aboutsummaryrefslogtreecommitdiff
path: root/programs/fileio_asyncio.c
blob: ae6db69e0a95aa302a47f3313e5cb768713f9558 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
/*
 * Copyright (c) Meta Platforms, Inc. and affiliates.
 * All rights reserved.
 *
 * This source code is licensed under both the BSD-style license (found in the
 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
 * in the COPYING file in the root directory of this source tree).
 * You may select, at your option, one of the above-listed licenses.
 */

#include "platform.h"
#include <stdio.h>      /* fprintf, open, fdopen, fread, _fileno, stdin, stdout */
#include <stdlib.h>     /* malloc, free */
#include <assert.h>
#include <errno.h>      /* errno */

#if defined (_MSC_VER)
#  include <sys/stat.h>
#  include <io.h>
#endif

#include "fileio_asyncio.h"
#include "fileio_common.h"

/* **********************************************************************
 *  Sparse write
 ************************************************************************/

/** AIO_fwriteSparse() :
*  @return : storedSkips,
*            argument for next call to AIO_fwriteSparse() or AIO_fwriteSparseEnd() */
static unsigned
AIO_fwriteSparse(FILE* file,
                 const void* buffer, size_t bufferSize,
                 const FIO_prefs_t* const prefs,
                 unsigned storedSkips)
{
    const size_t* const bufferT = (const size_t*)buffer;   /* Buffer is supposed malloc'ed, hence aligned on size_t */
    size_t bufferSizeT = bufferSize / sizeof(size_t);
    const size_t* const bufferTEnd = bufferT + bufferSizeT;
    const size_t* ptrT = bufferT;
    static const size_t segmentSizeT = (32 KB) / sizeof(size_t);   /* check every 32 KB */

    if (prefs->testMode) return 0;  /* do not output anything in test mode */

    if (!prefs->sparseFileSupport) {  /* normal write */
        size_t const sizeCheck = fwrite(buffer, 1, bufferSize, file);
        if (sizeCheck != bufferSize)
            EXM_THROW(70, "Write error : cannot write block : %s",
                      strerror(errno));
        return 0;
    }

    /* avoid int overflow */
    if (storedSkips > 1 GB) {
        if (LONG_SEEK(file, 1 GB, SEEK_CUR) != 0)
        EXM_THROW(91, "1 GB skip error (sparse file support)");
        storedSkips -= 1 GB;
    }

    while (ptrT < bufferTEnd) {
        size_t nb0T;

        /* adjust last segment if < 32 KB */
        size_t seg0SizeT = segmentSizeT;
        if (seg0SizeT > bufferSizeT) seg0SizeT = bufferSizeT;
        bufferSizeT -= seg0SizeT;

        /* count leading zeroes */
        for (nb0T=0; (nb0T < seg0SizeT) && (ptrT[nb0T] == 0); nb0T++) ;
        storedSkips += (unsigned)(nb0T * sizeof(size_t));

        if (nb0T != seg0SizeT) {   /* not all 0s */
            size_t const nbNon0ST = seg0SizeT - nb0T;
            /* skip leading zeros */
            if (LONG_SEEK(file, storedSkips, SEEK_CUR) != 0)
                EXM_THROW(92, "Sparse skip error ; try --no-sparse");
            storedSkips = 0;
            /* write the rest */
            if (fwrite(ptrT + nb0T, sizeof(size_t), nbNon0ST, file) != nbNon0ST)
                EXM_THROW(93, "Write error : cannot write block : %s",
                          strerror(errno));
        }
        ptrT += seg0SizeT;
    }

    {   static size_t const maskT = sizeof(size_t)-1;
        if (bufferSize & maskT) {
            /* size not multiple of sizeof(size_t) : implies end of block */
            const char* const restStart = (const char*)bufferTEnd;
            const char* restPtr = restStart;
            const char* const restEnd = (const char*)buffer + bufferSize;
            assert(restEnd > restStart && restEnd < restStart + sizeof(size_t));
            for ( ; (restPtr < restEnd) && (*restPtr == 0); restPtr++) ;
            storedSkips += (unsigned) (restPtr - restStart);
            if (restPtr != restEnd) {
                /* not all remaining bytes are 0 */
                size_t const restSize = (size_t)(restEnd - restPtr);
                if (LONG_SEEK(file, storedSkips, SEEK_CUR) != 0)
                    EXM_THROW(92, "Sparse skip error ; try --no-sparse");
                if (fwrite(restPtr, 1, restSize, file) != restSize)
                    EXM_THROW(95, "Write error : cannot write end of decoded block : %s",
                              strerror(errno));
                storedSkips = 0;
            }   }   }

    return storedSkips;
}

static void
AIO_fwriteSparseEnd(const FIO_prefs_t* const prefs, FILE* file, unsigned storedSkips)
{
    if (prefs->testMode) assert(storedSkips == 0);
    if (storedSkips>0) {
        assert(prefs->sparseFileSupport > 0);  /* storedSkips>0 implies sparse support is enabled */
        (void)prefs;   /* assert can be disabled, in which case prefs becomes unused */
        if (LONG_SEEK(file, storedSkips-1, SEEK_CUR) != 0)
            EXM_THROW(69, "Final skip error (sparse file support)");
        /* last zero must be explicitly written,
         * so that skipped ones get implicitly translated as zero by FS */
        {   const char lastZeroByte[1] = { 0 };
            if (fwrite(lastZeroByte, 1, 1, file) != 1)
                EXM_THROW(69, "Write error : cannot write last zero : %s", strerror(errno));
        }   }
}


/* **********************************************************************
 *  AsyncIO functionality
 ************************************************************************/

/* AIO_supported:
 * Returns 1 if AsyncIO is supported on the system, 0 otherwise. */
int AIO_supported(void) {
#ifdef ZSTD_MULTITHREAD
    return 1;
#else
    return 0;
#endif
}

/* ***********************************
 *  Generic IoPool implementation
 *************************************/

static IOJob_t *AIO_IOPool_createIoJob(IOPoolCtx_t *ctx, size_t bufferSize) {
    IOJob_t* const job  = (IOJob_t*) malloc(sizeof(IOJob_t));
    void* const buffer = malloc(bufferSize);
    if(!job || !buffer)
        EXM_THROW(101, "Allocation error : not enough memory");
    job->buffer = buffer;
    job->bufferSize = bufferSize;
    job->usedBufferSize = 0;
    job->file = NULL;
    job->ctx = ctx;
    job->offset = 0;
    return job;
}


/* AIO_IOPool_createThreadPool:
 * Creates a thread pool and a mutex for threaded IO pool.
 * Displays warning if asyncio is requested but MT isn't available. */
static void AIO_IOPool_createThreadPool(IOPoolCtx_t* ctx, const FIO_prefs_t* prefs) {
    ctx->threadPool = NULL;
    ctx->threadPoolActive = 0;
    if(prefs->asyncIO) {
        if (ZSTD_pthread_mutex_init(&ctx->ioJobsMutex, NULL))
            EXM_THROW(102,"Failed creating ioJobsMutex mutex");
        /* We want MAX_IO_JOBS-2 queue items because we need to always have 1 free buffer to
         * decompress into and 1 buffer that's actively written to disk and owned by the writing thread. */
        assert(MAX_IO_JOBS >= 2);
        ctx->threadPool = POOL_create(1, MAX_IO_JOBS - 2);
        ctx->threadPoolActive = 1;
        if (!ctx->threadPool)
            EXM_THROW(104, "Failed creating I/O thread pool");
    }
}

/* AIO_IOPool_init:
 * Allocates and sets and a new I/O thread pool including its included availableJobs. */
static void AIO_IOPool_init(IOPoolCtx_t* ctx, const FIO_prefs_t* prefs, POOL_function poolFunction, size_t bufferSize) {
    int i;
    AIO_IOPool_createThreadPool(ctx, prefs);
    ctx->prefs = prefs;
    ctx->poolFunction = poolFunction;
    ctx->totalIoJobs = ctx->threadPool ? MAX_IO_JOBS : 2;
    ctx->availableJobsCount = ctx->totalIoJobs;
    for(i=0; i < ctx->availableJobsCount; i++) {
        ctx->availableJobs[i] = AIO_IOPool_createIoJob(ctx, bufferSize);
    }
    ctx->jobBufferSize = bufferSize;
    ctx->file = NULL;
}


/* AIO_IOPool_threadPoolActive:
 * Check if current operation uses thread pool.
 * Note that in some cases we have a thread pool initialized but choose not to use it. */
static int AIO_IOPool_threadPoolActive(IOPoolCtx_t* ctx) {
    return ctx->threadPool && ctx->threadPoolActive;
}


/* AIO_IOPool_lockJobsMutex:
 * Locks the IO jobs mutex if threading is active */
static void AIO_IOPool_lockJobsMutex(IOPoolCtx_t* ctx) {
    if(AIO_IOPool_threadPoolActive(ctx))
        ZSTD_pthread_mutex_lock(&ctx->ioJobsMutex);
}

/* AIO_IOPool_unlockJobsMutex:
 * Unlocks the IO jobs mutex if threading is active */
static void AIO_IOPool_unlockJobsMutex(IOPoolCtx_t* ctx) {
    if(AIO_IOPool_threadPoolActive(ctx))
        ZSTD_pthread_mutex_unlock(&ctx->ioJobsMutex);
}

/* AIO_IOPool_releaseIoJob:
 * Releases an acquired job back to the pool. Doesn't execute the job. */
static void AIO_IOPool_releaseIoJob(IOJob_t* job) {
    IOPoolCtx_t* const ctx = (IOPoolCtx_t *) job->ctx;
    AIO_IOPool_lockJobsMutex(ctx);
    assert(ctx->availableJobsCount < ctx->totalIoJobs);
    ctx->availableJobs[ctx->availableJobsCount++] = job;
    AIO_IOPool_unlockJobsMutex(ctx);
}

/* AIO_IOPool_join:
 * Waits for all tasks in the pool to finish executing. */
static void AIO_IOPool_join(IOPoolCtx_t* ctx) {
    if(AIO_IOPool_threadPoolActive(ctx))
        POOL_joinJobs(ctx->threadPool);
}

/* AIO_IOPool_setThreaded:
 * Allows (de)activating threaded mode, to be used when the expected overhead
 * of threading costs more than the expected gains. */
static void AIO_IOPool_setThreaded(IOPoolCtx_t* ctx, int threaded) {
    assert(threaded == 0 || threaded == 1);
    assert(ctx != NULL);
    if(ctx->threadPoolActive != threaded) {
        AIO_IOPool_join(ctx);
        ctx->threadPoolActive = threaded;
    }
}

/* AIO_IOPool_free:
 * Release a previously allocated IO thread pool. Makes sure all tasks are done and released. */
static void AIO_IOPool_destroy(IOPoolCtx_t* ctx) {
    int i;
    if(ctx->threadPool) {
        /* Make sure we finish all tasks and then free the resources */
        AIO_IOPool_join(ctx);
        /* Make sure we are not leaking availableJobs */
        assert(ctx->availableJobsCount == ctx->totalIoJobs);
        POOL_free(ctx->threadPool);
        ZSTD_pthread_mutex_destroy(&ctx->ioJobsMutex);
    }
    assert(ctx->file == NULL);
    for(i=0; i<ctx->availableJobsCount; i++) {
        IOJob_t* job = (IOJob_t*) ctx->availableJobs[i];
        free(job->buffer);
        free(job);
    }
}

/* AIO_IOPool_acquireJob:
 * Returns an available io job to be used for a future io. */
static IOJob_t* AIO_IOPool_acquireJob(IOPoolCtx_t* ctx) {
    IOJob_t *job;
    assert(ctx->file != NULL || ctx->prefs->testMode);
    AIO_IOPool_lockJobsMutex(ctx);
    assert(ctx->availableJobsCount > 0);
    job = (IOJob_t*) ctx->availableJobs[--ctx->availableJobsCount];
    AIO_IOPool_unlockJobsMutex(ctx);
    job->usedBufferSize = 0;
    job->file = ctx->file;
    job->offset = 0;
    return job;
}


/* AIO_IOPool_setFile:
 * Sets the destination file for future files in the pool.
 * Requires completion of all queued jobs and release of all otherwise acquired jobs. */
static void AIO_IOPool_setFile(IOPoolCtx_t* ctx, FILE* file) {
    assert(ctx!=NULL);
    AIO_IOPool_join(ctx);
    assert(ctx->availableJobsCount == ctx->totalIoJobs);
    ctx->file = file;
}

static FILE* AIO_IOPool_getFile(const IOPoolCtx_t* ctx) {
    return ctx->file;
}

/* AIO_IOPool_enqueueJob:
 * Enqueues an io job for execution.
 * The queued job shouldn't be used directly after queueing it. */
static void AIO_IOPool_enqueueJob(IOJob_t* job) {
    IOPoolCtx_t* const ctx = (IOPoolCtx_t *)job->ctx;
    if(AIO_IOPool_threadPoolActive(ctx))
        POOL_add(ctx->threadPool, ctx->poolFunction, job);
    else
        ctx->poolFunction(job);
}

/* ***********************************
 *  WritePool implementation
 *************************************/

/* AIO_WritePool_acquireJob:
 * Returns an available write job to be used for a future write. */
IOJob_t* AIO_WritePool_acquireJob(WritePoolCtx_t* ctx) {
    return AIO_IOPool_acquireJob(&ctx->base);
}

/* AIO_WritePool_enqueueAndReacquireWriteJob:
 * Queues a write job for execution and acquires a new one.
 * After execution `job`'s pointed value would change to the newly acquired job.
 * Make sure to set `usedBufferSize` to the wanted length before call.
 * The queued job shouldn't be used directly after queueing it. */
void AIO_WritePool_enqueueAndReacquireWriteJob(IOJob_t **job) {
    AIO_IOPool_enqueueJob(*job);
    *job = AIO_IOPool_acquireJob((IOPoolCtx_t *)(*job)->ctx);
}

/* AIO_WritePool_sparseWriteEnd:
 * Ends sparse writes to the current file.
 * Blocks on completion of all current write jobs before executing. */
void AIO_WritePool_sparseWriteEnd(WritePoolCtx_t* ctx) {
    assert(ctx != NULL);
    AIO_IOPool_join(&ctx->base);
    AIO_fwriteSparseEnd(ctx->base.prefs, ctx->base.file, ctx->storedSkips);
    ctx->storedSkips = 0;
}

/* AIO_WritePool_setFile:
 * Sets the destination file for future writes in the pool.
 * Requires completion of all queues write jobs and release of all otherwise acquired jobs.
 * Also requires ending of sparse write if a previous file was used in sparse mode. */
void AIO_WritePool_setFile(WritePoolCtx_t* ctx, FILE* file) {
    AIO_IOPool_setFile(&ctx->base, file);
    assert(ctx->storedSkips == 0);
}

/* AIO_WritePool_getFile:
 * Returns the file the writePool is currently set to write to. */
FILE* AIO_WritePool_getFile(const WritePoolCtx_t* ctx) {
    return AIO_IOPool_getFile(&ctx->base);
}

/* AIO_WritePool_releaseIoJob:
 * Releases an acquired job back to the pool. Doesn't execute the job. */
void AIO_WritePool_releaseIoJob(IOJob_t* job) {
    AIO_IOPool_releaseIoJob(job);
}

/* AIO_WritePool_closeFile:
 * Ends sparse write and closes the writePool's current file and sets the file to NULL.
 * Requires completion of all queues write jobs and release of all otherwise acquired jobs.  */
int AIO_WritePool_closeFile(WritePoolCtx_t* ctx) {
    FILE* const dstFile = ctx->base.file;
    assert(dstFile!=NULL || ctx->base.prefs->testMode!=0);
    AIO_WritePool_sparseWriteEnd(ctx);
    AIO_IOPool_setFile(&ctx->base, NULL);
    return fclose(dstFile);
}

/* AIO_WritePool_executeWriteJob:
 * Executes a write job synchronously. Can be used as a function for a thread pool. */
static void AIO_WritePool_executeWriteJob(void* opaque){
    IOJob_t* const job = (IOJob_t*) opaque;
    WritePoolCtx_t* const ctx = (WritePoolCtx_t*) job->ctx;
    ctx->storedSkips = AIO_fwriteSparse(job->file, job->buffer, job->usedBufferSize, ctx->base.prefs, ctx->storedSkips);
    AIO_IOPool_releaseIoJob(job);
}

/* AIO_WritePool_create:
 * Allocates and sets and a new write pool including its included jobs. */
WritePoolCtx_t* AIO_WritePool_create(const FIO_prefs_t* prefs, size_t bufferSize) {
    WritePoolCtx_t* const ctx = (WritePoolCtx_t*) malloc(sizeof(WritePoolCtx_t));
    if(!ctx) EXM_THROW(100, "Allocation error : not enough memory");
    AIO_IOPool_init(&ctx->base, prefs, AIO_WritePool_executeWriteJob, bufferSize);
    ctx->storedSkips = 0;
    return ctx;
}

/* AIO_WritePool_free:
 * Frees and releases a writePool and its resources. Closes destination file if needs to. */
void AIO_WritePool_free(WritePoolCtx_t* ctx) {
    /* Make sure we finish all tasks and then free the resources */
    if(AIO_WritePool_getFile(ctx))
        AIO_WritePool_closeFile(ctx);
    AIO_IOPool_destroy(&ctx->base);
    assert(ctx->storedSkips==0);
    free(ctx);
}

/* AIO_WritePool_setAsync:
 * Allows (de)activating async mode, to be used when the expected overhead
 * of asyncio costs more than the expected gains. */
void AIO_WritePool_setAsync(WritePoolCtx_t* ctx, int async) {
    AIO_IOPool_setThreaded(&ctx->base, async);
}


/* ***********************************
 *  ReadPool implementation
 *************************************/
static void AIO_ReadPool_releaseAllCompletedJobs(ReadPoolCtx_t* ctx) {
    int i;
    for(i=0; i<ctx->completedJobsCount; i++) {
        IOJob_t* job = (IOJob_t*) ctx->completedJobs[i];
        AIO_IOPool_releaseIoJob(job);
    }
    ctx->completedJobsCount = 0;
}

static void AIO_ReadPool_addJobToCompleted(IOJob_t* job) {
    ReadPoolCtx_t* const ctx = (ReadPoolCtx_t *)job->ctx;
    AIO_IOPool_lockJobsMutex(&ctx->base);
    assert(ctx->completedJobsCount < MAX_IO_JOBS);
    ctx->completedJobs[ctx->completedJobsCount++] = job;
    if(AIO_IOPool_threadPoolActive(&ctx->base)) {
        ZSTD_pthread_cond_signal(&ctx->jobCompletedCond);
    }
    AIO_IOPool_unlockJobsMutex(&ctx->base);
}

/* AIO_ReadPool_findNextWaitingOffsetCompletedJob_locked:
 * Looks through the completed jobs for a job matching the waitingOnOffset and returns it,
 * if job wasn't found returns NULL.
 * IMPORTANT: assumes ioJobsMutex is locked. */
static IOJob_t* AIO_ReadPool_findNextWaitingOffsetCompletedJob_locked(ReadPoolCtx_t* ctx) {
    IOJob_t *job = NULL;
    int i;
    /* This implementation goes through all completed jobs and looks for the one matching the next offset.
     * While not strictly needed for a single threaded reader implementation (as in such a case we could expect
     * reads to be completed in order) this implementation was chosen as it better fits other asyncio
     * interfaces (such as io_uring) that do not provide promises regarding order of completion. */
    for (i=0; i<ctx->completedJobsCount; i++) {
        job = (IOJob_t *) ctx->completedJobs[i];
        if (job->offset == ctx->waitingOnOffset) {
            ctx->completedJobs[i] = ctx->completedJobs[--ctx->completedJobsCount];
            return job;
        }
    }
    return NULL;
}

/* AIO_ReadPool_numReadsInFlight:
 * Returns the number of IO read jobs currently in flight. */
static size_t AIO_ReadPool_numReadsInFlight(ReadPoolCtx_t* ctx) {
    const int jobsHeld = (ctx->currentJobHeld==NULL ? 0 : 1);
    return (size_t)(ctx->base.totalIoJobs - (ctx->base.availableJobsCount + ctx->completedJobsCount + jobsHeld));
}

/* AIO_ReadPool_getNextCompletedJob:
 * Returns a completed IOJob_t for the next read in line based on waitingOnOffset and advances waitingOnOffset.
 * Would block. */
static IOJob_t* AIO_ReadPool_getNextCompletedJob(ReadPoolCtx_t* ctx) {
    IOJob_t *job = NULL;
    AIO_IOPool_lockJobsMutex(&ctx->base);

    job = AIO_ReadPool_findNextWaitingOffsetCompletedJob_locked(ctx);

    /* As long as we didn't find the job matching the next read, and we have some reads in flight continue waiting */
    while (!job && (AIO_ReadPool_numReadsInFlight(ctx) > 0)) {
        assert(ctx->base.threadPool != NULL); /* we shouldn't be here if we work in sync mode */
        ZSTD_pthread_cond_wait(&ctx->jobCompletedCond, &ctx->base.ioJobsMutex);
        job = AIO_ReadPool_findNextWaitingOffsetCompletedJob_locked(ctx);
    }

    if(job) {
        assert(job->offset == ctx->waitingOnOffset);
        ctx->waitingOnOffset += job->usedBufferSize;
    }

    AIO_IOPool_unlockJobsMutex(&ctx->base);
    return job;
}


/* AIO_ReadPool_executeReadJob:
 * Executes a read job synchronously. Can be used as a function for a thread pool. */
static void AIO_ReadPool_executeReadJob(void* opaque){
    IOJob_t* const job = (IOJob_t*) opaque;
    ReadPoolCtx_t* const ctx = (ReadPoolCtx_t *)job->ctx;
    if(ctx->reachedEof) {
        job->usedBufferSize = 0;
        AIO_ReadPool_addJobToCompleted(job);
        return;
    }
    job->usedBufferSize = fread(job->buffer, 1, job->bufferSize, job->file);
    if(job->usedBufferSize < job->bufferSize) {
        if(ferror(job->file)) {
            EXM_THROW(37, "Read error");
        } else if(feof(job->file)) {
            ctx->reachedEof = 1;
        } else {
            EXM_THROW(37, "Unexpected short read");
        }
    }
    AIO_ReadPool_addJobToCompleted(job);
}

static void AIO_ReadPool_enqueueRead(ReadPoolCtx_t* ctx) {
    IOJob_t* const job = AIO_IOPool_acquireJob(&ctx->base);
    job->offset = ctx->nextReadOffset;
    ctx->nextReadOffset += job->bufferSize;
    AIO_IOPool_enqueueJob(job);
}

static void AIO_ReadPool_startReading(ReadPoolCtx_t* ctx) {
    while(ctx->base.availableJobsCount) {
        AIO_ReadPool_enqueueRead(ctx);
    }
}

/* AIO_ReadPool_setFile:
 * Sets the source file for future read in the pool. Initiates reading immediately if file is not NULL.
 * Waits for all current enqueued tasks to complete if a previous file was set. */
void AIO_ReadPool_setFile(ReadPoolCtx_t* ctx, FILE* file) {
    assert(ctx!=NULL);
    AIO_IOPool_join(&ctx->base);
    AIO_ReadPool_releaseAllCompletedJobs(ctx);
    if (ctx->currentJobHeld) {
        AIO_IOPool_releaseIoJob((IOJob_t *)ctx->currentJobHeld);
        ctx->currentJobHeld = NULL;
    }
    AIO_IOPool_setFile(&ctx->base, file);
    ctx->nextReadOffset = 0;
    ctx->waitingOnOffset = 0;
    ctx->srcBuffer = ctx->coalesceBuffer;
    ctx->srcBufferLoaded = 0;
    ctx->reachedEof = 0;
    if(file != NULL)
        AIO_ReadPool_startReading(ctx);
}

/* AIO_ReadPool_create:
 * Allocates and sets and a new readPool including its included jobs.
 * bufferSize should be set to the maximal buffer we want to read at a time, will also be used
 * as our basic read size. */
ReadPoolCtx_t* AIO_ReadPool_create(const FIO_prefs_t* prefs, size_t bufferSize) {
    ReadPoolCtx_t* const ctx = (ReadPoolCtx_t*) malloc(sizeof(ReadPoolCtx_t));
    if(!ctx) EXM_THROW(100, "Allocation error : not enough memory");
    AIO_IOPool_init(&ctx->base, prefs, AIO_ReadPool_executeReadJob, bufferSize);

    ctx->coalesceBuffer = (U8*) malloc(bufferSize * 2);
    if(!ctx->coalesceBuffer) EXM_THROW(100, "Allocation error : not enough memory");
    ctx->srcBuffer = ctx->coalesceBuffer;
    ctx->srcBufferLoaded = 0;
    ctx->completedJobsCount = 0;
    ctx->currentJobHeld = NULL;

    if(ctx->base.threadPool)
        if (ZSTD_pthread_cond_init(&ctx->jobCompletedCond, NULL))
            EXM_THROW(103,"Failed creating jobCompletedCond cond");

    return ctx;
}

/* AIO_ReadPool_free:
 * Frees and releases a readPool and its resources. Closes source file. */
void AIO_ReadPool_free(ReadPoolCtx_t* ctx) {
    if(AIO_ReadPool_getFile(ctx))
        AIO_ReadPool_closeFile(ctx);
    if(ctx->base.threadPool)
        ZSTD_pthread_cond_destroy(&ctx->jobCompletedCond);
    AIO_IOPool_destroy(&ctx->base);
    free(ctx->coalesceBuffer);
    free(ctx);
}

/* AIO_ReadPool_consumeBytes:
 * Consumes byes from srcBuffer's beginning and updates srcBufferLoaded accordingly. */
void AIO_ReadPool_consumeBytes(ReadPoolCtx_t* ctx, size_t n) {
    assert(n <= ctx->srcBufferLoaded);
    ctx->srcBufferLoaded -= n;
    ctx->srcBuffer += n;
}

/* AIO_ReadPool_releaseCurrentlyHeldAndGetNext:
 * Release the current held job and get the next one, returns NULL if no next job available. */
static IOJob_t* AIO_ReadPool_releaseCurrentHeldAndGetNext(ReadPoolCtx_t* ctx) {
    if (ctx->currentJobHeld) {
        AIO_IOPool_releaseIoJob((IOJob_t *)ctx->currentJobHeld);
        ctx->currentJobHeld = NULL;
        AIO_ReadPool_enqueueRead(ctx);
    }
    ctx->currentJobHeld = AIO_ReadPool_getNextCompletedJob(ctx);
    return (IOJob_t*) ctx->currentJobHeld;
}

/* AIO_ReadPool_fillBuffer:
 * Tries to fill the buffer with at least n or jobBufferSize bytes (whichever is smaller).
 * Returns if srcBuffer has at least the expected number of bytes loaded or if we've reached the end of the file.
 * Return value is the number of bytes added to the buffer.
 * Note that srcBuffer might have up to 2 times jobBufferSize bytes. */
size_t AIO_ReadPool_fillBuffer(ReadPoolCtx_t* ctx, size_t n) {
    IOJob_t *job;
    int useCoalesce = 0;
    if(n > ctx->base.jobBufferSize)
        n = ctx->base.jobBufferSize;

    /* We are good, don't read anything */
    if (ctx->srcBufferLoaded >= n)
        return 0;

    /* We still have bytes loaded, but not enough to satisfy caller. We need to get the next job
     * and coalesce the remaining bytes with the next job's buffer */
    if (ctx->srcBufferLoaded > 0) {
        useCoalesce = 1;
        memcpy(ctx->coalesceBuffer, ctx->srcBuffer, ctx->srcBufferLoaded);
        ctx->srcBuffer = ctx->coalesceBuffer;
    }

    /* Read the next chunk */
    job = AIO_ReadPool_releaseCurrentHeldAndGetNext(ctx);
    if(!job)
        return 0;
    if(useCoalesce) {
        assert(ctx->srcBufferLoaded + job->usedBufferSize <= 2*ctx->base.jobBufferSize);
        memcpy(ctx->coalesceBuffer + ctx->srcBufferLoaded, job->buffer, job->usedBufferSize);
        ctx->srcBufferLoaded += job->usedBufferSize;
    }
    else {
        ctx->srcBuffer = (U8 *) job->buffer;
        ctx->srcBufferLoaded = job->usedBufferSize;
    }
    return job->usedBufferSize;
}

/* AIO_ReadPool_consumeAndRefill:
 * Consumes the current buffer and refills it with bufferSize bytes. */
size_t AIO_ReadPool_consumeAndRefill(ReadPoolCtx_t* ctx) {
    AIO_ReadPool_consumeBytes(ctx, ctx->srcBufferLoaded);
    return AIO_ReadPool_fillBuffer(ctx, ctx->base.jobBufferSize);
}

/* AIO_ReadPool_getFile:
 * Returns the current file set for the read pool. */
FILE* AIO_ReadPool_getFile(const ReadPoolCtx_t* ctx) {
    return AIO_IOPool_getFile(&ctx->base);
}

/* AIO_ReadPool_closeFile:
 * Closes the current set file. Waits for all current enqueued tasks to complete and resets state. */
int AIO_ReadPool_closeFile(ReadPoolCtx_t* ctx) {
    FILE* const file = AIO_ReadPool_getFile(ctx);
    AIO_ReadPool_setFile(ctx, NULL);
    return fclose(file);
}

/* AIO_ReadPool_setAsync:
 * Allows (de)activating async mode, to be used when the expected overhead
 * of asyncio costs more than the expected gains. */
void AIO_ReadPool_setAsync(ReadPoolCtx_t* ctx, int async) {
    AIO_IOPool_setThreaded(&ctx->base, async);
}