aboutsummaryrefslogtreecommitdiff
path: root/cast/streaming/receiver.cc
blob: 0d3358b4a4d30b6f8042d25d699d0422b1cc2281 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
// Copyright 2019 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "cast/streaming/receiver.h"

#include <algorithm>
#include <utility>

#include "absl/types/span.h"
#include "cast/streaming/constants.h"
#include "cast/streaming/receiver_packet_router.h"
#include "cast/streaming/session_config.h"
#include "util/chrono_helpers.h"
#include "util/osp_logging.h"
#include "util/std_util.h"

namespace openscreen {
namespace cast {

// Conveniences for ensuring logging output includes the SSRC of the Receiver,
// to help distinguish one out of multiple instances in a Cast Streaming
// session.
//
// TODO(miu): Replace RECEIVER_VLOG's with trace event logging once the tracing
// infrastructure is ready.
#define RECEIVER_LOG(level) OSP_LOG_##level << "[SSRC:" << ssrc() << "] "
#define RECEIVER_VLOG OSP_VLOG << "[SSRC:" << ssrc() << "] "

Receiver::Receiver(Environment* environment,
                   ReceiverPacketRouter* packet_router,
                   SessionConfig config)
    : now_(environment->now_function()),
      packet_router_(packet_router),
      config_(config),
      rtcp_session_(config.sender_ssrc, config.receiver_ssrc, now_()),
      rtcp_parser_(&rtcp_session_),
      rtcp_builder_(&rtcp_session_),
      stats_tracker_(config.rtp_timebase),
      rtp_parser_(config.sender_ssrc),
      rtp_timebase_(config.rtp_timebase),
      crypto_(config.aes_secret_key, config.aes_iv_mask),
      is_pli_enabled_(config.is_pli_enabled),
      rtcp_buffer_capacity_(environment->GetMaxPacketSize()),
      rtcp_buffer_(new uint8_t[rtcp_buffer_capacity_]),
      rtcp_alarm_(environment->now_function(), environment->task_runner()),
      smoothed_clock_offset_(ClockDriftSmoother::kDefaultTimeConstant),
      consumption_alarm_(environment->now_function(),
                         environment->task_runner()) {
  OSP_DCHECK(packet_router_);
  OSP_DCHECK_EQ(checkpoint_frame(), FrameId::leader());
  OSP_CHECK_GT(rtcp_buffer_capacity_, 0);
  OSP_CHECK(rtcp_buffer_);

  rtcp_builder_.SetPlayoutDelay(config.target_playout_delay);
  playout_delay_changes_.emplace_back(FrameId::leader(),
                                      config.target_playout_delay);

  packet_router_->OnReceiverCreated(rtcp_session_.sender_ssrc(), this);
}

Receiver::~Receiver() {
  packet_router_->OnReceiverDestroyed(rtcp_session_.sender_ssrc());
}

void Receiver::SetConsumer(Consumer* consumer) {
  consumer_ = consumer;
  ScheduleFrameReadyCheck();
}

void Receiver::SetPlayerProcessingTime(Clock::duration needed_time) {
  player_processing_time_ = std::max(Clock::duration::zero(), needed_time);
}

void Receiver::RequestKeyFrame() {
  // If we don't have picture loss indication enabled, we should not request
  // any key frames.
  OSP_DCHECK(is_pli_enabled_) << "PLI is not enabled.";
  if (is_pli_enabled_ && !last_key_frame_received_.is_null() &&
      last_frame_consumed_ >= last_key_frame_received_ &&
      !rtcp_builder_.is_picture_loss_indicator_set()) {
    rtcp_builder_.SetPictureLossIndicator(true);
    SendRtcp();
  }
}

int Receiver::AdvanceToNextFrame() {
  const FrameId immediate_next_frame = last_frame_consumed_ + 1;

  // Scan the queue for the next frame that should be consumed. Typically, this
  // is the very next frame; but if it is incomplete and already late for
  // playout, consider skipping-ahead.
  for (FrameId f = immediate_next_frame; f <= latest_frame_expected_; ++f) {
    PendingFrame& entry = GetQueueEntry(f);
    if (entry.collector.is_complete()) {
      const EncryptedFrame& encrypted_frame =
          entry.collector.PeekAtAssembledFrame();
      if (f == immediate_next_frame) {  // Typical case.
        RECEIVER_VLOG << "AdvanceToNextFrame: Next in sequence (" << f << ')';
        return FrameCrypto::GetPlaintextSize(encrypted_frame);
      }
      if (encrypted_frame.dependency != EncodedFrame::DEPENDS_ON_ANOTHER) {
        // Found a frame after skipping past some frames. Drop the ones being
        // skipped, advancing |last_frame_consumed_| before returning.
        RECEIVER_VLOG << "AdvanceToNextFrame: Skipping-ahead → " << f;
        DropAllFramesBefore(f);
        return FrameCrypto::GetPlaintextSize(encrypted_frame);
      }
      // Conclusion: The frame in the current queue entry is complete, but
      // depends on a prior incomplete frame. Continue scanning...
    }

    // Do not consider skipping past this frame if its estimated capture time is
    // unknown. The implication here is that, if |estimated_capture_time| is
    // set, the Receiver also knows whether any target playout delay changes
    // were communicated from the Sender in the frame's first RTP packet.
    if (!entry.estimated_capture_time) {
      break;
    }

    // If this incomplete frame is not yet late for playout, simply wait for the
    // rest of its packets to come in. However, do schedule a check to
    // re-examine things at the time it would become a late frame, to possibly
    // skip-over it.
    const auto playout_time =
        *entry.estimated_capture_time + ResolveTargetPlayoutDelay(f);
    if (playout_time > (now_() + player_processing_time_)) {
      ScheduleFrameReadyCheck(playout_time);
      break;
    }
  }

  RECEIVER_VLOG << "AdvanceToNextFrame: No frames ready. Last consumed was "
                << last_frame_consumed_ << '.';
  return kNoFramesReady;
}

EncodedFrame Receiver::ConsumeNextFrame(absl::Span<uint8_t> buffer) {
  // Assumption: The required call to AdvanceToNextFrame() ensures that
  // |last_frame_consumed_| is set to one before the frame to be consumed here.
  const FrameId frame_id = last_frame_consumed_ + 1;
  OSP_CHECK_LE(frame_id, checkpoint_frame());

  // Decrypt the frame, populating the given output |frame|.
  PendingFrame& entry = GetQueueEntry(frame_id);
  OSP_DCHECK(entry.collector.is_complete());
  EncodedFrame frame;
  frame.data = buffer;
  crypto_.Decrypt(entry.collector.PeekAtAssembledFrame(), &frame);
  OSP_DCHECK(entry.estimated_capture_time);
  frame.reference_time =
      *entry.estimated_capture_time + ResolveTargetPlayoutDelay(frame_id);

  RECEIVER_VLOG << "ConsumeNextFrame → " << frame.frame_id << ": "
                << frame.data.size() << " payload bytes, RTP Timestamp "
                << frame.rtp_timestamp
                       .ToTimeSinceOrigin<microseconds>(rtp_timebase_)
                       .count()
                << " µs, to play-out "
                << to_microseconds(frame.reference_time - now_()).count()
                << " µs from now.";

  entry.Reset();
  last_frame_consumed_ = frame_id;

  // Ensure the Consumer is notified if there are already more frames ready for
  // consumption, and it hasn't explicitly called AdvanceToNextFrame() to check
  // for itself.
  ScheduleFrameReadyCheck();

  return frame;
}

void Receiver::OnReceivedRtpPacket(Clock::time_point arrival_time,
                                   std::vector<uint8_t> packet) {
  const absl::optional<RtpPacketParser::ParseResult> part =
      rtp_parser_.Parse(packet);
  if (!part) {
    RECEIVER_LOG(WARN) << "Parsing of " << packet.size()
                       << " bytes as an RTP packet failed.";
    return;
  }
  stats_tracker_.OnReceivedValidRtpPacket(part->sequence_number,
                                          part->rtp_timestamp, arrival_time);

  // Ignore packets for frames the Receiver is no longer interested in.
  if (part->frame_id <= checkpoint_frame()) {
    return;
  }

  // Extend the range of frames known to this Receiver, within the capacity of
  // this Receiver's queue. Prepare the FrameCollectors to receive any
  // newly-discovered frames.
  if (part->frame_id > latest_frame_expected_) {
    const FrameId max_allowed_frame_id =
        last_frame_consumed_ + kMaxUnackedFrames;
    if (part->frame_id > max_allowed_frame_id) {
      RECEIVER_VLOG << "Dropping RTP packet for " << part->frame_id
                    << ": Too many frames are already in-flight.";
      return;
    }
    do {
      ++latest_frame_expected_;
      GetQueueEntry(latest_frame_expected_)
          .collector.set_frame_id(latest_frame_expected_);
    } while (latest_frame_expected_ < part->frame_id);
    RECEIVER_VLOG << "Advanced latest frame expected to "
                  << latest_frame_expected_;
  }

  // Start-up edge case: Blatantly drop the first packet of all frames until the
  // Receiver has processed at least one Sender Report containing the necessary
  // clock-drift and lip-sync information (see OnReceivedRtcpPacket()). This is
  // an inescapable data dependency. Note that this special case should almost
  // never trigger, since a well-behaving Sender will send the first Sender
  // Report RTCP packet before any of the RTP packets.
  if (!last_sender_report_ && part->packet_id == FramePacketId{0}) {
    RECEIVER_LOG(WARN) << "Dropping packet 0 of frame " << part->frame_id
                       << " because it arrived before the first Sender Report.";
    // Note: The Sender will have to re-transmit this dropped packet after the
    // Sender Report to allow the Receiver to move forward.
    return;
  }

  PendingFrame& pending_frame = GetQueueEntry(part->frame_id);
  FrameCollector& collector = pending_frame.collector;
  if (collector.is_complete()) {
    // An extra, redundant |packet| was received. Do nothing since the frame was
    // already complete.
    return;
  }

  if (!collector.CollectRtpPacket(*part, &packet)) {
    return;  // Bad data in the parsed packet. Ignore it.
  }

  // The first packet in a frame contains timing information critical for
  // computing this frame's (and all future frames') playout time. Process that,
  // but only once.
  if (part->packet_id == FramePacketId{0} &&
      !pending_frame.estimated_capture_time) {
    // Estimate the original capture time of this frame (at the Sender), in
    // terms of the Receiver's clock: First, start with a reference time point
    // from the Sender's clock (the one from the last Sender Report). Then,
    // translate it into the equivalent reference time point in terms of the
    // Receiver's clock by applying the measured offset between the two clocks.
    // Finally, apply the RTP timestamp difference between the Sender Report and
    // this frame to determine what the original capture time of this frame was.
    pending_frame.estimated_capture_time =
        last_sender_report_->reference_time + smoothed_clock_offset_.Current() +
        (part->rtp_timestamp - last_sender_report_->rtp_timestamp)
            .ToDuration<Clock::duration>(rtp_timebase_);

    // If a target playout delay change was included in this packet, record it.
    if (part->new_playout_delay > milliseconds::zero()) {
      RECEIVER_VLOG << "Target playout delay changes to "
                    << part->new_playout_delay.count() << " ms, as of "
                    << part->frame_id;
      RecordNewTargetPlayoutDelay(part->frame_id, part->new_playout_delay);
    }

    // Now that the estimated capture time is known, other frames may have just
    // become ready, per the frame-skipping logic in AdvanceToNextFrame().
    ScheduleFrameReadyCheck();
  }

  if (!collector.is_complete()) {
    return;  // Wait for the rest of the packets to come in.
  }
  const EncryptedFrame& encrypted_frame = collector.PeekAtAssembledFrame();

  // Whenever a key frame has been received, the decoder has what it needs to
  // recover. In this case, clear the PLI condition.
  if (encrypted_frame.dependency == EncryptedFrame::KEY_FRAME) {
    rtcp_builder_.SetPictureLossIndicator(false);
    last_key_frame_received_ = part->frame_id;
  }

  // If this just-completed frame is the one right after the checkpoint frame,
  // advance the checkpoint forward.
  if (part->frame_id == (checkpoint_frame() + 1)) {
    AdvanceCheckpoint(part->frame_id);
  }

  // Since a frame has become complete, schedule a check to see whether this or
  // any other frames have become ready for consumption.
  ScheduleFrameReadyCheck();
}

void Receiver::OnReceivedRtcpPacket(Clock::time_point arrival_time,
                                    std::vector<uint8_t> packet) {
  absl::optional<SenderReportParser::SenderReportWithId> parsed_report =
      rtcp_parser_.Parse(packet);
  if (!parsed_report) {
    RECEIVER_LOG(WARN) << "Parsing of " << packet.size()
                       << " bytes as an RTCP packet failed.";
    return;
  }
  last_sender_report_ = std::move(parsed_report);
  last_sender_report_arrival_time_ = arrival_time;

  // Measure the offset between the Sender's clock and the Receiver's Clock.
  // This will be used to translate reference timestamps from the Sender into
  // timestamps that represent the exact same moment in time at the Receiver.
  //
  // Note: Due to design limitations in the Cast Streaming spec, the Receiver
  // has no way to compute how long it took the Sender Report to travel over the
  // network. The calculation here just ignores that, and so the
  // |measured_offset| below will be larger than the true value by that amount.
  // This will have the effect of a later-than-configured playout delay.
  const Clock::duration measured_offset =
      arrival_time - last_sender_report_->reference_time;
  smoothed_clock_offset_.Update(arrival_time, measured_offset);
  RECEIVER_VLOG
      << "Received Sender Report: Local clock is ahead of Sender's by "
      << to_microseconds(smoothed_clock_offset_.Current()).count()
      << " µs (minus one-way network transit time).";

  RtcpReportBlock report;
  report.ssrc = rtcp_session_.sender_ssrc();
  stats_tracker_.PopulateNextReport(&report);
  report.last_status_report_id = last_sender_report_->report_id;
  report.SetDelaySinceLastReport(now_() - last_sender_report_arrival_time_);
  rtcp_builder_.IncludeReceiverReportInNextPacket(report);

  SendRtcp();
}

void Receiver::SendRtcp() {
  // Collect ACK/NACK feedback for all active frames in the queue.
  std::vector<PacketNack> packet_nacks;
  std::vector<FrameId> frame_acks;
  for (FrameId f = checkpoint_frame() + 1; f <= latest_frame_expected_; ++f) {
    const FrameCollector& collector = GetQueueEntry(f).collector;
    if (collector.is_complete()) {
      frame_acks.push_back(f);
    } else {
      collector.GetMissingPackets(&packet_nacks);
    }
  }

  // Build and send a compound RTCP packet.
  const bool no_nacks = packet_nacks.empty();
  rtcp_builder_.IncludeFeedbackInNextPacket(std::move(packet_nacks),
                                            std::move(frame_acks));
  last_rtcp_send_time_ = now_();
  packet_router_->SendRtcpPacket(rtcp_builder_.BuildPacket(
      last_rtcp_send_time_,
      absl::Span<uint8_t>(rtcp_buffer_.get(), rtcp_buffer_capacity_)));
  RECEIVER_VLOG << "Sent RTCP packet.";

  // Schedule the automatic sending of another RTCP packet, if this method is
  // not called within some bounded amount of time. While incomplete frames
  // exist in the queue, send RTCP packets (with ACK/NACK feedback) frequently.
  // When there are no incomplete frames, use a longer "keepalive" interval.
  const Clock::duration interval =
      (no_nacks ? kRtcpReportInterval : kNackFeedbackInterval);
  rtcp_alarm_.Schedule([this] { SendRtcp(); }, last_rtcp_send_time_ + interval);
}

const Receiver::PendingFrame& Receiver::GetQueueEntry(FrameId frame_id) const {
  return const_cast<Receiver*>(this)->GetQueueEntry(frame_id);
}

Receiver::PendingFrame& Receiver::GetQueueEntry(FrameId frame_id) {
  return pending_frames_[(frame_id - FrameId::first()) %
                         pending_frames_.size()];
}

void Receiver::RecordNewTargetPlayoutDelay(FrameId as_of_frame,
                                           milliseconds delay) {
  OSP_DCHECK_GT(as_of_frame, checkpoint_frame());

  // Prune-out entries from |playout_delay_changes_| that are no longer needed.
  // At least one entry must always be kept (i.e., there must always be a
  // "current" setting).
  const FrameId next_frame = last_frame_consumed_ + 1;
  const auto keep_one_before_it = std::find_if(
      std::next(playout_delay_changes_.begin()), playout_delay_changes_.end(),
      [&](const auto& entry) { return entry.first > next_frame; });
  playout_delay_changes_.erase(playout_delay_changes_.begin(),
                               std::prev(keep_one_before_it));

  // Insert the delay change entry, maintaining the ascending ordering of the
  // vector.
  const auto insert_it = std::find_if(
      playout_delay_changes_.begin(), playout_delay_changes_.end(),
      [&](const auto& entry) { return entry.first > as_of_frame; });
  playout_delay_changes_.emplace(insert_it, as_of_frame, delay);

  OSP_DCHECK(AreElementsSortedAndUnique(playout_delay_changes_));
}

milliseconds Receiver::ResolveTargetPlayoutDelay(FrameId frame_id) const {
  OSP_DCHECK_GT(frame_id, last_frame_consumed_);

#if OSP_DCHECK_IS_ON()
  // Extra precaution: Ensure all possible playout delay changes are known. In
  // other words, every unconsumed frame in the queue, up to (and including)
  // |frame_id|, must have an assigned estimated_capture_time.
  for (FrameId f = last_frame_consumed_ + 1; f <= frame_id; ++f) {
    OSP_DCHECK(GetQueueEntry(f).estimated_capture_time)
        << " don't know whether there was a playout delay change for frame "
        << f;
  }
#endif

  const auto it = std::find_if(
      playout_delay_changes_.crbegin(), playout_delay_changes_.crend(),
      [&](const auto& entry) { return entry.first <= frame_id; });
  OSP_DCHECK(it != playout_delay_changes_.crend());
  return it->second;
}

void Receiver::AdvanceCheckpoint(FrameId new_checkpoint) {
  OSP_DCHECK_GT(new_checkpoint, checkpoint_frame());
  OSP_DCHECK_LE(new_checkpoint, latest_frame_expected_);

  while (new_checkpoint < latest_frame_expected_) {
    const FrameId next = new_checkpoint + 1;
    if (!GetQueueEntry(next).collector.is_complete()) {
      break;
    }
    new_checkpoint = next;
  }

  RECEIVER_VLOG << "Advancing checkpoint to " << new_checkpoint;
  set_checkpoint_frame(new_checkpoint);
  rtcp_builder_.SetPlayoutDelay(ResolveTargetPlayoutDelay(new_checkpoint));
  SendRtcp();
}

void Receiver::DropAllFramesBefore(FrameId first_kept_frame) {
  // The following DCHECKs are verifying that this method is only being called
  // because one or more incomplete frames are being skipped-over.
  const FrameId first_to_drop = last_frame_consumed_ + 1;
  OSP_DCHECK_GT(first_kept_frame, first_to_drop);
  OSP_DCHECK_GT(first_kept_frame, checkpoint_frame());
  OSP_DCHECK_LE(first_kept_frame, latest_frame_expected_);

  // Reset each of the frames being dropped, pretending that they were consumed.
  for (FrameId f = first_to_drop; f < first_kept_frame; ++f) {
    PendingFrame& entry = GetQueueEntry(f);
    // Pedantic sanity-check: Ensure the "target playout delay change" data
    // dependency was satisfied. See comments in AdvanceToNextFrame().
    OSP_DCHECK(entry.estimated_capture_time);
    entry.Reset();
  }
  last_frame_consumed_ = first_kept_frame - 1;

  RECEIVER_LOG(INFO) << "Artificially advancing checkpoint after skipping.";
  AdvanceCheckpoint(first_kept_frame);
}

void Receiver::ScheduleFrameReadyCheck(Clock::time_point when) {
  consumption_alarm_.Schedule(
      [this] {
        if (consumer_) {
          const int next_frame_buffer_size = AdvanceToNextFrame();
          if (next_frame_buffer_size != kNoFramesReady) {
            consumer_->OnFramesReady(next_frame_buffer_size);
          }
        }
      },
      when);
}

Receiver::Consumer::~Consumer() = default;

Receiver::PendingFrame::PendingFrame() = default;
Receiver::PendingFrame::~PendingFrame() = default;

void Receiver::PendingFrame::Reset() {
  collector.Reset();
  estimated_capture_time = absl::nullopt;
}

// static
constexpr milliseconds Receiver::kDefaultPlayerProcessingTime;
constexpr int Receiver::kNoFramesReady;
constexpr milliseconds Receiver::kNackFeedbackInterval;

}  // namespace cast
}  // namespace openscreen