aboutsummaryrefslogtreecommitdiff
path: root/decoder/include/berberis/decoder/riscv64/semantics_player.h
blob: a32ee1776bcc7477c70873010958c40b5aefca8e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
/*
 * Copyright (C) 2023 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef BERBERIS_DECODER_RISCV64_SEMANTICS_PLAYER_H_
#define BERBERIS_DECODER_RISCV64_SEMANTICS_PLAYER_H_

#include "berberis/base/overloaded.h"
#include "berberis/decoder/riscv64/decoder.h"

namespace berberis {

// This class expresses the semantics of instructions by calling a sequence of SemanticsListener
// callbacks.
template <class SemanticsListener>
class SemanticsPlayer {
 public:
  using CsrName = typename SemanticsListener::CsrName;
  using Decoder = Decoder<SemanticsPlayer>;
  using Register = typename SemanticsListener::Register;
  using Float32 = typename SemanticsListener::Float32;
  using Float64 = typename SemanticsListener::Float64;
  using FpRegister = typename SemanticsListener::FpRegister;

  explicit SemanticsPlayer(SemanticsListener* listener) : listener_(listener) {}

  // Decoder's InsnConsumer implementation.

  void Amo(const typename Decoder::AmoArgs& args) {
    Register arg1 = GetRegOrZero(args.src1);
    Register arg2 = GetRegOrZero(args.src2);
    Register result;
    switch (args.operand_type) {
      case Decoder::MemoryDataOperandType::k32bit:
        result = Amo<int32_t>(args.opcode, arg1, arg2, args.aq, args.rl);
        break;
      case Decoder::MemoryDataOperandType::k64bit:
        result = Amo<int64_t>(args.opcode, arg1, arg2, args.aq, args.rl);
        break;
      default:
        Undefined();
        return;
    }
    SetRegOrIgnore(args.dst, result);
  }

  template <typename IntType>
  Register Amo(typename Decoder::AmoOpcode opcode, Register arg1, Register arg2, bool aq, bool rl) {
    if (aq) {
      if (rl) {
        return Amo<IntType, true, true>(opcode, arg1, arg2);
      } else {
        return Amo<IntType, true, false>(opcode, arg1, arg2);
      }
    } else {
      if (rl) {
        return Amo<IntType, false, true>(opcode, arg1, arg2);
      } else {
        return Amo<IntType, false, false>(opcode, arg1, arg2);
      }
    }
  }

  template <typename IntType, bool aq, bool rl>
  Register Amo(typename Decoder::AmoOpcode opcode, Register arg1, Register arg2) {
    switch (opcode) {
      case Decoder::AmoOpcode::kLr:
        return listener_->template Lr<IntType, aq, rl>(arg1);
      case Decoder::AmoOpcode::kSc:
        return listener_->template Sc<IntType, aq, rl>(arg1, arg2);
      case Decoder::AmoOpcode::kAmoswap:
        return listener_->template AmoSwap<IntType, aq, rl>(arg1, arg2);
      case Decoder::AmoOpcode::kAmoadd:
        return listener_->template AmoAdd<IntType, aq, rl>(arg1, arg2);
      case Decoder::AmoOpcode::kAmoxor:
        return listener_->template AmoXor<IntType, aq, rl>(arg1, arg2);
      case Decoder::AmoOpcode::kAmoand:
        return listener_->template AmoAnd<IntType, aq, rl>(arg1, arg2);
      case Decoder::AmoOpcode::kAmoor:
        return listener_->template AmoOr<IntType, aq, rl>(arg1, arg2);
      case Decoder::AmoOpcode::kAmomin:
        return listener_->template AmoMin<std::make_signed_t<IntType>, aq, rl>(arg1, arg2);
      case Decoder::AmoOpcode::kAmomax:
        return listener_->template AmoMax<std::make_signed_t<IntType>, aq, rl>(arg1, arg2);
      case Decoder::AmoOpcode::kAmominu:
        return listener_->template AmoMin<std::make_unsigned_t<IntType>, aq, rl>(arg1, arg2);
      case Decoder::AmoOpcode::kAmomaxu:
        return listener_->template AmoMax<std::make_unsigned_t<IntType>, aq, rl>(arg1, arg2);
      default:
        Undefined();
        return {};
    }
  }

  void Auipc(const typename Decoder::UpperImmArgs& args) {
    Register result = listener_->Auipc(args.imm);
    SetRegOrIgnore(args.dst, result);
  }

  void CompareAndBranch(const typename Decoder::BranchArgs& args) {
    Register arg1 = GetRegOrZero(args.src1);
    Register arg2 = GetRegOrZero(args.src2);
    listener_->CompareAndBranch(args.opcode, arg1, arg2, args.offset);
  }

  void Csr(const typename Decoder::CsrArgs& args) {
    if (args.opcode == Decoder::CsrOpcode::kCsrrw) {
      if (args.dst != 0) {
        auto [csr_supported, csr] = GetCsr(static_cast<CsrName>(args.csr));
        if (!csr_supported) {
          return Undefined();
        }
        Register arg = listener_->GetReg(args.src);
        SetCsr(static_cast<CsrName>(args.csr), arg);
        listener_->SetReg(args.dst, csr);
        return;
      }
      Register arg = listener_->GetReg(args.src);
      if (!SetCsr(static_cast<CsrName>(args.csr), arg)) {
        return Undefined();
      }
      return;
    }
    auto [csr_supported, csr] = GetCsr(static_cast<CsrName>(args.csr));
    if (!csr_supported) {
      return Undefined();
    }
    if (args.src != 0) {
      Register arg = listener_->GetReg(args.src);
      if (!SetCsr(static_cast<CsrName>(args.csr), listener_->UpdateCsr(args.opcode, arg, csr))) {
        return Undefined();
      }
    }
    SetRegOrIgnore(args.dst, csr);
  }

  void Csr(const typename Decoder::CsrImmArgs& args) {
    if (args.opcode == Decoder::CsrImmOpcode::kCsrrwi) {
      if (args.dst != 0) {
        auto [csr_supported, csr] = GetCsr(static_cast<CsrName>(args.csr));
        if (!csr_supported) {
          return Undefined();
        }
        if (!SetCsr(static_cast<CsrName>(args.csr), csr)) {
          return Undefined();
        }
        listener_->SetReg(args.dst, csr);
      }
      SetCsr(static_cast<CsrName>(args.csr), args.imm);
      return;
    }
    auto [csr_supported, csr] = GetCsr(static_cast<CsrName>(args.csr));
    if (!csr_supported) {
      return Undefined();
    }
    if (args.imm != 0) {
      if (!SetCsr(static_cast<CsrName>(args.csr),
                  listener_->UpdateCsr(args.opcode, args.imm, csr))) {
        return Undefined();
      }
    }
    SetRegOrIgnore(args.dst, csr);
  }

  void Fcvt(const typename Decoder::FcvtFloatToFloatArgs& args) {
    if (args.dst_type == Decoder::FloatOperandType::kFloat &&
        args.src_type == Decoder::FloatOperandType::kDouble) {
      FpRegister arg = GetFRegAndUnboxNan<Float64>(args.src);
      Register frm = listener_->template GetCsr<CsrName::kFrm>();
      FpRegister result = listener_->template FCvtFloatToFloat<Float32, Float64>(args.rm, frm, arg);
      NanBoxAndSetFpReg<Float32>(args.dst, result);
    } else if (args.dst_type == Decoder::FloatOperandType::kDouble &&
               args.src_type == Decoder::FloatOperandType::kFloat) {
      FpRegister arg = GetFRegAndUnboxNan<Float32>(args.src);
      Register frm = listener_->template GetCsr<CsrName::kFrm>();
      FpRegister result = listener_->template FCvtFloatToFloat<Float64, Float32>(args.rm, frm, arg);
      NanBoxAndSetFpReg<Float64>(args.dst, result);
    } else {
      Undefined();
      return;
    }
  }

  void Fcvt(const typename Decoder::FcvtFloatToIntegerArgs& args) {
    switch (args.src_type) {
      case Decoder::FloatOperandType::kFloat:
        return FcvtloatToInteger<Float32>(args.dst_type, args.rm, args.dst, args.src);
      case Decoder::FloatOperandType::kDouble:
        return FcvtloatToInteger<Float64>(args.dst_type, args.rm, args.dst, args.src);
      default:
        return Undefined();
    }
  }

  template <typename FLoatType>
  void FcvtloatToInteger(typename Decoder::FcvtOperandType dst_type,
                         int8_t rm,
                         int8_t dst,
                         int8_t src) {
    FpRegister arg = GetFRegAndUnboxNan<FLoatType>(src);
    Register frm = listener_->template GetCsr<CsrName::kFrm>();
    Register result;
    switch (dst_type) {
      case Decoder::FcvtOperandType::k32bitSigned:
        result = listener_->template FCvtFloatToInteger<int32_t, FLoatType>(rm, frm, arg);
        break;
      case Decoder::FcvtOperandType::k32bitUnsigned:
        result = listener_->template FCvtFloatToInteger<uint32_t, FLoatType>(rm, frm, arg);
        break;
      case Decoder::FcvtOperandType::k64bitSigned:
        result = listener_->template FCvtFloatToInteger<int64_t, FLoatType>(rm, frm, arg);
        break;
      case Decoder::FcvtOperandType::k64bitUnsigned:
        result = listener_->template FCvtFloatToInteger<uint64_t, FLoatType>(rm, frm, arg);
        break;
      default:
        return Undefined();
    }
    SetRegOrIgnore(dst, result);
  }

  void Fcvt(const typename Decoder::FcvtIntegerToFloatArgs& args) {
    switch (args.dst_type) {
      case Decoder::FloatOperandType::kFloat:
        return FcvtIntegerToFloat<Float32>(args.src_type, args.rm, args.dst, args.src);
      case Decoder::FloatOperandType::kDouble:
        return FcvtIntegerToFloat<Float64>(args.src_type, args.rm, args.dst, args.src);
      default:
        return Undefined();
    }
  }

  template <typename FloatType>
  void FcvtIntegerToFloat(typename Decoder::FcvtOperandType src_type,
                          int8_t rm,
                          int8_t dst,
                          int8_t src) {
    Register arg = GetRegOrZero(src);
    Register frm = listener_->template GetCsr<CsrName::kFrm>();
    FpRegister result;
    switch (src_type) {
      case Decoder::FcvtOperandType::k32bitSigned:
        result = listener_->template FCvtIntegerToFloat<FloatType, int32_t>(rm, frm, arg);
        break;
      case Decoder::FcvtOperandType::k32bitUnsigned:
        result = listener_->template FCvtIntegerToFloat<FloatType, uint32_t>(rm, frm, arg);
        break;
      case Decoder::FcvtOperandType::k64bitSigned:
        result = listener_->template FCvtIntegerToFloat<FloatType, int64_t>(rm, frm, arg);
        break;
      case Decoder::FcvtOperandType::k64bitUnsigned:
        result = listener_->template FCvtIntegerToFloat<FloatType, uint64_t>(rm, frm, arg);
        break;
      default:
        Undefined();
        return;
    }
    NanBoxAndSetFpReg<FloatType>(dst, result);
  }

  void Fma(const typename Decoder::FmaArgs& args) {
    switch (args.operand_type) {
      case Decoder::FloatOperandType::kFloat:
        return Fma<Float32>(args.opcode, args.rm, args.dst, args.src1, args.src2, args.src3);
        break;
      case Decoder::FloatOperandType::kDouble:
        return Fma<Float64>(args.opcode, args.rm, args.dst, args.src1, args.src2, args.src3);
        break;
      default:
        return Undefined();
    }
  }

  template <typename FloatType>
  void Fma(typename Decoder::FmaOpcode opcode,
           int8_t rm,
           int8_t dst,
           int8_t src1,
           int8_t src2,
           int8_t src3) {
    FpRegister arg1 = GetFRegAndUnboxNan<FloatType>(src1);
    FpRegister arg2 = GetFRegAndUnboxNan<FloatType>(src2);
    FpRegister arg3 = GetFRegAndUnboxNan<FloatType>(src3);
    Register frm = listener_->template GetCsr<CsrName::kFrm>();
    FpRegister result;
    switch (opcode) {
      case Decoder::FmaOpcode::kFmadd:
        result = listener_->template FMAdd<FloatType>(rm, frm, arg1, arg2, arg3);
        break;
      case Decoder::FmaOpcode::kFmsub:
        result = listener_->template FMSub<FloatType>(rm, frm, arg1, arg2, arg3);
        break;
      // Note (from RISC-V manual): The FNMSUB and FNMADD instructions are counterintuitively named,
      // owing to the naming of the corresponding instructions in MIPS-IV. The MIPS instructions
      // were defined to negate the sum, rather than negating the product as the RISC-V instructions
      // do, so the naming scheme was more rational at the time. The two definitions differ with
      // respect to signed-zero results. The RISC-V definition matches the behavior of the x86 and
      // ARM fused multiply-add instructions, but unfortunately the RISC-V FNMSUB and FNMADD
      // instruction names are swapped compared to x86 and ARM.
      //
      // Since even official documentation calls the names “counterintuitive” it's better to use x86
      // ones for intrinsics.
      case Decoder::FmaOpcode::kFnmsub:
        result = listener_->template FNMAdd<FloatType>(rm, frm, arg1, arg2, arg3);
        break;
      case Decoder::FmaOpcode::kFnmadd:
        result = listener_->template FNMSub<FloatType>(rm, frm, arg1, arg2, arg3);
        break;
      default:
        return Undefined();
    }
    result = CanonicalizeNan<FloatType>(result);
    NanBoxAndSetFpReg<FloatType>(dst, result);
  }

  void Fence(const typename Decoder::FenceArgs& args) {
    listener_->Fence(args.opcode,
                     // args.src is currently unused - read below.
                     Register{},
                     args.sw,
                     args.sr,
                     args.so,
                     args.si,
                     args.pw,
                     args.pr,
                     args.po,
                     args.pi);
    // The unused fields in the FENCE instructions — args.src and args.dst — are reserved for
    // finer-grain fences in future extensions. For forward compatibility, base implementations
    // shall ignore these fields, and standard software shall zero these fields. Likewise, many
    // args.opcode and predecessor/successor set settings are also reserved for future use. Base
    // implementations shall treat all such reserved configurations as normal fences with
    // args.opcode=0000, and standard software shall use only non-reserved configurations.
  }

  void FenceI(const typename Decoder::FenceIArgs& /* args */) {
    // This instruction is not supported on linux. The recommendation is to use the
    // riscv_flush_icache syscall instead.
    Undefined();
    // The unused fields in the FENCE.I instruction, imm[11:0], rs1, and rd, are reserved for
    // finer-grain fences in future extensions. For forward compatibility, base implementations
    // shall ignore these fields, and standard software shall zero these fields.
  }

  void JumpAndLink(const typename Decoder::JumpAndLinkArgs& args) {
    Register result = listener_->GetImm(listener_->GetInsnAddr() + args.insn_len);
    SetRegOrIgnore(args.dst, result);
    listener_->Branch(args.offset);
  }

  void JumpAndLinkRegister(const typename Decoder::JumpAndLinkRegisterArgs& args) {
    Register base = GetRegOrZero(args.base);
    if (args.base == args.dst) {
      // If base and dst are the same register and the listener implements register mapping
      // SetRegOrIgnore below will overwrite the original base register and make it invalid for
      // BranchRegister call. Note that this issue only exists for JumpAndLinkRegister since we
      // need to write the result before consuming all the arguments.
      base = listener_->Copy(base);
    }
    Register next_insn_addr = listener_->GetImm(listener_->GetInsnAddr() + args.insn_len);
    SetRegOrIgnore(args.dst, next_insn_addr);
    listener_->BranchRegister(base, args.offset);
  }

  void Load(const typename Decoder::LoadArgs& args) {
    Register arg = GetRegOrZero(args.src);
    Register result = listener_->Load(args.operand_type, arg, args.offset);
    SetRegOrIgnore(args.dst, result);
  }

  void Load(const typename Decoder::LoadFpArgs& args) {
    switch (args.operand_type) {
      case Decoder::FloatOperandType::kFloat:
        return Load<Float32>(args.dst, args.src, args.offset);
      case Decoder::FloatOperandType::kDouble:
        return Load<Float64>(args.dst, args.src, args.offset);
      default:
        return Undefined();
    }
  }

  template <typename FloatType>
  void Load(int8_t dst, int8_t src, int16_t offset) {
    Register arg = GetRegOrZero(src);
    FpRegister result = listener_->template LoadFp<FloatType>(arg, offset);
    NanBoxAndSetFpReg<FloatType>(dst, result);
  }

  void Lui(const typename Decoder::UpperImmArgs& args) {
    Register result = listener_->Lui(args.imm);
    SetRegOrIgnore(args.dst, result);
  }

  void Nop() { listener_->Nop(); }

  template <typename OpArgs>
  void Op(OpArgs&& args) {
    Register arg1 = GetRegOrZero(args.src1);
    Register arg2 = GetRegOrZero(args.src2);
    Register result = Overloaded{[&](const typename Decoder::OpArgs& args) {
                                   switch (args.opcode) {
                                     case Decoder::OpOpcode::kDiv:
                                       return listener_->template Div<int64_t>(arg1, arg2);
                                     case Decoder::OpOpcode::kDivu:
                                       return listener_->template Div<uint64_t>(arg1, arg2);
                                     case Decoder::OpOpcode::kMax:
                                       return listener_->template Max<int64_t>(arg1, arg2);
                                     case Decoder::OpOpcode::kMaxu:
                                       return listener_->template Max<uint64_t>(arg1, arg2);
                                     case Decoder::OpOpcode::kMin:
                                       return listener_->template Min<int64_t>(arg1, arg2);
                                     case Decoder::OpOpcode::kMinu:
                                       return listener_->template Min<uint64_t>(arg1, arg2);
                                     case Decoder::OpOpcode::kRol:
                                       return listener_->template Rol<int64_t>(arg1, arg2);
                                     case Decoder::OpOpcode::kRor:
                                       return listener_->template Ror<int64_t>(arg1, arg2);
                                     case Decoder::OpOpcode::kSh1add:
                                       return listener_->Sh1add(arg1, arg2);
                                     case Decoder::OpOpcode::kSh2add:
                                       return listener_->Sh2add(arg1, arg2);
                                     case Decoder::OpOpcode::kSh3add:
                                       return listener_->Sh3add(arg1, arg2);
                                     case Decoder::OpOpcode::kBclr:
                                       return listener_->Bclr(arg1, arg2);
                                     case Decoder::OpOpcode::kBext:
                                       return listener_->Bext(arg1, arg2);
                                     case Decoder::OpOpcode::kBinv:
                                       return listener_->Binv(arg1, arg2);
                                     case Decoder::OpOpcode::kBset:
                                       return listener_->Bset(arg1, arg2);
                                     default:
                                       return listener_->Op(args.opcode, arg1, arg2);
                                   }
                                 },
                                 [&](const typename Decoder::Op32Args& args) {
                                   switch (args.opcode) {
                                     case Decoder::Op32Opcode::kAdduw:
                                       return listener_->Adduw(arg1, arg2);
                                     case Decoder::Op32Opcode::kDivw:
                                       return listener_->template Div<int32_t>(arg1, arg2);
                                     case Decoder::Op32Opcode::kDivuw:
                                       return listener_->template Div<uint32_t>(arg1, arg2);
                                     case Decoder::Op32Opcode::kRolw:
                                       return listener_->template Rol<int32_t>(arg1, arg2);
                                     case Decoder::Op32Opcode::kRorw:
                                       return listener_->template Ror<int32_t>(arg1, arg2);
                                     case Decoder::Op32Opcode::kSh1adduw:
                                       return listener_->Sh1adduw(arg1, arg2);
                                     case Decoder::Op32Opcode::kSh2adduw:
                                       return listener_->Sh2adduw(arg1, arg2);
                                     case Decoder::Op32Opcode::kSh3adduw:
                                       return listener_->Sh3adduw(arg1, arg2);
                                     default:
                                       return listener_->Op32(args.opcode, arg1, arg2);
                                   }
                                 }}(args);
    SetRegOrIgnore(args.dst, result);
  }

  void OpSingleInput(const typename Decoder::OpSingleInputArgs& args) {
    Register arg = GetRegOrZero(args.src);
    Register result;
    switch (args.opcode) {
      case Decoder::OpSingleInputOpcode::kZexth:
        result = listener_->Zexth(arg);
        break;
      default:
        Undefined();
        return;
    }
    SetRegOrIgnore(args.dst, result);
  }

  void OpFp(const typename Decoder::OpFpArgs& args) {
    switch (args.operand_type) {
      case Decoder::FloatOperandType::kFloat:
        return OpFp<Float32>(args.opcode, args.rm, args.dst, args.src1, args.src2);
      case Decoder::FloatOperandType::kDouble:
        return OpFp<Float64>(args.opcode, args.rm, args.dst, args.src1, args.src2);
      default:
        return Undefined();
    }
  }

  template <typename FloatType>
  void OpFp(typename Decoder::OpFpOpcode opcode, int8_t rm, int8_t dst, int8_t src1, int8_t src2) {
    FpRegister arg1 = GetFRegAndUnboxNan<FloatType>(src1);
    FpRegister arg2 = GetFRegAndUnboxNan<FloatType>(src2);
    Register frm = listener_->template GetCsr<CsrName::kFrm>();
    FpRegister result;
    switch (opcode) {
      case Decoder::OpFpOpcode::kFAdd:
        result = listener_->template FAdd<FloatType>(rm, frm, arg1, arg2);
        break;
      case Decoder::OpFpOpcode::kFSub:
        result = listener_->template FSub<FloatType>(rm, frm, arg1, arg2);
        break;
      case Decoder::OpFpOpcode::kFMul:
        result = listener_->template FMul<FloatType>(rm, frm, arg1, arg2);
        break;
      case Decoder::OpFpOpcode::kFDiv:
        result = listener_->template FDiv<FloatType>(rm, frm, arg1, arg2);
        break;
      default:
        return Undefined();
    }
    result = CanonicalizeNan<FloatType>(result);
    NanBoxAndSetFpReg<FloatType>(dst, result);
  }

  void OpFpGpRegisterTargetNoRounding(
      const typename Decoder::OpFpGpRegisterTargetNoRoundingArgs& args) {
    switch (args.operand_type) {
      case Decoder::FloatOperandType::kFloat:
        return OpFpGpRegisterTargetNoRounding<Float32>(args.opcode, args.dst, args.src1, args.src2);
      case Decoder::FloatOperandType::kDouble:
        return OpFpGpRegisterTargetNoRounding<Float64>(args.opcode, args.dst, args.src1, args.src2);
      default:
        return Undefined();
    }
  }

  template <typename FloatType>
  void OpFpGpRegisterTargetNoRounding(typename Decoder::OpFpGpRegisterTargetNoRoundingOpcode opcode,
                                      int8_t dst,
                                      int8_t src1,
                                      int8_t src2) {
    FpRegister arg1 = GetFRegAndUnboxNan<FloatType>(src1);
    FpRegister arg2 = GetFRegAndUnboxNan<FloatType>(src2);
    Register result;
    switch (opcode) {
      case Decoder::OpFpGpRegisterTargetNoRoundingOpcode::kFle:
        result = listener_->template Fle<FloatType>(arg1, arg2);
        break;
      case Decoder::OpFpGpRegisterTargetNoRoundingOpcode::kFlt:
        result = listener_->template Flt<FloatType>(arg1, arg2);
        break;
      case Decoder::OpFpGpRegisterTargetNoRoundingOpcode::kFeq:
        result = listener_->template Feq<FloatType>(arg1, arg2);
        break;
      default:
        return Undefined();
    }
    SetRegOrIgnore(dst, result);
  }

  void OpFpGpRegisterTargetSingleInputNoRounding(
      const typename Decoder::OpFpGpRegisterTargetSingleInputNoRoundingArgs& args) {
    switch (args.operand_type) {
      case Decoder::FloatOperandType::kFloat:
        return OpFpGpRegisterTargetSingleInputNoRounding<Float32>(args.opcode, args.dst, args.src);
      case Decoder::FloatOperandType::kDouble:
        return OpFpGpRegisterTargetSingleInputNoRounding<Float64>(args.opcode, args.dst, args.src);
      default:
        return Undefined();
    }
  }

  template <typename FloatType>
  void OpFpGpRegisterTargetSingleInputNoRounding(
      typename Decoder::OpFpGpRegisterTargetSingleInputNoRoundingOpcode opcode,
      int8_t dst,
      int8_t src) {
    FpRegister arg = GetFRegAndUnboxNan<FloatType>(src);
    Register result;
    switch (opcode) {
      case Decoder::OpFpGpRegisterTargetSingleInputNoRoundingOpcode::kFclass:
        result = listener_->template FClass<FloatType>(arg);
        break;
      default:
        return Undefined();
    }
    SetRegOrIgnore(dst, result);
  }

  void OpFpNoRounding(const typename Decoder::OpFpNoRoundingArgs& args) {
    switch (args.operand_type) {
      case Decoder::FloatOperandType::kFloat:
        return OpFpNoRounding<Float32>(args.opcode, args.dst, args.src1, args.src2);
      case Decoder::FloatOperandType::kDouble:
        return OpFpNoRounding<Float64>(args.opcode, args.dst, args.src1, args.src2);
      default:
        return Undefined();
    }
  }

  template <typename FloatType>
  void OpFpNoRounding(const typename Decoder::OpFpNoRoundingOpcode opcode,
                      int8_t dst,
                      int8_t src1,
                      int8_t src2) {
    FpRegister arg1 = GetFRegAndUnboxNan<FloatType>(src1);
    FpRegister arg2 = GetFRegAndUnboxNan<FloatType>(src2);
    FpRegister result;
    switch (opcode) {
      case Decoder::OpFpNoRoundingOpcode::kFSgnj:
        result = listener_->template FSgnj<FloatType>(arg1, arg2);
        break;
      case Decoder::OpFpNoRoundingOpcode::kFSgnjn:
        result = listener_->template FSgnjn<FloatType>(arg1, arg2);
        break;
      case Decoder::OpFpNoRoundingOpcode::kFSgnjx:
        result = listener_->template FSgnjx<FloatType>(arg1, arg2);
        break;
      case Decoder::OpFpNoRoundingOpcode::kFMin:
        result = listener_->template FMin<FloatType>(arg1, arg2);
        break;
      case Decoder::OpFpNoRoundingOpcode::kFMax:
        result = listener_->template FMax<FloatType>(arg1, arg2);
        break;
      default:
        Undefined();
        return;
    }
    result = CanonicalizeNan<FloatType>(result);
    NanBoxAndSetFpReg<FloatType>(dst, result);
  }

  void FmvFloatToInteger(const typename Decoder::FmvFloatToIntegerArgs& args) {
    FpRegister arg = GetFpReg(args.src);
    Register result;
    switch (args.operand_type) {
      case Decoder::FloatOperandType::kFloat:
        result = listener_->template FmvFloatToInteger<int32_t, Float32>(arg);
        break;
      case Decoder::FloatOperandType::kDouble:
        result = listener_->template FmvFloatToInteger<int64_t, Float64>(arg);
        break;
      default:
        Undefined();
        return;
    }
    SetRegOrIgnore(args.dst, result);
  }

  void FmvIntegerToFloat(const typename Decoder::FmvIntegerToFloatArgs& args) {
    Register arg = GetRegOrZero(args.src);
    FpRegister result;
    switch (args.operand_type) {
      case Decoder::FloatOperandType::kFloat:
        result = listener_->template FmvIntegerToFloat<Float32, int32_t>(arg);
        NanBoxAndSetFpReg<Float32>(args.dst, result);
        break;
      case Decoder::FloatOperandType::kDouble:
        result = listener_->template FmvIntegerToFloat<Float64, int64_t>(arg);
        NanBoxAndSetFpReg<Float64>(args.dst, result);
        break;
      default:
        Undefined();
        return;
    }
  }

  void OpFpSingleInput(const typename Decoder::OpFpSingleInputArgs& args) {
    switch (args.operand_type) {
      case Decoder::FloatOperandType::kFloat:
        return OpFpSingleInput<Float32>(args.opcode, args.rm, args.dst, args.src);
      case Decoder::FloatOperandType::kDouble:
        return OpFpSingleInput<Float64>(args.opcode, args.rm, args.dst, args.src);
      default:
        return Undefined();
    }
  }

  template <typename FloatType>
  void OpFpSingleInput(typename Decoder::OpFpSingleInputOpcode opcode,
                       int8_t rm,
                       int8_t dst,
                       int8_t src) {
    FpRegister arg = GetFRegAndUnboxNan<FloatType>(src);
    FpRegister result;
    Register frm = listener_->template GetCsr<CsrName::kFrm>();
    switch (opcode) {
      case Decoder::OpFpSingleInputOpcode::kFSqrt:
        result = listener_->template FSqrt<FloatType>(rm, frm, arg);
        break;
      default:
        return Undefined();
    }
    result = CanonicalizeNan<FloatType>(result);
    NanBoxAndSetFpReg<FloatType>(dst, result);
  }

  void OpFpSingleInputNoRounding(const typename Decoder::OpFpSingleInputNoRoundingArgs& args) {
    switch (args.operand_type) {
      case Decoder::FloatOperandType::kFloat:
        return OpFpSingleInputNoRounding<Float32>(args.opcode, args.dst, args.src);
      case Decoder::FloatOperandType::kDouble:
        return OpFpSingleInputNoRounding<Float64>(args.opcode, args.dst, args.src);
      default:
        return Undefined();
    }
  }

  template <typename FloatType>
  void OpFpSingleInputNoRounding(typename Decoder::OpFpSingleInputNoRoundingOpcode opcode,
                                 int8_t dst,
                                 int8_t src) {
    FpRegister arg = GetFRegAndUnboxNan<FloatType>(src);
    FpRegister result;
    switch (opcode) {
      case Decoder::OpFpSingleInputNoRoundingOpcode::kFmv:
        result = listener_->Fmv(arg);
        break;
      default:
        Undefined();
        return;
    }
    result = CanonicalizeNan<FloatType>(result);
    NanBoxAndSetFpReg<FloatType>(dst, result);
  }

  template <typename OpImmArgs>
  void OpImm(OpImmArgs&& args) {
    Register arg = GetRegOrZero(args.src);
    Register result = Overloaded{[&](const typename Decoder::OpImmArgs& args) {
                                   return listener_->OpImm(args.opcode, arg, args.imm);
                                 },
                                 [&](const typename Decoder::OpImm32Args& args) {
                                   return listener_->OpImm32(args.opcode, arg, args.imm);
                                 },
                                 [&](const typename Decoder::ShiftImmArgs& args) {
                                   switch (args.opcode) {
                                     case Decoder::ShiftImmOpcode::kSlli:
                                       return listener_->Slli(arg, args.imm);
                                     case Decoder::ShiftImmOpcode::kSrli:
                                       return listener_->Srli(arg, args.imm);
                                     case Decoder::ShiftImmOpcode::kSrai:
                                       return listener_->Srai(arg, args.imm);
                                     default:
                                       Undefined();
                                       return Register{};
                                   }
                                 },
                                 [&](const typename Decoder::ShiftImm32Args& args) {
                                   return listener_->ShiftImm32(args.opcode, arg, args.imm);
                                 },
                                 [&](const typename Decoder::BitmanipImmArgs& args) {
                                   switch (args.opcode) {
                                     case Decoder::BitmanipImmOpcode::kClz:
                                       return listener_->template Clz<int64_t>(arg);
                                     case Decoder::BitmanipImmOpcode::kCpop:
                                       return listener_->template Cpop<int64_t>(arg);
                                     case Decoder::BitmanipImmOpcode::kCtz:
                                       return listener_->template Ctz<int64_t>(arg);
                                     case Decoder::BitmanipImmOpcode::kSextb:
                                       return listener_->template Sext<int8_t>(arg);
                                     case Decoder::BitmanipImmOpcode::kSexth:
                                       return listener_->template Sext<int16_t>(arg);
                                     case Decoder::BitmanipImmOpcode::kOrcb:
                                       return listener_->Orcb(arg);
                                     case Decoder::BitmanipImmOpcode::kRev8:
                                       return listener_->Rev8(arg);
                                     case Decoder::BitmanipImmOpcode::kRori:
                                       return listener_->Rori(arg, args.shamt);
                                     case Decoder::BitmanipImmOpcode::kBclri:
                                       return listener_->Bclri(arg, args.shamt);
                                     case Decoder::BitmanipImmOpcode::kBexti:
                                       return listener_->Bexti(arg, args.shamt);
                                     case Decoder::BitmanipImmOpcode::kBinvi:
                                       return listener_->Binvi(arg, args.shamt);
                                     case Decoder::BitmanipImmOpcode::kBseti:
                                       return listener_->Bseti(arg, args.shamt);
                                     default:
                                       Undefined();
                                       return Register{};
                                   }
                                 },
                                 [&](const typename Decoder::BitmanipImm32Args& args) {
                                   switch (args.opcode) {
                                     case Decoder::BitmanipImm32Opcode::kClzw:
                                       return listener_->template Clz<int32_t>(arg);
                                     case Decoder::BitmanipImm32Opcode::kCpopw:
                                       return listener_->template Cpop<int32_t>(arg);
                                     case Decoder::BitmanipImm32Opcode::kCtzw:
                                       return listener_->template Ctz<int32_t>(arg);
                                     case Decoder::BitmanipImm32Opcode::kRoriw:
                                       return listener_->Roriw(arg, args.shamt);
                                     case Decoder::BitmanipImm32Opcode::kSlliuw:
                                       return listener_->Slliuw(arg, args.shamt);
                                     default:
                                       Undefined();
                                       return Register{};
                                   }
                                 }}(args);
    SetRegOrIgnore(args.dst, result);
  }

  // TODO(b/300690740): develop and implement strategy which would allow us to support vector
  // intrinsics not just in the interpreter.

  void OpVector(const typename Decoder::VLoadIndexedArgs& args) {
    Register arg2 = GetRegOrZero(args.src);
    listener_->OpVector(args, arg2);
  }

  void OpVector(const typename Decoder::VLoadStrideArgs& args) {
    Register arg2 = GetRegOrZero(args.src);
    Register arg3 = GetRegOrZero(args.std);
    listener_->OpVector(args, arg2, arg3);
  }

  void OpVector(const typename Decoder::VLoadUnitStrideArgs& args) {
    Register arg2 = GetRegOrZero(args.src);
    listener_->OpVector(args, arg2);
  }

  void OpVector(const typename Decoder::VOpFVfArgs& args) {
    // Note: we don't have information here to chosee between GetFRegAndUnboxNan<Float32> and
    // GetFRegAndUnboxNan<Float64> because that depends on vtype.
    FpRegister arg2 = GetFpReg(args.src2);
    listener_->OpVector(args, arg2);
  }

  void OpVector(const typename Decoder::VOpFVvArgs& args) { listener_->OpVector(args); }

  void OpVector(const typename Decoder::VOpIViArgs& args) { listener_->OpVector(args); }

  void OpVector(const typename Decoder::VOpIVvArgs& args) { listener_->OpVector(args); }

  void OpVector(const typename Decoder::VOpMVvArgs& args) { listener_->OpVector(args); }

  void OpVector(const typename Decoder::VOpIVxArgs& args) {
    Register arg2 = GetRegOrZero(args.src2);
    listener_->OpVector(args, arg2);
  }

  void OpVector(const typename Decoder::VOpMVxArgs& args) {
    Register arg2 = GetRegOrZero(args.src2);
    listener_->OpVector(args, arg2);
  }

  void OpVector(const typename Decoder::VStoreIndexedArgs& args) {
    Register arg2 = GetRegOrZero(args.src);
    listener_->OpVector(args, arg2);
  }

  void OpVector(const typename Decoder::VStoreStrideArgs& args) {
    Register arg2 = GetRegOrZero(args.src);
    Register arg3 = GetRegOrZero(args.std);
    listener_->OpVector(args, arg2, arg3);
  }

  void OpVector(const typename Decoder::VStoreUnitStrideArgs& args) {
    Register arg2 = GetRegOrZero(args.src);
    listener_->OpVector(args, arg2);
  }

  void Vsetivli(const typename Decoder::VsetivliArgs& args) {
    // Note: it's unclear whether args.avl should be treated similarly to x0 in Vsetvli or not.
    // Keep implementation separate from Vsetvli to make it easier to adjust that code.
    if (args.avl == 0) {
      if (args.dst == 0) {
        auto [vl_orig, vtype_orig] = GetVlAndVtypeCsr();
        auto [vl, vtype] = listener_->Vtestvli(vl_orig, vtype_orig, args.vtype);
        SetVlAndVtypeCsr(vl, vtype);
      } else {
        auto [vl, vtype] = listener_->Vsetvlimax(args.vtype);
        SetVlAndVtypeCsr(vl, vtype);
        listener_->SetReg(args.dst, vl);
      }
    } else {
      auto [vl, vtype] = listener_->Vsetivli(args.avl, args.vtype);
      SetVlAndVtypeCsr(vl, vtype);
      SetRegOrIgnore(args.dst, vl);
    }
  }

  void Vsetvl(const typename Decoder::VsetvlArgs& args) {
    Register vtype_new = listener_->GetReg(args.src2);
    if (args.src1 == 0) {
      if (args.dst == 0) {
        auto [vl_orig, vtype_orig] = GetVlAndVtypeCsr();
        auto [vl, vtype] = listener_->Vtestvl(vl_orig, vtype_orig, vtype_new);
        SetVlAndVtypeCsr(vl, vtype);
      } else {
        auto [vl, vtype] = listener_->Vsetvlmax(vtype_new);
        SetVlAndVtypeCsr(vl, vtype);
        listener_->SetReg(args.dst, vl);
      }
    } else {
      Register avl = listener_->GetReg(args.src1);
      auto [vl, vtype] = listener_->Vsetvl(avl, vtype_new);
      SetVlAndVtypeCsr(vl, vtype);
      SetRegOrIgnore(args.dst, vl);
    }
  }

  void Vsetvli(const typename Decoder::VsetvliArgs& args) {
    if (args.src == 0) {
      if (args.dst == 0) {
        auto [vl_orig, vtype_orig] = GetVlAndVtypeCsr();
        auto [vl, vtype] = listener_->Vtestvli(vl_orig, vtype_orig, args.vtype);
        SetVlAndVtypeCsr(vl, vtype);
      } else {
        auto [vl, vtype] = listener_->Vsetvlimax(args.vtype);
        SetVlAndVtypeCsr(vl, vtype);
        listener_->SetReg(args.dst, vl);
      }
    } else {
      Register avl = listener_->GetReg(args.src);
      auto [vl, vtype] = listener_->Vsetvli(avl, args.vtype);
      SetVlAndVtypeCsr(vl, vtype);
      SetRegOrIgnore(args.dst, vl);
    }
  }

  void Store(const typename Decoder::StoreArgs& args) {
    Register arg = GetRegOrZero(args.src);
    Register data = GetRegOrZero(args.data);
    listener_->Store(args.operand_type, arg, args.offset, data);
  }

  void Store(const typename Decoder::StoreFpArgs& args) {
    Register arg = GetRegOrZero(args.src);
    FpRegister data = GetFpReg(args.data);
    switch (args.operand_type) {
      case Decoder::FloatOperandType::kFloat:
        listener_->template StoreFp<Float32>(arg, args.offset, data);
        break;
      case Decoder::FloatOperandType::kDouble:
        listener_->template StoreFp<Float64>(arg, args.offset, data);
        break;
      default:
        Undefined();
        return;
    }
  }

  // We may have executed a signal handler just after the syscall. If that handler changed x10, then
  // overwriting x10 here would be incorrect. On the other hand asynchronous signals are unlikely to
  // change CPU state, so we don't support this at the moment for simplicity."
  void System(const typename Decoder::SystemArgs& args) {
    if (args.opcode != Decoder::SystemOpcode::kEcall) {
      return Undefined();
    }
    Register syscall_nr = GetRegOrZero(17);
    Register arg0 = GetRegOrZero(10);
    Register arg1 = GetRegOrZero(11);
    Register arg2 = GetRegOrZero(12);
    Register arg3 = GetRegOrZero(13);
    Register arg4 = GetRegOrZero(14);
    Register arg5 = GetRegOrZero(15);
    Register result = listener_->Ecall(syscall_nr, arg0, arg1, arg2, arg3, arg4, arg5);
    SetRegOrIgnore(10, result);
  }

  void Undefined() { listener_->Undefined(); };

 private:
  Register GetRegOrZero(uint8_t reg) {
    return reg == 0 ? listener_->GetImm(0) : listener_->GetReg(reg);
  }

  void SetRegOrIgnore(uint8_t reg, Register value) {
    if (reg != 0) {
      listener_->SetReg(reg, value);
    }
  }

  // TODO(b/260725458): stop using GetCsrProcessor helper class and define lambda in GetCsr instead.
  // We need C++20 (https://wg21.link/P0428R2) for that.
  class GetCsrProcessor {
   public:
    GetCsrProcessor(Register& reg, SemanticsListener* listener) : reg_(reg), listener_(listener) {}
    template <CsrName kName>
    void operator()() {
      reg_ = listener_->template GetCsr<kName>();
    }

   private:
    Register& reg_;
    SemanticsListener* listener_;
  };

  std::tuple<bool, Register> GetCsr(CsrName csr) {
    Register reg;
    GetCsrProcessor get_csr(reg, listener_);
    return {ProcessCsrNameAsTemplateParameter(csr, get_csr), reg};
  }

  // TODO(b/260725458): stop using SetCsrProcessor helper class and define lambda in SetCsr instead.
  // We need C++20 (https://wg21.link/P0428R2) for that.
  class SetCsrImmProcessor {
   public:
    SetCsrImmProcessor(uint8_t imm, SemanticsListener* listener) : imm_(imm), listener_(listener) {}
    template <CsrName kName>
    void operator()() {
      // Csr registers with two top bits set are read-only.
      // Attempts to write into such register raise illegal instruction exceptions.
      if constexpr (CsrWritable(kName)) {
        listener_->template SetCsr<kName>(imm_);
      }
    }

   private:
    uint8_t imm_;
    SemanticsListener* listener_;
  };

  bool SetCsr(CsrName csr, uint8_t imm) {
    // Csr registers with two top bits set are read-only.
    // Attempts to write into such register raise illegal instruction exceptions.
    if (!CsrWritable(csr)) {
      return false;
    }
    SetCsrImmProcessor set_csr(imm, listener_);
    return ProcessCsrNameAsTemplateParameter(csr, set_csr);
  }

  // TODO(b/260725458): stop using SetCsrProcessor helper class and define lambda in SetCsr instead.
  // We need C++20 (https://wg21.link/P0428R2) for that.
  class SetCsrProcessor {
   public:
    SetCsrProcessor(Register reg, SemanticsListener* listener) : reg_(reg), listener_(listener) {}
    template <CsrName kName>
    void operator()() {
      // Csr registers with two top bits set are read-only.
      // Attempts to write into such register raise illegal instruction exceptions.
      if constexpr (CsrWritable(kName)) {
        listener_->template SetCsr<kName>(reg_);
      }
    }

   private:
    Register reg_;
    SemanticsListener* listener_;
  };

  bool SetCsr(CsrName csr, Register reg) {
    // Csr registers with two top bits set are read-only.
    // Attempts to write into such register raise illegal instruction exceptions.
    if (!CsrWritable(csr)) {
      return false;
    }
    SetCsrProcessor set_csr(reg, listener_);
    return ProcessCsrNameAsTemplateParameter(csr, set_csr);
  }

  // Floating point instructions in RISC-V are encoded in a way where you may find out size of
  // operand (single-precision, double-precision, half-precision or quad-precesion; the latter
  // two optional) from the instruction encoding without determining the full form of instruction.
  //
  // Sources and targets are also specified via dedicated bits in opcodes.
  //
  // This allows us to split instruction handling in four steps:
  //   1. Load operands from register and convert it into a form suitable for host.
  //   2. Execute operations specified by opcode.
  //   3. Normalize NaNs if host and guest architctures handled them differently.
  //   4. Encode results as required by RISC-V (if host doesn't do that).
  //
  // Note that in case of execution of RISC-V on RISC-V all steps except #2 are not doing anything.

  // Step #1:
  //  • GetFpReg — for instructions like fsw or fmv.x.w use GetFpReg which doesn't change value.
  //  • GetFRegAndBoxNan — for most instructions (improperly boxed narrow float is turned into NaN).
  FpRegister GetFpReg(uint8_t reg) { return listener_->GetFpReg(reg); }
  template <typename FloatType>
  FpRegister GetFRegAndUnboxNan(uint8_t reg) {
    return listener_->template GetFRegAndUnboxNan<FloatType>(reg);
  }

  // Step #3.
  template <typename FloatType>
  FpRegister CanonicalizeNan(FpRegister value) {
    return listener_->template CanonicalizeNan<FloatType>(value);
  }

  // Step #4. Note the assymetry: step #1 may skip the NaN unboxing (would use GetFpReg if so),
  // but step #4 boxes uncoditionally (if actual instruction doesn't do that on host).
  template <typename FloatType>
  void NanBoxAndSetFpReg(uint8_t reg, FpRegister value) {
    listener_->template NanBoxAndSetFpReg<FloatType>(reg, value);
  }

  std::tuple<Register, Register> GetVlAndVtypeCsr() {
    Register vl_orig = listener_->template GetCsr<CsrName::kVl>();
    Register vtype_orig = listener_->template GetCsr<CsrName::kVtype>();
    return {vl_orig, vtype_orig};
  }

  void SetVlAndVtypeCsr(Register vl, Register vtype) {
    listener_->template SetCsr<CsrName::kVtype>(vtype);
    listener_->template SetCsr<CsrName::kVl>(vl);
  }

  SemanticsListener* listener_;
};

}  // namespace berberis

#endif  // BERBERIS_DECODER_RISCV64_SEMANTICS_PLAYER_H_