aboutsummaryrefslogtreecommitdiff
path: root/spectrogram.c
blob: 63051304785ef9cae369bc3f63ef8e884407aa9d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
/* Sonic library
   Copyright 2016
   Bill Cox
   This file is part of the Sonic Library.

   This file is licensed under the Apache 2.0 license.
*/

#ifdef  KISS_FFT
#include <stddef.h>  /* kiss_fft.h failes to load this */
#include <kiss_fft.h>
#include <kiss_fft_impl.h>
#else
#include <fftw3.h>
#endif
#include <float.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "sonic.h"
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#ifndef M_E
#define M_E 2.7182818284590452354
#endif

struct sonicSpectrumStruct;
typedef struct sonicSpectrumStruct* sonicSpectrum;

struct sonicSpectrogramStruct {
  sonicSpectrum* spectrums;
  double minPower, maxPower;
  int numSpectrums;
  int allocatedSpectrums;
  int sampleRate;
  int totalSamples;
};

struct sonicSpectrumStruct {
  sonicSpectrogram spectrogram;
  double* power;
  int numFreqs; /* Number of frequencies */
  int numSamples;
  int startingSample;
};

/* Print out spectrum data for debugging. */
static void dumpSpectrum(sonicSpectrum spectrum) {
  printf("spectrum numFreqs:%d numSamples:%d startingSample:%d\n",
         spectrum->numFreqs, spectrum->numSamples, spectrum->startingSample);
  printf("   ");
  int i;
  for (i = 0; i < spectrum->numFreqs; i++) {
    printf(" %.1f", spectrum->power[i]);
  }
  printf("\n");
}

/* Print out spectrogram data for debugging. */
void dumpSpectrogram(sonicSpectrogram spectrogram) {
  printf(
      "spectrogram minPower:%f maxPower:%f numSpectrums:%d totalSamples:%d\n",
      spectrogram->minPower, spectrogram->maxPower, spectrogram->numSpectrums,
      spectrogram->totalSamples);
  int i;
  for (i = 0; i < spectrogram->numSpectrums; i++) {
    dumpSpectrum(spectrogram->spectrums[i]);
  }
}

/* Create an new spectrum. */
static sonicSpectrum sonicCreateSpectrum(sonicSpectrogram spectrogram) {
  sonicSpectrum spectrum =
      (sonicSpectrum)calloc(1, sizeof(struct sonicSpectrumStruct));
  if (spectrum == NULL) {
    return NULL;
  }
  if (spectrogram->numSpectrums == spectrogram->allocatedSpectrums) {
    spectrogram->allocatedSpectrums <<= 1;
    spectrogram->spectrums = (sonicSpectrum*)realloc(
        spectrogram->spectrums,
        spectrogram->allocatedSpectrums * sizeof(sonicSpectrum));
    if (spectrogram->spectrums == NULL) {
      return NULL;
    }
  }
  spectrogram->spectrums[spectrogram->numSpectrums++] = spectrum;
  spectrum->spectrogram = spectrogram;
  return spectrum;
}

/* Destroy the spectrum. */
static void sonicDestroySpectrum(sonicSpectrum spectrum) {
  if (spectrum == NULL) {
    return;
  }
  if (spectrum->power != NULL) {
    free(spectrum->power);
  }
  free(spectrum);
}

/* Create an empty spectrogram. */
sonicSpectrogram sonicCreateSpectrogram(int sampleRate) {
  sonicSpectrogram spectrogram =
      (sonicSpectrogram)calloc(1, sizeof(struct sonicSpectrogramStruct));
  if (spectrogram == NULL) {
    return NULL;
  }
  spectrogram->allocatedSpectrums = 32;
  spectrogram->spectrums = (sonicSpectrum*)calloc(
      spectrogram->allocatedSpectrums, sizeof(sonicSpectrum));
  if (spectrogram->spectrums == NULL) {
    sonicDestroySpectrogram(spectrogram);
    return NULL;
  }
  spectrogram->sampleRate = sampleRate;
  spectrogram->minPower = DBL_MAX;
  spectrogram->maxPower = DBL_MIN;
  return spectrogram;
}

/* Destroy the spectrotram. */
void sonicDestroySpectrogram(sonicSpectrogram spectrogram) {
  if (spectrogram != NULL) {
    if (spectrogram->spectrums != NULL) {
      int i;
      for (i = 0; i < spectrogram->numSpectrums; i++) {
        sonicSpectrum spectrum = spectrogram->spectrums[i];
        sonicDestroySpectrum(spectrum);
      }
      free(spectrogram->spectrums);
    }
    free(spectrogram);
  }
}

/* Create a new bitmap.  This takes ownership of data. */
sonicBitmap sonicCreateBitmap(unsigned char* data, int numRows, int numCols) {
  sonicBitmap bitmap = (sonicBitmap)calloc(1, sizeof(struct sonicBitmapStruct));
  if (bitmap == NULL) {
    return NULL;
  }
  bitmap->data = data;
  bitmap->numRows = numRows;
  bitmap->numCols = numCols;
  return bitmap;
}

/* Destroy the bitmap. */
void sonicDestroyBitmap(sonicBitmap bitmap) {
  if (bitmap == NULL) {
    return;
  }
  if (bitmap->data != NULL) {
    free(bitmap->data);
  }
  free(bitmap);
}

/* Overlap-add the two pitch periods using a Hann window.  Caller must free the
 * result. */
static void computeOverlapAdd(short* samples, int period, int numChannels,
                              double* ola_samples) {
  int i;
  for (i = 0; i < period; i++) {
    double weight = (1.0 - cos(M_PI * i / period)) / 2.0;
    short sample1, sample2;
    if (numChannels == 1) {
      sample1 = samples[i];
      sample2 = samples[i + period];
    } else {
      /* Average the samples */
      int total1 = 0;
      int total2 = 0;
      int j;
      for (j = 0; j < numChannels; j++) {
        total1 += samples[i * numChannels + j];
        total2 += samples[(i + period) * numChannels + j];
      }
      sample1 = (total1 + (numChannels >> 1)) / numChannels;
      sample2 = (total2 + (numChannels >> 1)) / numChannels;
    }
    ola_samples[i] = weight * sample1 + (1.0 - weight) * sample2;
  }
}

#ifdef  KISS_FFT
/* Compute the amplitude of the kiss_complex number. */
static double magnitude(kiss_fft_cpx c) {
  return sqrt(c.r * c.r + c.i * c.i);
}
#else
/* Compute the amplitude of the fftw_complex number. */
static double magnitude(fftw_complex c) {
  return sqrt(c[0] * c[0] + c[1] * c[1]);
}
#endif

/* Add two pitch periods worth of samples to the spectrogram.  There must be
   2*period samples.  Time should advance one pitch period for each call to
   this function. */
void sonicAddPitchPeriodToSpectrogram(sonicSpectrogram spectrogram,
                                      short* samples, int numSamples,
                                      int numChannels) {
  int i;
  sonicSpectrum spectrum = sonicCreateSpectrum(spectrogram);
  spectrum->startingSample = spectrogram->totalSamples;
  spectrogram->totalSamples += numSamples;
  /* TODO: convert to fixed-point */
  double* in = calloc(numSamples, sizeof(double));
  int numFreqs = numSamples / 2 + 1;
  spectrum->numFreqs = numFreqs;
  spectrum->numSamples = numSamples;
  spectrum->power = (double*)calloc(spectrum->numFreqs, sizeof(double));
  computeOverlapAdd(samples, numSamples, numChannels, in);
#ifdef  KISS_FFT
  kiss_fft_cpx* cin = calloc(numFreqs, sizeof(kiss_fft_cpx));
  for (i=0; i<numFreqs; i++) {
    cin[i].r = in[i];
  }
  kiss_fft_cpx* out = calloc(numFreqs, sizeof(kiss_fft_cpx));
  kiss_fft_cfg kiss_plan = kiss_fft_alloc(numFreqs, 0, NULL, NULL);
  kiss_fft(kiss_plan, cin, out);
  free(cin);
#else
  fftw_complex* out = calloc(numFreqs, sizeof(fftw_complex));
  fftw_plan p = fftw_plan_dft_r2c_1d(numSamples, in, out, FFTW_ESTIMATE);
  fftw_execute(p);
  fftw_destroy_plan(p);
#endif  /* FFTW */
  /* Set the DC power to 0. */
  spectrum->power[0] = 0.0;
  for (i = 1; i < numFreqs; ++i) {
    double power = magnitude(out[i]) / numSamples;
    spectrum->power[i] = power;
    if (power > spectrogram->maxPower) {
      spectrogram->maxPower = power;
    }
    if (power < spectrogram->minPower) {
      spectrogram->minPower = power;
    }
  }
  free(in);
  free(out);
}

/* Linearly interpolate the power at a given position in the spectrogram. */
static double interpolateSpectrum(sonicSpectrum spectrum, int row,
                                  int numRows) {
  /* Flip the row so that we show lowest frequency on the bottom. */
  row = numRows - row - 1;
  /* We want the max row to be 1/2 the Niquist frequency, or 4 samples worth. */
  double spectrumFreqSpacing =
      (double)spectrum->spectrogram->sampleRate / spectrum->numSamples;
  double rowFreqSpacing = SONIC_MAX_SPECTRUM_FREQ / (numRows - 1);
  double targetFreq = row * rowFreqSpacing;
  int bottomIndex = targetFreq / spectrumFreqSpacing;
  double bottomPower = spectrum->power[bottomIndex];
  double topPower = spectrum->power[bottomIndex + 1];
  double position =
      (targetFreq - bottomIndex * spectrumFreqSpacing) / spectrumFreqSpacing;
  return (1.0 - position) * bottomPower + position * topPower;
}

/* Linearly interpolate the power at a given position in the spectrogram. */
static double interpolateSpectrogram(sonicSpectrum leftSpectrum,
                                     sonicSpectrum rightSpectrum, int row,
                                     int numRows, int colTime) {
  double leftPower = interpolateSpectrum(leftSpectrum, row, numRows);
  double rightPower = interpolateSpectrum(rightSpectrum, row, numRows);
  if (rightSpectrum->startingSample !=
      leftSpectrum->startingSample + leftSpectrum->numSamples) {
    fprintf(stderr, "Invalid sample spacing\n");
    exit(1);
  }
  int remainder = colTime - leftSpectrum->startingSample;
  double position = (double)remainder / leftSpectrum->numSamples;
  return (1.0 - position) * leftPower + position * rightPower;
}

/* Add one column of data to the output bitmap data. */
static void addBitmapCol(unsigned char* data, int col, int numCols, int numRows,
                         sonicSpectrogram spectrogram, sonicSpectrum spectrum,
                         sonicSpectrum nextSpectrum, int colTime) {
  double minPower = spectrogram->minPower;
  double maxPower = spectrogram->maxPower;
  int row;
  for (row = 0; row < numRows; row++) {
    double power =
        interpolateSpectrogram(spectrum, nextSpectrum, row, numRows, colTime);
    if (power < minPower && power > maxPower) {
      fprintf(stderr, "Power outside min/max range\n");
      exit(1);
    }
    double range = maxPower - minPower;
    /* Use log scale such that log(min) = 0, and log(max) = 255. */
    int value =
        256.0 * sqrt(sqrt(log((M_E - 1.0) * (power - minPower) / range + 1.0)));
    /* int value = (unsigned char)(((power - minPower)/range)*256); */
    if (value >= 256) {
      value = 255;
    }
    data[row * numCols + col] = 255 - value;
  }
}

/* Convert the spectrogram to a bitmap.  The returned array must be freed by
   the caller.  It will be rows*cols in size.  The pixels are written top row
   to bottom, and each row is left to right.  So, the pixel in the 5th row from
   the top, in the 18th column from the left in a 32x128 array would be in
   position 128*4 + 18.  NULL is returned if calloc fails to allocate the
   memory. */
sonicBitmap sonicConvertSpectrogramToBitmap(sonicSpectrogram spectrogram,
                                            int numRows, int numCols) {
  /* dumpSpectrogram(spectrogram); */
  unsigned char* data =
      (unsigned char*)calloc(numRows * numCols, sizeof(unsigned char));
  if (data == NULL) {
    return NULL;
  }
  int xSpectrum = 0; /* xSpectrum is index of nextSpectrum */
  sonicSpectrum spectrum = spectrogram->spectrums[xSpectrum++];
  sonicSpectrum nextSpectrum = spectrogram->spectrums[xSpectrum];
  int totalTime =
      spectrogram->spectrums[spectrogram->numSpectrums - 1]->startingSample;
  int col;
  for (col = 0; col < numCols; col++) {
    /* There must be at least two spectrums for this to work right. */
    double colTime = (double)totalTime * col / (numCols - 1);
    while (xSpectrum + 1 < spectrogram->numSpectrums &&
           colTime >= nextSpectrum->startingSample) {
      spectrum = nextSpectrum;
      nextSpectrum = spectrogram->spectrums[++xSpectrum];
    }
    addBitmapCol(data, col, numCols, numRows, spectrogram, spectrum,
                 nextSpectrum, colTime);
  }
  return sonicCreateBitmap(data, numRows, numCols);
}

/* Write a PGM image file, which is 8-bit grayscale and looks like:
    P2
    # CREATOR: libsonic
    640 400
    255
    ...
*/
int sonicWritePGM(sonicBitmap bitmap, char* fileName) {
  printf("Writing PGM to %s\n", fileName);
  FILE* file = fopen(fileName, "w");
  if (file == NULL) {
    return 0;
  }
  if (fprintf(file, "P2\n# CREATOR: libsonic\n%d %d\n255\n", bitmap->numCols,
              bitmap->numRows) < 0) {
    fclose(file);
    return 0;
  }
  int i;
  int numPixels = bitmap->numRows * bitmap->numCols;
  unsigned char* p = bitmap->data;
  for (i = 0; i < numPixels; i++) {
    if (fprintf(file, "%d\n", 255 - *p++) < 0) {
      fclose(file);
      return 0;
    }
  }
  fclose(file);
  return 1;
}