_ASYMM) {
+ NN_RET_CHECK(validateQuant16AsymmParams(type, tag));
+ } else if (type.type == ANEURALNETWORKS_TENSOR_QUANT16_SYMM) {
+ NN_RET_CHECK(validateQuantSymmParams(type, tag));
+ } else if (type.type == ANEURALNETWORKS_TENSOR_INT32) {
+ // TODO(b/119869082): TENSOR_INT32 should not use quantization parameters.
+ } else if (type.type == ANEURALNETWORKS_TENSOR_OEM_BYTE) {
+ // Historically, we have allowed OEM types to use quantization parameters.
+ } else {
+ NN_RET_CHECK(validateNoQuantParams(type, tag));
+ }
+ }
+
+ return true;
+}
+
+int validateOperandType(const ANeuralNetworksOperandType& type,
+ const Extension::OperandTypeInformation* const extensionOperandTypeInfo,
+ const char* tag, bool allowPartial) {
+ return validateOperandTypeHelper(type, extensionOperandTypeInfo, tag, allowPartial)
+ ? ANEURALNETWORKS_NO_ERROR
+ : ANEURALNETWORKS_BAD_DATA;
+}
+
+int validateOperandList(uint32_t count, const uint32_t* list, uint32_t operandCount,
+ const char* tag) {
+ for (uint32_t i = 0; i < count; i++) {
+ if (list[i] >= operandCount) {
+ LOG(ERROR) << tag << " invalid operand index at " << i << " = " << list[i]
+ << ", operandCount " << operandCount;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ }
+ return ANEURALNETWORKS_NO_ERROR;
+}
+
+int validateOperationOperandTypes(const std::vector<Operand>& operands, uint32_t inOperandCount,
+ const uint32_t* inOperandIndexes,
+ const std::vector<OperandType>& inExpectedTypes,
+ uint32_t outOperandCount, const uint32_t* outOperandIndexes,
+ const std::vector<OperandType>& outExpectedInTypes) {
+ if (inOperandCount != static_cast<uint32_t>(inExpectedTypes.size()) ||
+ outOperandCount != static_cast<uint32_t>(outExpectedInTypes.size())) {
+ LOG(ERROR) << "Wrong operand count: expected " << inExpectedTypes.size() << " inputs and "
+ << outExpectedInTypes.size() << " outputs,"
+ << "got " << inOperandCount << " inputs and " << outOperandCount << " outputs";
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ for (uint32_t i = 0; i < inOperandCount; i++) {
+ if (operands[inOperandIndexes[i]].type != inExpectedTypes[i]) {
+ LOG(ERROR) << "Invalid input tensor type " << operands[inOperandIndexes[i]].type
+ << " for input " << i << ", expected " << inExpectedTypes[i];
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ }
+ for (uint32_t i = 0; i < outOperandCount; i++) {
+ if (operands[outOperandIndexes[i]].type != outExpectedInTypes[i]) {
+ LOG(ERROR) << "Invalid output tensor type " << operands[outOperandIndexes[i]].type
+ << " for input " << i << ", expected " << outExpectedInTypes[i];
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ }
+
+ return ANEURALNETWORKS_NO_ERROR;
+}
+
+static int validateHalVersion(ANeuralNetworksOperationType opType, HalVersion halVersion,
+ HalVersion minSupportedHalVersion) {
+ if (halVersion < minSupportedHalVersion) {
+ LOG(ERROR) << "The given inputs and outputs for operation " << opType
+ << " are only supported in " << minSupportedHalVersion
+ << " and later (validating using " << halVersion << ")";
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ return ANEURALNETWORKS_NO_ERROR;
+}
+
+// Checks if two operands have the same types, ranks (if specified), dimensions
+// (if specified), scales, zeroPoints, and extraParams.
+static bool compatible(const Operand& a, const Operand& b) {
+ NN_RET_CHECK(a.type == b.type) << a.type << " != " << b.type;
+ if (a.dimensions.size() != 0 && b.dimensions.size() != 0) {
+ NN_RET_CHECK_EQ(a.dimensions.size(), b.dimensions.size()) << "Incompatible dimensions";
+ for (uint32_t i = 0, n = a.dimensions.size(); i < n; ++i) {
+ if (a.dimensions[i] != 0 && b.dimensions[i] != 0) {
+ NN_RET_CHECK_EQ(a.dimensions[i], b.dimensions[i]) << "Incompatible dimensions";
+ }
+ }
+ }
+ NN_RET_CHECK_EQ(a.scale, b.scale);
+ NN_RET_CHECK_EQ(a.zeroPoint, b.zeroPoint);
+ NN_RET_CHECK(a.extraParams == b.extraParams) << a.extraParams << " != " << b.extraParams;
+ return true;
+}
+
+static bool validateConditionOperand(const Operand& operand) {
+ NN_RET_CHECK(operand.type == OperandType::TENSOR_BOOL8)
+ << "Unexpected condition operand type: " << operand.type;
+ NN_RET_CHECK_EQ(operand.dimensions.size(), 1u) << "Condition operand must be a singleton";
+ NN_RET_CHECK_EQ(operand.dimensions[0], 1u) << "Condition operand must be a singleton";
+ return true;
+}
+
+static void checkSubgraphValidationHelper(const SubgraphValidationHelper& helper) {
+ CHECK(helper.isValidSubgraphReference != nullptr);
+ CHECK(helper.getSubgraphInputCount != nullptr);
+ CHECK(helper.getSubgraphOutputCount != nullptr);
+ CHECK(helper.getSubgraphInputOperand != nullptr);
+ CHECK(helper.getSubgraphOutputOperand != nullptr);
+}
+
+static bool validateIfOperation(uint32_t inputCount, const uint32_t* inputs, uint32_t outputCount,
+ const uint32_t* outputs, const std::vector<Operand>& operands,
+ const SubgraphValidationHelper& helper) {
+ namespace op = operation_if;
+ checkSubgraphValidationHelper(helper);
+ NN_RET_CHECK_GE(inputCount, 3u) << "ANEURALNETWORKS_IF must have at least 3 inputs";
+ NN_RET_CHECK_GE(outputCount, 1u) << "ANEURALNETWORKS_IF must have at least 1 output";
+ auto validateBranchOperand = [&](const Operand& branchModelOperand) -> bool {
+ NN_RET_CHECK(helper.isValidSubgraphReference(branchModelOperand))
+ << "Operand is not a valid subgraph reference";
+ const uint32_t branchModelInputCount = helper.getSubgraphInputCount(branchModelOperand);
+ const uint32_t branchModelOutputCount = helper.getSubgraphOutputCount(branchModelOperand);
+ NN_RET_CHECK_EQ(inputCount, op::kFirstInput + branchModelInputCount);
+ NN_RET_CHECK_EQ(outputCount, branchModelOutputCount);
+ for (uint32_t i = 0; i < branchModelInputCount; ++i) {
+ const Operand& innerOperand = *helper.getSubgraphInputOperand(branchModelOperand, i);
+ const Operand& outerOperand = operands[inputs[op::kFirstInput + i]];
+ NN_RET_CHECK(compatible(innerOperand, outerOperand));
+ }
+ for (uint32_t i = 0; i < branchModelOutputCount; ++i) {
+ const Operand& innerOperand = *helper.getSubgraphOutputOperand(branchModelOperand, i);
+ const Operand& outerOperand = operands[outputs[i]];
+ NN_RET_CHECK(compatible(innerOperand, outerOperand));
+ }
+ return true;
+ };
+ NN_RET_CHECK(validateConditionOperand(operands[inputs[op::kCondBoolOperand]]))
+ << "Validation failed for IF condition operand";
+ NN_RET_CHECK(validateBranchOperand(operands[inputs[op::kThenModelOperand]]))
+ << "Validation failed for IF then model";
+ NN_RET_CHECK(validateBranchOperand(operands[inputs[op::kElseModelOperand]]))
+ << "Validation failed for IF else model";
+ return true;
+}
+
+static bool validateControlFlowOperandUnknownSize(const SubgraphValidationHelper& helper,
+ const Operand& operand) {
+ if (!helper.allowControlFlowOperationWithOperandOfUnknownSize && !isExtension(operand.type)) {
+ NN_RET_CHECK_NE(nonExtensionOperandSizeOfData(operand.type, operand.dimensions), 0u);
+ }
+ return true;
+}
+
+static bool validateWhileOperation(uint32_t inputCount, const uint32_t* inputs,
+ uint32_t outputCount, const uint32_t* outputs,
+ const std::vector<Operand>& operands,
+ const SubgraphValidationHelper& helper) {
+ // Let the loop have
+ // - m >= 1 input-output operands,
+ // - k >= 0 state-only operands, and
+ // - n >= 0 input-only operands.
+ // Then
+ // - the WHILE loop operation has (2 + m + k + n) inputs and m outputs.
+ // - the condition model has (m + k + n) inputs and 1 output.
+ // - the body model has (m + k + n) inputs and (m + k) outputs.
+ namespace op = operation_while;
+ checkSubgraphValidationHelper(helper);
+ NN_RET_CHECK_GE(inputCount, 3u) << "ANEURALNETWORKS_WHILE must have at least 3 inputs";
+ NN_RET_CHECK_GE(outputCount, 1u) << "ANEURALNETWORKS_WHILE must have at least 1 output";
+ auto validateCondOperand = [&](const Operand& condModelOperand) -> bool {
+ NN_RET_CHECK(helper.isValidSubgraphReference(condModelOperand))
+ << "Operand is not a valid subgraph reference";
+ const uint32_t condModelInputCount = helper.getSubgraphInputCount(condModelOperand);
+ const uint32_t condModelOutputCount = helper.getSubgraphOutputCount(condModelOperand);
+ NN_RET_CHECK_EQ(inputCount, op::kFirstInput + condModelInputCount);
+ NN_RET_CHECK_EQ(condModelOutputCount, 1u);
+ for (uint32_t i = 0; i < condModelInputCount; ++i) {
+ const Operand& innerOperand = *helper.getSubgraphInputOperand(condModelOperand, i);
+ const Operand& outerOperand = operands[inputs[op::kFirstInput + i]];
+ NN_RET_CHECK(compatible(innerOperand, outerOperand));
+ NN_RET_CHECK(validateControlFlowOperandUnknownSize(helper, innerOperand));
+ NN_RET_CHECK(validateControlFlowOperandUnknownSize(helper, outerOperand));
+ }
+ NN_RET_CHECK(
+ validateConditionOperand(*helper.getSubgraphOutputOperand(condModelOperand, 0)));
+ return true;
+ };
+ auto validateBodyOperand = [&](const Operand& bodyModelOperand) -> bool {
+ NN_RET_CHECK(helper.isValidSubgraphReference(bodyModelOperand))
+ << "Operand is not a valid subgraph reference";
+ const uint32_t bodyModelInputCount = helper.getSubgraphInputCount(bodyModelOperand);
+ const uint32_t bodyModelOutputCount = helper.getSubgraphOutputCount(bodyModelOperand);
+ NN_RET_CHECK_EQ(inputCount, op::kFirstInput + bodyModelInputCount);
+ NN_RET_CHECK_GE(bodyModelOutputCount, outputCount);
+ NN_RET_CHECK_GE(bodyModelInputCount, bodyModelOutputCount);
+ const uint32_t inputOutputCount = outputCount;
+ const uint32_t stateOnlyCount = bodyModelOutputCount - inputOutputCount;
+ const uint32_t inputOnlyCount = bodyModelInputCount - bodyModelOutputCount;
+ for (uint32_t i = 0, n = inputOutputCount + stateOnlyCount + inputOnlyCount; i < n; ++i) {
+ const Operand& innerOperand = *helper.getSubgraphInputOperand(bodyModelOperand, i);
+ const Operand& outerOperand = operands[inputs[op::kFirstInput + i]];
+ NN_RET_CHECK(compatible(innerOperand, outerOperand));
+ NN_RET_CHECK(validateControlFlowOperandUnknownSize(helper, innerOperand));
+ NN_RET_CHECK(validateControlFlowOperandUnknownSize(helper, outerOperand));
+ }
+ for (uint32_t i = 0; i < inputOutputCount; ++i) {
+ const Operand& innerOperand = *helper.getSubgraphOutputOperand(bodyModelOperand, i);
+ const Operand& outerOperand = operands[outputs[i]];
+ NN_RET_CHECK(compatible(innerOperand, outerOperand));
+ NN_RET_CHECK(validateControlFlowOperandUnknownSize(helper, outerOperand));
+ }
+ for (uint32_t i = 0, n = inputOutputCount + stateOnlyCount; i < n; ++i) {
+ const Operand& inputOperand = *helper.getSubgraphInputOperand(bodyModelOperand, i);
+ const Operand& outputOperand = *helper.getSubgraphOutputOperand(bodyModelOperand, i);
+ NN_RET_CHECK(compatible(inputOperand, outputOperand));
+ NN_RET_CHECK(validateControlFlowOperandUnknownSize(helper, outputOperand));
+ }
+ return true;
+ };
+ NN_RET_CHECK(validateCondOperand(operands[inputs[op::kCondModelOperand]]))
+ << "Validation failed for WHILE condition model";
+ NN_RET_CHECK(validateBodyOperand(operands[inputs[op::kBodyModelOperand]]))
+ << "Validation failed for WHILE body model";
+ return true;
+}
+
+int validateOperation(ANeuralNetworksOperationType opType, uint32_t inputCount,
+ const uint32_t* inputIndexes, uint32_t outputCount,
+ const uint32_t* outputIndexes, const std::vector<Operand>& operands,
+ HalVersion halVersion, const SubgraphValidationHelper& helper) {
+ NN_RETURN_IF_ERROR(validateOperandList(inputCount, inputIndexes,
+ static_cast<uint32_t>(operands.size()),
+ "ANeuralNetworksModel_addOperation inputs"));
+ NN_RETURN_IF_ERROR(validateOperandList(outputCount, outputIndexes,
+ static_cast<uint32_t>(operands.size()),
+ "ANeuralNetworksModel_addOperation outputs"));
+
+ if (isExtensionOperationType(opType)) {
+ if (halVersion < HalVersion::V1_2) {
+ LOG(ERROR)
+ << "Extension operations are supported since HAL version 1.2, validating using "
+ << halVersion;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ // There is no other validation we can do for an extension operation.
+ return ANEURALNETWORKS_NO_ERROR;
+ }
+
+ auto logInvalidInOutNumber = [opType, inputCount, outputCount](int expIn, int expOut) {
+ LOG(ERROR) << "Invalid number of input operands (" << inputCount << ", expected " << expIn
+ << ") or output operands (" << outputCount << ", expected " << expOut
+ << ") for operation " << opType;
+ };
+
+ switch (opType) {
+ case ANEURALNETWORKS_OEM_OPERATION: {
+ return ANEURALNETWORKS_NO_ERROR;
+ }
+ case ANEURALNETWORKS_RESHAPE: {
+ if (inputCount != 2 || outputCount != 1) {
+ logInvalidInOutNumber(2, 1);
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ auto inputType = operands[inputIndexes[0]].type;
+ std::vector<OperandType> inExpectedTypes;
+ std::vector<OperandType> outExpectedTypes;
+ if (inputType == OperandType::TENSOR_FLOAT32) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0));
+ inExpectedTypes = {OperandType::TENSOR_FLOAT32, OperandType::TENSOR_INT32};
+ outExpectedTypes = {OperandType::TENSOR_FLOAT32};
+ } else if (inputType == OperandType::TENSOR_FLOAT16) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
+ inExpectedTypes = {OperandType::TENSOR_FLOAT16, OperandType::TENSOR_INT32};
+ outExpectedTypes = {OperandType::TENSOR_FLOAT16};
+ } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0));
+ inExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM, OperandType::TENSOR_INT32};
+ outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM};
+ } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3));
+ inExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM_SIGNED,
+ OperandType::TENSOR_INT32};
+ outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM_SIGNED};
+ } else {
+ LOG(ERROR) << "Unsupported input tensor type for operation " << opType;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ const auto inputRank = operands[inputIndexes[0]].dimensions.size();
+ if (inputRank > 4) {
+ LOG(ERROR) << "Unsupported input tensor rank for operation " << opType;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ return validateOperationOperandTypes(operands, inputCount, inputIndexes,
+ inExpectedTypes, outputCount, outputIndexes,
+ outExpectedTypes);
+ }
+ case ANEURALNETWORKS_DEPTH_TO_SPACE: {
+ if ((inputCount != 3 && inputCount != 2) || outputCount != 1) {
+ LOG(ERROR) << "Invalid number of input operands (" << inputCount
+ << ", expected 3 or 2) or output operands (" << outputCount
+ << ", expected 1) for operation " << opType;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ auto inputType = operands[inputIndexes[0]].type;
+ std::vector<OperandType> inExpectedTypes;
+ std::vector<OperandType> outExpectedTypes;
+ if (inputType == OperandType::TENSOR_FLOAT32) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0));
+ inExpectedTypes = {OperandType::TENSOR_FLOAT32, OperandType::INT32};
+ outExpectedTypes = {OperandType::TENSOR_FLOAT32};
+ } else if (inputType == OperandType::TENSOR_FLOAT16) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
+ inExpectedTypes = {OperandType::TENSOR_FLOAT16, OperandType::INT32};
+ outExpectedTypes = {OperandType::TENSOR_FLOAT16};
+ } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0));
+ inExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM, OperandType::INT32};
+ outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM};
+ } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3));
+ inExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM_SIGNED, OperandType::INT32};
+ outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM_SIGNED};
+ } else {
+ LOG(ERROR) << "Unsupported input tensor type for operation " << opType;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ if (inputCount == 3) {
+ inExpectedTypes.push_back(OperandType::BOOL);
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
+ } else {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0));
+ }
+ return validateOperationOperandTypes(operands, inputCount, inputIndexes,
+ inExpectedTypes, outputCount, outputIndexes,
+ outExpectedTypes);
+ }
+ case ANEURALNETWORKS_SPACE_TO_DEPTH: {
+ if ((inputCount != 3 && inputCount != 2) || outputCount != 1) {
+ LOG(ERROR) << "Invalid number of input operands (" << inputCount
+ << ", expected 3 or 2) or output operands (" << outputCount
+ << ", expected 1) for operation " << opType;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ auto inputType = operands[inputIndexes[0]].type;
+ std::vector<OperandType> inExpectedTypes;
+ std::vector<OperandType> outExpectedTypes;
+ if (inputType == OperandType::TENSOR_FLOAT32) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0));
+ inExpectedTypes = {OperandType::TENSOR_FLOAT32, OperandType::INT32};
+ outExpectedTypes = {OperandType::TENSOR_FLOAT32};
+ } else if (inputType == OperandType::TENSOR_FLOAT16) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
+ inExpectedTypes = {OperandType::TENSOR_FLOAT16, OperandType::INT32};
+ outExpectedTypes = {OperandType::TENSOR_FLOAT16};
+ } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0));
+ inExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM, OperandType::INT32};
+ outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM};
+ } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3));
+ inExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM_SIGNED, OperandType::INT32};
+ outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM_SIGNED};
+ } else {
+ LOG(ERROR) << "Unsupported input tensor type for operation " << opType;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ if (inputCount == 3) {
+ inExpectedTypes.push_back(OperandType::BOOL);
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
+ } else {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0));
+ }
+ return validateOperationOperandTypes(operands, inputCount, inputIndexes,
+ inExpectedTypes, outputCount, outputIndexes,
+ outExpectedTypes);
+ }
+ case ANEURALNETWORKS_EMBEDDING_LOOKUP: {
+ if (inputCount != 2 || outputCount != 1) {
+ logInvalidInOutNumber(2, 1);
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ auto inputType = operands[inputIndexes[1]].type;
+ if (inputType != OperandType::TENSOR_FLOAT16 &&
+ inputType != OperandType::TENSOR_FLOAT32 &&
+ inputType != OperandType::TENSOR_INT32 &&
+ inputType != OperandType::TENSOR_QUANT8_ASYMM &&
+ inputType != OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
+ LOG(ERROR) << "Unsupported input tensor type for operation " << opType;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ std::vector<OperandType> inExpectedTypes = {OperandType::TENSOR_INT32, inputType};
+ std::vector<OperandType> outExpectedTypes = {inputType};
+ if (inputType == OperandType::TENSOR_FLOAT16 ||
+ inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3));
+ } else if (inputType == OperandType::TENSOR_INT32 ||
+ inputType == OperandType::TENSOR_QUANT8_ASYMM) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
+ } else {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0));
+ }
+ return validateOperationOperandTypes(operands, inputCount, inputIndexes,
+ inExpectedTypes, outputCount, outputIndexes,
+ outExpectedTypes);
+ }
+ case ANEURALNETWORKS_HASHTABLE_LOOKUP: {
+ if (inputCount != 3 || outputCount != 2) {
+ logInvalidInOutNumber(3, 2);
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ auto inputType = operands[inputIndexes[2]].type;
+ if (inputType != OperandType::TENSOR_FLOAT32 &&
+ inputType != OperandType::TENSOR_INT32 &&
+ inputType != OperandType::TENSOR_QUANT8_ASYMM) {
+ LOG(ERROR) << "Unsupported input tensor type for operation " << opType;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ std::vector<OperandType> inExpectedTypes = {OperandType::TENSOR_INT32,
+ OperandType::TENSOR_INT32, inputType};
+ std::vector<OperandType> outExpectedTypes = {inputType,
+ OperandType::TENSOR_QUANT8_ASYMM};
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0));
+ return validateOperationOperandTypes(operands, inputCount, inputIndexes,
+ inExpectedTypes, outputCount, outputIndexes,
+ outExpectedTypes);
+ }
+ case ANEURALNETWORKS_LSH_PROJECTION: {
+ if (inputCount != 4 || outputCount != 1) {
+ logInvalidInOutNumber(4, 1);
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ auto inputType = operands[inputIndexes[1]].type;
+ if (inputType != OperandType::TENSOR_FLOAT16 &&
+ inputType != OperandType::TENSOR_FLOAT32 &&
+ inputType != OperandType::TENSOR_INT32 &&
+ inputType != OperandType::TENSOR_QUANT8_ASYMM) {
+ LOG(ERROR) << "Unsupported input tensor type for operation " << opType;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ auto hashType = operands[inputIndexes[0]].type;
+ std::vector<OperandType> inExpectedTypes;
+ if (hashType == OperandType::TENSOR_FLOAT16) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
+ inExpectedTypes = {
+ OperandType::TENSOR_FLOAT16,
+ inputType,
+ OperandType::TENSOR_FLOAT16,
+ OperandType::INT32,
+ };
+ } else if (hashType == OperandType::TENSOR_FLOAT32) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0));
+ inExpectedTypes = {
+ OperandType::TENSOR_FLOAT32,
+ inputType,
+ OperandType::TENSOR_FLOAT32,
+ OperandType::INT32,
+ };
+ } else {
+ LOG(ERROR) << "Unsupported hash tensor type for operation " << opType;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ std::vector<OperandType> outExpectedTypes = {OperandType::TENSOR_INT32};
+ return validateOperationOperandTypes(operands, inputCount, inputIndexes,
+ inExpectedTypes, outputCount, outputIndexes,
+ outExpectedTypes);
+ }
+ case ANEURALNETWORKS_BIDIRECTIONAL_SEQUENCE_LSTM: {
+ const uint32_t kNumOutputs = 2;
+ const uint32_t kNumOutputsMerged = 1;
+ const uint32_t kNumOutputsWithState = 6;
+ const uint32_t kNumOutputsMergedWithState = 5;
+ if (inputCount != 61 ||
+ (outputCount != kNumOutputs && outputCount != kNumOutputsMerged &&
+ outputCount != kNumOutputsWithState &&
+ outputCount != kNumOutputsMergedWithState)) {
+ LOG(ERROR) << "Invalid number of input operands (" << inputCount
+ << ", expected 61) or output operands (" << outputCount
+ << ", expected 1, 2, 5 or 6) for operation " << opType;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+
+ std::vector<OperandType> inExpectedTypes;
+ auto inputType = operands[inputIndexes[0]].type;
+ if (inputType != OperandType::TENSOR_FLOAT32 &&
+ inputType != OperandType::TENSOR_FLOAT16) {
+ LOG(ERROR) << "Unsupported input tensor type for operation " << opType;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+
+ inExpectedTypes = {};
+ for (int i = 0; i < 48; ++i) {
+ inExpectedTypes.push_back(inputType);
+ }
+ inExpectedTypes.push_back(OperandType::INT32);
+ inExpectedTypes.push_back(inputType == OperandType::TENSOR_FLOAT32
+ ? OperandType::FLOAT32
+ : OperandType::FLOAT16);
+ inExpectedTypes.push_back(inputType == OperandType::TENSOR_FLOAT32
+ ? OperandType::FLOAT32
+ : OperandType::FLOAT16);
+ inExpectedTypes.push_back(OperandType::BOOL);
+ inExpectedTypes.push_back(OperandType::BOOL);
+ for (int i = 0; i < 8; ++i) {
+ inExpectedTypes.push_back(inputType);
+ }
+
+ HalVersion minSupportedHalVersion = HalVersion::V1_2;
+ if (outputCount == kNumOutputsWithState || outputCount == kNumOutputsMergedWithState) {
+ minSupportedHalVersion = HalVersion::V1_3;
+ }
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, minSupportedHalVersion));
+ std::vector<OperandType> outExpectedTypes(outputCount, inputType);
+ auto status = validateOperationOperandTypes(operands, inputCount, inputIndexes,
+ inExpectedTypes, outputCount, outputIndexes,
+ outExpectedTypes);
+ return status;
+ }
+ case ANEURALNETWORKS_LSTM: {
+ if ((inputCount != 23 && inputCount != 27) || outputCount != 4) {
+ LOG(ERROR) << "Invalid number of input operands (" << inputCount
+ << ", expected 23 or 27) or output operands (" << outputCount
+ << ", expected 4) for operation " << opType;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ std::vector<OperandType> inExpectedTypes;
+ std::vector<OperandType> outExpectedTypes;
+ auto inputType = operands[inputIndexes[0]].type;
+ if (inputType != OperandType::TENSOR_FLOAT32 &&
+ inputType != OperandType::TENSOR_FLOAT16) {
+ LOG(ERROR) << "Unsupported input tensor type for operation " << opType;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+
+ inExpectedTypes = {inputType, inputType, inputType, inputType, inputType,
+ inputType, inputType, inputType, inputType, inputType,
+ inputType, inputType, inputType, inputType, inputType,
+ inputType, inputType, inputType, inputType, inputType,
+ OperandType::INT32};
+ if (inputType == OperandType::TENSOR_FLOAT32) {
+ inExpectedTypes.push_back(OperandType::FLOAT32);
+ inExpectedTypes.push_back(OperandType::FLOAT32);
+ } else {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
+ inExpectedTypes.push_back(OperandType::FLOAT16);
+ inExpectedTypes.push_back(OperandType::FLOAT16);
+ }
+
+ outExpectedTypes = {inputType, inputType, inputType, inputType};
+ if (inputCount == 23) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0));
+ } else {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
+ for (int i = 0; i < 4; ++i) {
+ inExpectedTypes.push_back(inputType);
+ }
+ }
+ return validateOperationOperandTypes(operands, inputCount, inputIndexes,
+ inExpectedTypes, outputCount, outputIndexes,
+ outExpectedTypes);
+ }
+ case ANEURALNETWORKS_QUANTIZED_16BIT_LSTM: {
+ if (inputCount != 15 || outputCount != 2) {
+ logInvalidInOutNumber(15, 2);
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
+ std::vector<OperandType> inExpectedTypes = {
+ OperandType::TENSOR_QUANT8_ASYMM, OperandType::TENSOR_QUANT8_ASYMM,
+ OperandType::TENSOR_QUANT8_ASYMM, OperandType::TENSOR_QUANT8_ASYMM,
+ OperandType::TENSOR_QUANT8_ASYMM, OperandType::TENSOR_QUANT8_ASYMM,
+ OperandType::TENSOR_QUANT8_ASYMM, OperandType::TENSOR_QUANT8_ASYMM,
+ OperandType::TENSOR_QUANT8_ASYMM, OperandType::TENSOR_INT32,
+ OperandType::TENSOR_INT32, OperandType::TENSOR_INT32,
+ OperandType::TENSOR_INT32, OperandType::TENSOR_QUANT16_SYMM,
+ OperandType::TENSOR_QUANT8_ASYMM};
+ std::vector<OperandType> outExpectedTypes = {OperandType::TENSOR_QUANT16_SYMM,
+ OperandType::TENSOR_QUANT8_ASYMM};
+ return validateOperationOperandTypes(operands, inputCount, inputIndexes,
+ inExpectedTypes, outputCount, outputIndexes,
+ outExpectedTypes);
+ }
+ case ANEURALNETWORKS_RANDOM_MULTINOMIAL: {
+ if (inputCount != 3 || outputCount != 1) {
+ logInvalidInOutNumber(3, 1);
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ OperandType inputType = operands[inputIndexes[0]].type;
+ std::vector<OperandType> inExpectedTypes;
+ if (inputType == OperandType::TENSOR_FLOAT32 ||
+ inputType == OperandType::TENSOR_FLOAT16) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
+ inExpectedTypes = {
+ inputType,
+ OperandType::INT32,
+ OperandType::TENSOR_INT32,
+ };
+ } else {
+ LOG(ERROR) << "Unsupported input tensor type for operation " << opType;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ std::vector<OperandType> outExpectedTypes = {OperandType::TENSOR_INT32};
+ return validateOperationOperandTypes(operands, inputCount, inputIndexes,
+ inExpectedTypes, outputCount, outputIndexes,
+ outExpectedTypes);
+ }
+ case ANEURALNETWORKS_RNN: {
+ if (inputCount != 6 || outputCount != 2) {
+ logInvalidInOutNumber(6, 2);
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ OperandType inputType = operands[inputIndexes[0]].type;
+ std::vector<OperandType> inExpectedTypes;
+ std::vector<OperandType> outExpectedTypes;
+ if (inputType == OperandType::TENSOR_FLOAT32) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0));
+ inExpectedTypes = {
+ OperandType::TENSOR_FLOAT32, OperandType::TENSOR_FLOAT32,
+ OperandType::TENSOR_FLOAT32, OperandType::TENSOR_FLOAT32,
+ OperandType::TENSOR_FLOAT32, OperandType::INT32,
+ };
+ outExpectedTypes = {
+ OperandType::TENSOR_FLOAT32,
+ OperandType::TENSOR_FLOAT32,
+ };
+ } else if (inputType == OperandType::TENSOR_FLOAT16) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
+ inExpectedTypes = {
+ OperandType::TENSOR_FLOAT16, OperandType::TENSOR_FLOAT16,
+ OperandType::TENSOR_FLOAT16, OperandType::TENSOR_FLOAT16,
+ OperandType::TENSOR_FLOAT16, OperandType::INT32,
+ };
+ outExpectedTypes = {
+ OperandType::TENSOR_FLOAT16,
+ OperandType::TENSOR_FLOAT16,
+ };
+ } else {
+ LOG(ERROR) << "Unsupported input tensor type for operation " << opType;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ return validateOperationOperandTypes(operands, inputCount, inputIndexes,
+ inExpectedTypes, outputCount, outputIndexes,
+ outExpectedTypes);
+ }
+ case ANEURALNETWORKS_SVDF: {
+ if (inputCount != 7 || outputCount != 2) {
+ logInvalidInOutNumber(7, 2);
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ OperandType inputType = operands[inputIndexes[0]].type;
+ if (inputType == OperandType::TENSOR_FLOAT32) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_0));
+
+ } else if (inputType == OperandType::TENSOR_FLOAT16) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
+ } else {
+ LOG(ERROR) << "Unsupported input tensor type for operation " << opType;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ std::vector<OperandType> inExpectedTypes = {
+ inputType, inputType, inputType, inputType,
+ inputType, OperandType::INT32, OperandType::INT32,
+ };
+ std::vector<OperandType> outExpectedTypes = {inputType, inputType};
+ return validateOperationOperandTypes(operands, inputCount, inputIndexes,
+ inExpectedTypes, outputCount, outputIndexes,
+ outExpectedTypes);
+ }
+ case ANEURALNETWORKS_BATCH_TO_SPACE_ND: {
+ if ((inputCount != 3 && inputCount != 2) || outputCount != 1) {
+ LOG(ERROR) << "Invalid number of input operands (" << inputCount
+ << ", expected 3 or 2) or output operands (" << outputCount
+ << ", expected 1) for operation " << opType;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ auto inputType = operands[inputIndexes[0]].type;
+ std::vector<OperandType> inExpectedTypes;
+ std::vector<OperandType> outExpectedTypes;
+ if (inputType == OperandType::TENSOR_FLOAT32) {
+ inExpectedTypes = {
+ OperandType::TENSOR_FLOAT32,
+ OperandType::TENSOR_INT32,
+ };
+ outExpectedTypes = {OperandType::TENSOR_FLOAT32};
+ } else if (inputType == OperandType::TENSOR_FLOAT16) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
+ inExpectedTypes = {
+ OperandType::TENSOR_FLOAT16,
+ OperandType::TENSOR_INT32,
+ };
+ outExpectedTypes = {OperandType::TENSOR_FLOAT16};
+ } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) {
+ inExpectedTypes = {
+ OperandType::TENSOR_QUANT8_ASYMM,
+ OperandType::TENSOR_INT32,
+ };
+ outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM};
+ } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3));
+ inExpectedTypes = {
+ OperandType::TENSOR_QUANT8_ASYMM_SIGNED,
+ OperandType::TENSOR_INT32,
+ };
+ outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM_SIGNED};
+ } else {
+ LOG(ERROR) << "Unsupported input tensor type for operation " << opType;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ if (inputCount == 3) {
+ inExpectedTypes.push_back(OperandType::BOOL);
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
+ } else {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_1));
+ }
+ return validateOperationOperandTypes(operands, inputCount, inputIndexes,
+ inExpectedTypes, outputCount, outputIndexes,
+ outExpectedTypes);
+ }
+ case ANEURALNETWORKS_SPACE_TO_BATCH_ND: {
+ if ((inputCount != 4 && inputCount != 3) || outputCount != 1) {
+ LOG(ERROR) << "Invalid number of input operands (" << inputCount
+ << ", expected 4 or 3) or output operands (" << outputCount
+ << ", expected 1) for operation " << opType;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ auto inputType = operands[inputIndexes[0]].type;
+ std::vector<OperandType> inExpectedTypes;
+ std::vector<OperandType> outExpectedTypes;
+ if (inputType == OperandType::TENSOR_FLOAT32) {
+ inExpectedTypes = {
+ OperandType::TENSOR_FLOAT32,
+ OperandType::TENSOR_INT32,
+ OperandType::TENSOR_INT32,
+ };
+ outExpectedTypes = {OperandType::TENSOR_FLOAT32};
+ } else if (inputType == OperandType::TENSOR_FLOAT16) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
+ inExpectedTypes = {
+ OperandType::TENSOR_FLOAT16,
+ OperandType::TENSOR_INT32,
+ OperandType::TENSOR_INT32,
+ };
+ outExpectedTypes = {OperandType::TENSOR_FLOAT16};
+ } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) {
+ if (operands[inputIndexes[0]].zeroPoint != 0) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
+ }
+ inExpectedTypes = {
+ OperandType::TENSOR_QUANT8_ASYMM,
+ OperandType::TENSOR_INT32,
+ OperandType::TENSOR_INT32,
+ };
+ outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM};
+ } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3));
+ inExpectedTypes = {
+ OperandType::TENSOR_QUANT8_ASYMM_SIGNED,
+ OperandType::TENSOR_INT32,
+ OperandType::TENSOR_INT32,
+ };
+ outExpectedTypes = {OperandType::TENSOR_QUANT8_ASYMM_SIGNED};
+ } else {
+ LOG(ERROR) << "Unsupported input tensor type for operation " << opType;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ if (inputCount == 4) {
+ inExpectedTypes.push_back(OperandType::BOOL);
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
+ } else {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_1));
+ }
+ return validateOperationOperandTypes(operands, inputCount, inputIndexes,
+ inExpectedTypes, outputCount, outputIndexes,
+ outExpectedTypes);
+ }
+ case ANEURALNETWORKS_PAD: {
+ if (inputCount != 2 || outputCount != 1) {
+ logInvalidInOutNumber(2, 1);
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ auto inputType = operands[inputIndexes[0]].type;
+ std::vector<OperandType> inExpectedTypes;
+ std::vector<OperandType> outExpectedTypes;
+ if (inputType == OperandType::TENSOR_FLOAT32) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_1));
+ inExpectedTypes = {
+ OperandType::TENSOR_FLOAT32,
+ OperandType::TENSOR_INT32,
+ };
+ outExpectedTypes = {OperandType::TENSOR_FLOAT32};
+ } else if (inputType == OperandType::TENSOR_FLOAT16) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
+ inExpectedTypes = {
+ OperandType::TENSOR_FLOAT16,
+ OperandType::TENSOR_INT32,
+ };
+ outExpectedTypes = {OperandType::TENSOR_FLOAT16};
+ } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM ||
+ inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
+ if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3));
+ } else {
+ if (operands[inputIndexes[0]].zeroPoint == 0) {
+ NN_RETURN_IF_ERROR(
+ validateHalVersion(opType, halVersion, HalVersion::V1_1));
+ } else {
+ NN_RETURN_IF_ERROR(
+ validateHalVersion(opType, halVersion, HalVersion::V1_2));
+ }
+ }
+ inExpectedTypes = {
+ inputType,
+ OperandType::TENSOR_INT32,
+ };
+ outExpectedTypes = {inputType};
+ } else {
+ LOG(ERROR) << "Unsupported input tensor type for operation " << opType;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ const auto inputRank = operands[inputIndexes[0]].dimensions.size();
+ if (inputRank > 4) {
+ LOG(ERROR) << "Unsupported input tensor rank for operation " << opType;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ return validateOperationOperandTypes(operands, inputCount, inputIndexes,
+ inExpectedTypes, outputCount, outputIndexes,
+ outExpectedTypes);
+ }
+ case ANEURALNETWORKS_PAD_V2: {
+ if (inputCount != 3 || outputCount != 1) {
+ logInvalidInOutNumber(3, 1);
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ auto inputType = operands[inputIndexes[0]].type;
+ std::vector<OperandType> inExpectedTypes;
+ std::vector<OperandType> outExpectedTypes;
+ if (inputType == OperandType::TENSOR_FLOAT32) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
+ inExpectedTypes = {
+ OperandType::TENSOR_FLOAT32,
+ OperandType::TENSOR_INT32,
+ OperandType::FLOAT32,
+ };
+ outExpectedTypes = {OperandType::TENSOR_FLOAT32};
+ } else if (inputType == OperandType::TENSOR_FLOAT16) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
+ inExpectedTypes = {
+ OperandType::TENSOR_FLOAT16,
+ OperandType::TENSOR_INT32,
+ OperandType::FLOAT16,
+ };
+ outExpectedTypes = {OperandType::TENSOR_FLOAT16};
+ } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM ||
+ inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
+ if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3));
+ } else {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
+ }
+ inExpectedTypes = {
+ inputType,
+ OperandType::TENSOR_INT32,
+ OperandType::INT32,
+ }; // TODO(b/116699425): Make it UINT8.
+ outExpectedTypes = {inputType};
+ } else {
+ LOG(ERROR) << "Unsupported input tensor type for operation " << opType;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ const auto inputRank = operands[inputIndexes[0]].dimensions.size();
+ if (inputRank > 4) {
+ LOG(ERROR) << "Unsupported input tensor rank for operation " << opType;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ return validateOperationOperandTypes(operands, inputCount, inputIndexes,
+ inExpectedTypes, outputCount, outputIndexes,
+ outExpectedTypes);
+ }
+ case ANEURALNETWORKS_CAST: {
+ if (inputCount != 1 || outputCount != 1) {
+ logInvalidInOutNumber(1, 1);
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ auto inputOperand = operands[inputIndexes[0]];
+ auto outputOperand = operands[outputIndexes[0]];
+ auto inputType = inputOperand.type;
+ auto outputType = outputOperand.type;
+ std::vector<OperandType> inExpectedTypes;
+ std::vector<OperandType> outExpectedTypes;
+ if ((inputType == OperandType::TENSOR_FLOAT16 ||
+ inputType == OperandType::TENSOR_FLOAT32 ||
+ inputType == OperandType::TENSOR_INT32 ||
+ inputType == OperandType::TENSOR_QUANT8_ASYMM) &&
+ (outputType == OperandType::TENSOR_FLOAT16 ||
+ outputType == OperandType::TENSOR_FLOAT32 ||
+ outputType == OperandType::TENSOR_INT32 ||
+ outputType == OperandType::TENSOR_QUANT8_ASYMM)) {
+ inExpectedTypes = {inputType};
+ outExpectedTypes = {outputType};
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
+ } else if (inputType == OperandType::TENSOR_BOOL8 ||
+ inputType == OperandType::TENSOR_QUANT16_ASYMM ||
+ inputType == OperandType::TENSOR_QUANT16_SYMM ||
+ inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED ||
+ inputType == OperandType::TENSOR_QUANT8_SYMM) {
+ inExpectedTypes = {inputType};
+ outExpectedTypes = {inputType}; // Only identity CAST is supported.
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3));
+ } else {
+ LOG(ERROR) << "Unsupported data type for operation " << opType;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ // Validate that output shape is equal to input shape if dimensions
+ // are already known.
+ auto getNumberOfElements = [](const std::vector<uint32_t>& dims) {
+ if (dims.size() == 0) {
+ return 0;
+ }
+ return std::accumulate(dims.begin(), dims.end(), 1, std::multiplies<>());
+ };
+ if (inputOperand.dimensions.size() != 0 && outputOperand.dimensions.size() != 0 &&
+ getNumberOfElements(outputOperand.dimensions) != 0 &&
+ inputOperand.dimensions != outputOperand.dimensions) {
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ return validateOperationOperandTypes(operands, inputCount, inputIndexes,
+ inExpectedTypes, outputCount, outputIndexes,
+ outExpectedTypes);
+ }
+ case ANEURALNETWORKS_MEAN: {
+ if (inputCount != 3 || outputCount != 1) {
+ logInvalidInOutNumber(3, 1);
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ const auto inputRank = operands[inputIndexes[0]].dimensions.size();
+ if (inputRank > 4) {
+ LOG(ERROR) << "Unsupported input tensor rank for operation " << opType;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ auto inputType = operands[inputIndexes[0]].type;
+ if (inputType == OperandType::TENSOR_FLOAT32) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_1));
+ } else if (inputType == OperandType::TENSOR_FLOAT16) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
+ } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_1));
+ } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3));
+ } else {
+ LOG(ERROR) << "Unsupported input tensor type for operation " << opType;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ std::vector<OperandType> inExpectedTypes = {inputType, OperandType::TENSOR_INT32,
+ OperandType::INT32};
+ std::vector<OperandType> outExpectedTypes = {inputType};
+ return validateOperationOperandTypes(operands, inputCount, inputIndexes,
+ inExpectedTypes, outputCount, outputIndexes,
+ outExpectedTypes);
+ }
+ case ANEURALNETWORKS_ARGMAX:
+ case ANEURALNETWORKS_ARGMIN: {
+ if (inputCount != 2 || outputCount != 1) {
+ logInvalidInOutNumber(2, 1);
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ auto inputType = operands[inputIndexes[0]].type;
+ std::vector<OperandType> inExpectedTypes;
+ std::vector<OperandType> outExpectedTypes;
+ if (inputType == OperandType::TENSOR_FLOAT16 ||
+ inputType == OperandType::TENSOR_FLOAT32 ||
+ inputType == OperandType::TENSOR_INT32 ||
+ inputType == OperandType::TENSOR_QUANT8_ASYMM ||
+ inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
+ inExpectedTypes = {inputType, OperandType::INT32};
+ outExpectedTypes = {OperandType::TENSOR_INT32};
+ } else {
+ LOG(ERROR) << "Unsupported input tensor type for operation " << opType;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
+ return validateOperationOperandTypes(operands, inputCount, inputIndexes,
+ inExpectedTypes, outputCount, outputIndexes,
+ outExpectedTypes);
+ }
+ case ANEURALNETWORKS_EXPAND_DIMS: {
+ if (inputCount != 2 || outputCount != 1) {
+ logInvalidInOutNumber(2, 1);
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ auto inputType = operands[inputIndexes[0]].type;
+ std::vector<OperandType> inExpectedTypes;
+ std::vector<OperandType> outExpectedTypes;
+ if (inputType == OperandType::TENSOR_FLOAT16 ||
+ inputType == OperandType::TENSOR_FLOAT32 ||
+ inputType == OperandType::TENSOR_INT32 ||
+ inputType == OperandType::TENSOR_QUANT8_ASYMM ||
+ inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
+ inExpectedTypes = {inputType, OperandType::INT32};
+ outExpectedTypes = {inputType};
+ } else {
+ LOG(ERROR) << "Unsupported input tensor type for operation " << opType;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3));
+ } else {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
+ }
+ return validateOperationOperandTypes(operands, inputCount, inputIndexes,
+ inExpectedTypes, outputCount, outputIndexes,
+ outExpectedTypes);
+ }
+ case ANEURALNETWORKS_SPLIT: {
+ if (inputCount != 3) {
+ LOG(ERROR) << "Invalid number of input operands (" << inputCount << ", expected 3)"
+ << opType;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ auto inputType = operands[inputIndexes[0]].type;
+ if (inputType != OperandType::TENSOR_FLOAT16 &&
+ inputType != OperandType::TENSOR_FLOAT32 &&
+ inputType != OperandType::TENSOR_INT32 &&
+ inputType != OperandType::TENSOR_QUANT8_ASYMM &&
+ inputType != OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
+ LOG(ERROR) << "Unsupported input tensor type for operation " << opType;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3));
+ } else {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
+ }
+ std::vector<OperandType> inExpectedTypes = {inputType, OperandType::INT32,
+ OperandType::INT32};
+ std::vector<OperandType> outExpectedTypes(outputCount, inputType);
+ return validateOperationOperandTypes(operands, inputCount, inputIndexes,
+ inExpectedTypes, outputCount, outputIndexes,
+ outExpectedTypes);
+ }
+ case ANEURALNETWORKS_MAXIMUM:
+ case ANEURALNETWORKS_MINIMUM: {
+ if (inputCount != 2 || outputCount != 1) {
+ logInvalidInOutNumber(2, 1);
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ std::vector<OperandType> inExpectedTypes;
+ std::vector<OperandType> outExpectedTypes;
+ OperandType inputType = operands[inputIndexes[0]].type;
+ if (inputType == OperandType::TENSOR_FLOAT16 ||
+ inputType == OperandType::TENSOR_FLOAT32 ||
+ inputType == OperandType::TENSOR_INT32 ||
+ inputType == OperandType::TENSOR_QUANT8_ASYMM ||
+ inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
+ inExpectedTypes = {inputType, inputType};
+ outExpectedTypes = {inputType};
+ } else {
+ LOG(ERROR) << "Unsupported input tensor type for operation " << opType;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3));
+ } else {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
+ }
+ return validateOperationOperandTypes(operands, inputCount, inputIndexes,
+ inExpectedTypes, outputCount, outputIndexes,
+ outExpectedTypes);
+ }
+ case ANEURALNETWORKS_GROUPED_CONV_2D: {
+ if ((inputCount != 12 && inputCount != 9) || outputCount != 1) {
+ LOG(ERROR) << "Invalid number of input operands (" << inputCount
+ << ", expected 12 or 9) or output operands (" << outputCount
+ << ", expected 1) for operation " << opType;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ auto inputType = operands[inputIndexes[0]].type;
+ auto filterType = operands[inputIndexes[1]].type;
+ std::vector<OperandType> inExpectedTypes;
+ std::vector<OperandType> outExpectedTypes;
+ if (inputType == OperandType::TENSOR_FLOAT32) {
+ inExpectedTypes = {OperandType::TENSOR_FLOAT32, OperandType::TENSOR_FLOAT32,
+ OperandType::TENSOR_FLOAT32, OperandType::INT32,
+ OperandType::INT32, OperandType::INT32,
+ OperandType::INT32, OperandType::INT32};
+ outExpectedTypes = {OperandType::TENSOR_FLOAT32};
+ } else if (inputType == OperandType::TENSOR_FLOAT16) {
+ inExpectedTypes = {OperandType::TENSOR_FLOAT16, OperandType::TENSOR_FLOAT16,
+ OperandType::TENSOR_FLOAT16, OperandType::INT32,
+ OperandType::INT32, OperandType::INT32,
+ OperandType::INT32, OperandType::INT32};
+ outExpectedTypes = {OperandType::TENSOR_FLOAT16};
+ } else if (inputType == OperandType::TENSOR_QUANT8_ASYMM ||
+ inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
+ if (filterType != inputType &&
+ filterType != OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) {
+ LOG(ERROR) << "Unsupported filter tensor type for operation " << opType;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+
+ if (filterType == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL &&
+ std::get<Operand::SymmPerChannelQuantParams>(
+ operands[inputIndexes[1]].extraParams)
+ .channelDim != 0) {
+ LOG(ERROR) << "Unsupported filter tensor channel dimension for operation "
+ << opType;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+
+ inExpectedTypes = {
+ inputType, filterType, OperandType::TENSOR_INT32,
+ OperandType::INT32, OperandType::INT32, OperandType::INT32,
+ OperandType::INT32, OperandType::INT32};
+ outExpectedTypes = {inputType};
+ } else {
+ LOG(ERROR) << "Unsupported input tensor type for operation " << opType;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+
+ if (inputCount == 12) {
+ std::vector<OperandType> explicitScalarTypes(3, OperandType::INT32);
+ inExpectedTypes.insert(inExpectedTypes.end(), explicitScalarTypes.begin(),
+ explicitScalarTypes.end());
+ }
+ inExpectedTypes.push_back(OperandType::BOOL);
+ if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3));
+ } else {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
+ }
+ return validateOperationOperandTypes(operands, inputCount, inputIndexes,
+ inExpectedTypes, outputCount, outputIndexes,
+ outExpectedTypes);
+ }
+ case ANEURALNETWORKS_TILE: {
+ if (inputCount != 2 || outputCount != 1) {
+ logInvalidInOutNumber(2, 1);
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ auto inputType = operands[inputIndexes[0]].type;
+ std::vector<OperandType> inExpectedTypes;
+ std::vector<OperandType> outExpectedTypes;
+ if (inputType == OperandType::TENSOR_FLOAT16 ||
+ inputType == OperandType::TENSOR_FLOAT32 ||
+ inputType == OperandType::TENSOR_INT32 ||
+ inputType == OperandType::TENSOR_QUANT8_ASYMM ||
+ inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
+ inExpectedTypes = {inputType, OperandType::TENSOR_INT32};
+ outExpectedTypes = {inputType};
+ } else {
+ LOG(ERROR) << "Unsupported input tensor type for operation " << opType;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3));
+ } else {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
+ }
+ return validateOperationOperandTypes(operands, inputCount, inputIndexes,
+ inExpectedTypes, outputCount, outputIndexes,
+ outExpectedTypes);
+ }
+ case ANEURALNETWORKS_POW: {
+ if (inputCount != 2 || outputCount != 1) {
+ logInvalidInOutNumber(2, 1);
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ auto inputType = operands[inputIndexes[0]].type;
+ std::vector<OperandType> inExpectedTypes;
+ std::vector<OperandType> outExpectedTypes;
+ if (inputType == OperandType::TENSOR_FLOAT16 ||
+ inputType == OperandType::TENSOR_FLOAT32) {
+ inExpectedTypes = {inputType, inputType};
+ outExpectedTypes = {inputType};
+ } else {
+ LOG(ERROR) << "Unsupported input tensor type for operation " << opType;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3));
+ } else {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_2));
+ }
+ return validateOperationOperandTypes(operands, inputCount, inputIndexes,
+ inExpectedTypes, outputCount, outputIndexes,
+ outExpectedTypes);
+ }
+ case ANEURALNETWORKS_IF: {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3));
+ return validateIfOperation(inputCount, inputIndexes, outputCount, outputIndexes,
+ operands, helper)
+ ? ANEURALNETWORKS_NO_ERROR
+ : ANEURALNETWORKS_BAD_DATA;
+ }
+ case ANEURALNETWORKS_WHILE: {
+ NN_RETURN_IF_ERROR(validateHalVersion(opType, halVersion, HalVersion::V1_3));
+ return validateWhileOperation(inputCount, inputIndexes, outputCount, outputIndexes,
+ operands, helper)
+ ? ANEURALNETWORKS_NO_ERROR
+ : ANEURALNETWORKS_BAD_DATA;
+ }
+ default: {
+ const OperationRegistration* operationRegistration =
+ BuiltinOperationResolver::get()->findOperation(
+ static_cast<OperationType>(opType));
+ if (operationRegistration == nullptr) {
+ if (0 <= opType && opType < kNumberOfOperationTypes) {
+ LOG(ERROR) << opType << " not registered";
+ } else {
+ LOG(ERROR) << "Operation type " << opType << " out of the range [0, "
+ << kNumberOfOperationTypes << ")";
+ }
+ return ANEURALNETWORKS_UNEXPECTED_NULL;
+ }
+ if (operationRegistration->validate == nullptr) {
+ LOG(ERROR) << "Incomplete operation registration: " << opType;
+ return ANEURALNETWORKS_UNEXPECTED_NULL;
+ }
+ OperationValidationContext context(operationRegistration->name, inputCount,
+ inputIndexes, outputCount, outputIndexes,
+ operands.data());
+ const auto maybeVersion = operationRegistration->validate(&context);
+ if (!maybeVersion.has_value()) {
+ LOG(ERROR) << "Validation failed for operation " << opType << ": "
+ << maybeVersion.error();
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ if (!validateVersion(&context, convert(halVersion), maybeVersion.value())) {
+ LOG(ERROR) << "Validation failed for operation " << opType;
+ return ANEURALNETWORKS_BAD_DATA;
+ }
+ return ANEURALNETWORKS_NO_ERROR;
+ }
+ }
+}
+
+ErrorStatus convertResultCodeToErrorStatus(int resultCode) {
+ switch (resultCode) {
+ case ANEURALNETWORKS_NO_ERROR:
+ return ErrorStatus::NONE;
+
+ case ANEURALNETWORKS_BAD_DATA:
+ case ANEURALNETWORKS_UNEXPECTED_NULL:
+ return ErrorStatus::INVALID_ARGUMENT;
+
+ case ANEURALNETWORKS_OUTPUT_INSUFFICIENT_SIZE:
+ return ErrorStatus::OUTPUT_INSUFFICIENT_SIZE;
+
+ case ANEURALNETWORKS_UNAVAILABLE_DEVICE:
+ return ErrorStatus::DEVICE_UNAVAILABLE;
+
+ case ANEURALNETWORKS_BAD_STATE:
+ case ANEURALNETWORKS_INCOMPLETE:
+ case ANEURALNETWORKS_OP_FAILED:
+ case ANEURALNETWORKS_OUT_OF_MEMORY:
+ case ANEURALNETWORKS_UNMAPPABLE:
+ case ANEURALNETWORKS_DEAD_OBJECT:
+ return ErrorStatus::GENERAL_FAILURE;
+
+ case ANEURALNETWORKS_MISSED_DEADLINE_TRANSIENT:
+ return ErrorStatus::MISSED_DEADLINE_TRANSIENT;
+ case ANEURALNETWORKS_MISSED_DEADLINE_PERSISTENT:
+ return ErrorStatus::MISSED_DEADLINE_PERSISTENT;
+ case ANEURALNETWORKS_RESOURCE_EXHAUSTED_TRANSIENT:
+ return ErrorStatus::RESOURCE_EXHAUSTED_TRANSIENT;
+ case ANEURALNETWORKS_RESOURCE_EXHAUSTED_PERSISTENT:
+ return ErrorStatus::RESOURCE_EXHAUSTED_PERSISTENT;
+ }
+ LOG(ERROR) << "Unknown result code " << resultCode << " mapped to ErrorStatus::GENERAL_FAILURE";
+ return ErrorStatus::GENERAL_FAILURE;
+}
+
+int convertErrorStatusToResultCode(ErrorStatus status) {
+ switch (status) {
+ case ErrorStatus::NONE:
+ return ANEURALNETWORKS_NO_ERROR;
+ case ErrorStatus::DEVICE_UNAVAILABLE:
+ return ANEURALNETWORKS_UNAVAILABLE_DEVICE;
+ case ErrorStatus::GENERAL_FAILURE:
+ return ANEURALNETWORKS_OP_FAILED;
+ case ErrorStatus::OUTPUT_INSUFFICIENT_SIZE:
+ return ANEURALNETWORKS_OUTPUT_INSUFFICIENT_SIZE;
+ case ErrorStatus::INVALID_ARGUMENT:
+ return ANEURALNETWORKS_BAD_DATA;
+ case ErrorStatus::MISSED_DEADLINE_TRANSIENT:
+ return ANEURALNETWORKS_MISSED_DEADLINE_TRANSIENT;
+ case ErrorStatus::MISSED_DEADLINE_PERSISTENT:
+ return ANEURALNETWORKS_MISSED_DEADLINE_PERSISTENT;
+ case ErrorStatus::RESOURCE_EXHAUSTED_TRANSIENT:
+ return ANEURALNETWORKS_RESOURCE_EXHAUSTED_TRANSIENT;
+ case ErrorStatus::RESOURCE_EXHAUSTED_PERSISTENT:
+ return ANEURALNETWORKS_RESOURCE_EXHAUSTED_PERSISTENT;
+ case ErrorStatus::DEAD_OBJECT:
+ return ANEURALNETWORKS_DEAD_OBJECT;
+ }
+ LOG(ERROR) << "Unknown ErrorStatus " << status << " mapped to ANEURALNETWORKS_OP_FAILED";
+ return ANEURALNETWORKS_OP_FAILED;
+}
+
+std::tuple<int, std::vector<OutputShape>, Timing> getExecutionResult(
+ ErrorStatus status, std::vector<OutputShape> outputShapes, Timing timing) {
+ constexpr Timing kNoTiming = {std::numeric_limits<uint64_t>::max(),
+ std::numeric_limits<uint64_t>::max()};
+ const int n = convertErrorStatusToResultCode(status);
+ if (status != ErrorStatus::NONE && status != ErrorStatus::OUTPUT_INSUFFICIENT_SIZE &&
+ !outputShapes.empty()) {
+ LOG(ERROR) << "The driver returned OutputShapes when it shouldn't.";
+ outputShapes.clear();
+ }
+ if (status != ErrorStatus::NONE && timing != kNoTiming) {
+ LOG(ERROR) << "The driver returned Timing when it shouldn't.";
+ timing = kNoTiming;
+ }
+ return {n, std::move(outputShapes), timing};
+}
+
+FenceState syncWait(int fd, int timeout) {
+ // This implementation is directly based on the ::sync_wait() implementation.
+
+ struct pollfd fds;
+ int ret;
+
+ if (fd < 0) {
+ errno = EINVAL;
+ return FenceState::UNKNOWN;
+ }
+
+ fds.fd = fd;
+ fds.events = POLLIN;
+
+ do {
+ ret = poll(&fds, 1, timeout);
+ if (ret > 0) {
+ if (fds.revents & POLLNVAL) {
+ errno = EINVAL;
+ return FenceState::UNKNOWN;
+ }
+ if (fds.revents & POLLERR) {
+ errno = EINVAL;
+ return FenceState::ERROR;
+ }
+ return FenceState::SIGNALED;
+ } else if (ret == 0) {
+ errno = ETIME;
+ return FenceState::ACTIVE;
+ }
+ } while (ret == -1 && (errno == EINTR || errno == EAGAIN));
+
+ return FenceState::UNKNOWN;
+}
+
+#ifdef NN_DEBUGGABLE
+uint32_t getProp(const char* str, uint32_t defaultValue) {
+ const std::string propStr = android::base::GetProperty(str, "");
+ if (propStr.size() > 0) {
+ return std::stoi(propStr);
+ } else {
+ return defaultValue;
+ }
+}
+#endif // NN_DEBUGGABLE
+
+} // namespace nn
+} // namespace android