aboutsummaryrefslogtreecommitdiff
path: root/examples/armv4t_multicore/emu.rs
blob: 1eed74c9da9177287f737d34b1748f7b165b4d5f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
//! ------------------------------------------------------------------------ !//
//! ------------------------------ DISCLAIMER ------------------------------ !//
//! ------------------------------------------------------------------------ !//
//!
//! This code is absolutely awful, and completely slapped together for the sake
//! of example. The watchpoint implementation is particularly awful.
//!
//! While it technically "gets the job done" and provides a simple multicore
//! system that can be debugged, it would really merit a re-write, since it's
//! not a good example of "proper Rust coding practices"

use std::collections::HashMap;

use armv4t_emu::{reg, Cpu, ExampleMem, Memory, Mode};

use crate::mem_sniffer::{AccessKind, MemSniffer};
use crate::DynResult;

const HLE_RETURN_ADDR: u32 = 0x12345678;

#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum CpuId {
    Cpu,
    Cop,
}

#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum Event {
    DoneStep,
    Halted,
    Break,
    WatchWrite(u32),
    WatchRead(u32),
}

pub enum ExecMode {
    Step,
    Continue,
}

/// incredibly barebones armv4t-based emulator
pub struct Emu {
    pub(crate) cpu: Cpu,
    pub(crate) cop: Cpu,
    pub(crate) mem: ExampleMem,

    pub(crate) exec_mode: HashMap<CpuId, ExecMode>,

    pub(crate) watchpoints: Vec<u32>,
    /// (read, write)
    pub(crate) watchpoint_kind: HashMap<u32, (bool, bool)>,
    pub(crate) breakpoints: Vec<u32>,

    // GDB seems to get gets very confused if two threads are executing the exact same code at the
    // exact same time. Maybe this is a bug with `gdbstub`?
    stall_cop_cycles: usize,
}

impl Emu {
    pub fn new(program_elf: &[u8]) -> DynResult<Emu> {
        // set up emulated system
        let mut cpu = Cpu::new();
        let mut mem = ExampleMem::new();

        // load ELF
        let elf_header = goblin::elf::Elf::parse(program_elf)?;

        // copy all in-memory sections from the ELF file into system RAM
        let sections = elf_header
            .section_headers
            .iter()
            .filter(|h| h.is_alloc() && h.sh_type != goblin::elf::section_header::SHT_NOBITS);

        for h in sections {
            eprintln!(
                "loading section {:?} into memory from [{:#010x?}..{:#010x?}]",
                elf_header.shdr_strtab.get_at(h.sh_name).unwrap(),
                h.sh_addr,
                h.sh_addr + h.sh_size,
            );

            for (i, b) in program_elf[h.file_range().unwrap()].iter().enumerate() {
                mem.w8(h.sh_addr as u32 + i as u32, *b);
            }
        }

        // setup execution state
        eprintln!("Setting PC to {:#010x?}", elf_header.entry);
        cpu.reg_set(Mode::User, reg::SP, 0x10000000);
        cpu.reg_set(Mode::User, reg::LR, HLE_RETURN_ADDR);
        cpu.reg_set(Mode::User, reg::PC, elf_header.entry as u32);
        cpu.reg_set(Mode::User, reg::CPSR, 0x10); // user mode
        let cop = cpu;

        Ok(Emu {
            cpu,
            cop,
            mem,

            exec_mode: HashMap::new(),

            watchpoints: Vec::new(),
            watchpoint_kind: HashMap::new(),
            breakpoints: Vec::new(),

            stall_cop_cycles: 24,
        })
    }

    pub fn step_core(&mut self, id: CpuId) -> Option<Event> {
        let cpu = match id {
            CpuId::Cop if self.stall_cop_cycles != 0 => {
                self.stall_cop_cycles -= 1;
                return None;
            }
            CpuId::Cop => &mut self.cop,
            CpuId::Cpu => &mut self.cpu,
        };

        // set up magic memory location
        self.mem.w8(
            0xffff_4200,
            match id {
                CpuId::Cpu => 0xaa,
                CpuId::Cop => 0x55,
            },
        );

        let mut hit_watchpoint = None;
        let mut sniffer = MemSniffer::new(&mut self.mem, &self.watchpoints, |access| {
            hit_watchpoint = Some(access)
        });

        cpu.step(&mut sniffer);
        let pc = cpu.reg_get(Mode::User, reg::PC);

        if pc == HLE_RETURN_ADDR {
            match id {
                CpuId::Cpu => return Some(Event::Halted),
                CpuId::Cop => return Some(Event::Halted),
            }
        }

        if let Some(access) = hit_watchpoint {
            // NOTE: this isn't a particularly elegant way to do watchpoints! This works
            // fine for some example code, but don't use this as inspiration in your own
            // emulator!
            match access.kind {
                AccessKind::Read => {
                    if *self
                        .watchpoint_kind
                        .get(&access.addr)
                        .map(|(r, _w)| r)
                        .unwrap_or(&false)
                    {
                        let fixup = if cpu.thumb_mode() { 2 } else { 4 };
                        cpu.reg_set(Mode::User, reg::PC, pc - fixup);
                        return Some(Event::WatchRead(access.addr));
                    }
                }
                AccessKind::Write => {
                    if *self
                        .watchpoint_kind
                        .get(&access.addr)
                        .map(|(_r, w)| w)
                        .unwrap_or(&false)
                    {
                        let fixup = if cpu.thumb_mode() { 2 } else { 4 };
                        cpu.reg_set(Mode::User, reg::PC, pc - fixup);
                        return Some(Event::WatchWrite(access.addr));
                    }
                }
            }
        }

        if self.breakpoints.contains(&pc) {
            return Some(Event::Break);
        }

        None
    }

    pub fn step(&mut self) -> Option<(Event, CpuId)> {
        let mut evt = None;

        for id in [CpuId::Cpu, CpuId::Cop].iter().copied() {
            if let Some(event) = self.step_core(id) {
                if evt.is_none() {
                    evt = Some((event, id));
                }
            }
        }

        evt
    }

    pub fn run(&mut self, mut poll_incoming_data: impl FnMut() -> bool) -> RunEvent {
        // the underlying armv4t_multicore emulator runs both cores in lock step, so
        // when GDB requests a specific core to single-step, all we need to do is jot
        // down that we want to single-step the system, as there is no way to
        // single-step a single core while the other runs.
        //
        // In more complex emulators / implementations, this simplification is _not_
        // valid, and you should track which specific TID the GDB client requested to be
        // single-stepped, and run them appropriately.

        let should_single_step = matches!(
            self.exec_mode
                .get(&CpuId::Cpu)
                .or_else(|| self.exec_mode.get(&CpuId::Cop)),
            Some(&ExecMode::Step)
        );

        match should_single_step {
            true => match self.step() {
                Some((event, id)) => RunEvent::Event(event, id),
                None => RunEvent::Event(Event::DoneStep, CpuId::Cpu),
            },
            false => {
                let mut cycles = 0;
                loop {
                    if cycles % 1024 == 0 {
                        // poll for incoming data
                        if poll_incoming_data() {
                            break RunEvent::IncomingData;
                        }
                    }
                    cycles += 1;

                    if let Some((event, id)) = self.step() {
                        break RunEvent::Event(event, id);
                    };
                }
            }
        }
    }
}

pub enum RunEvent {
    Event(Event, CpuId),
    IncomingData,
}