aboutsummaryrefslogtreecommitdiff
path: root/cast/standalone_sender/streaming_vp8_encoder.cc
blob: 8b8e18dc5f6043aa21b90350379dafc70086f85d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
// Copyright 2020 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "cast/standalone_sender/streaming_vp8_encoder.h"

#include <stdint.h>
#include <string.h>
#include <vpx/vp8cx.h>

#include <chrono>
#include <cmath>
#include <utility>

#include "cast/streaming/encoded_frame.h"
#include "cast/streaming/environment.h"
#include "cast/streaming/sender.h"
#include "util/chrono_helpers.h"
#include "util/osp_logging.h"
#include "util/saturate_cast.h"

namespace openscreen {
namespace cast {

// TODO(https://crbug.com/openscreen/123): Fix the declarations and then remove
// this:
using openscreen::operator<<;  // For std::chrono::duration pretty-printing.

namespace {

constexpr int kBytesPerKilobyte = 1024;

// Lower and upper bounds to the frame duration passed to vpx_codec_encode(), to
// ensure sanity. Note that the upper-bound is especially important in cases
// where the video paused for some lengthy amount of time.
constexpr Clock::duration kMinFrameDuration = milliseconds(1);
constexpr Clock::duration kMaxFrameDuration = milliseconds(125);

// Highest/lowest allowed encoding speed set to the encoder. The valid range is
// [4, 16], but experiments show that with speed higher than 12, the saving of
// the encoding time is not worth the dropping of the quality. And, with speed
// lower than 6, the increasing amount of quality is not worth the increasing
// amount of encoding time.
constexpr int kHighestEncodingSpeed = 12;
constexpr int kLowestEncodingSpeed = 6;

// This is the equivalent change in encoding speed per one quantizer step.
constexpr double kEquivalentEncodingSpeedStepPerQuantizerStep = 1 / 20.0;

}  // namespace

StreamingVp8Encoder::StreamingVp8Encoder(const Parameters& params,
                                         TaskRunner* task_runner,
                                         Sender* sender)
    : params_(params),
      main_task_runner_(task_runner),
      sender_(sender),
      ideal_speed_setting_(kHighestEncodingSpeed),
      encode_thread_([this] { ProcessWorkUnitsUntilTimeToQuit(); }) {
  OSP_DCHECK_LE(1, params_.num_encode_threads);
  OSP_DCHECK_LE(kMinQuantizer, params_.min_quantizer);
  OSP_DCHECK_LE(params_.min_quantizer, params_.max_cpu_saver_quantizer);
  OSP_DCHECK_LE(params_.max_cpu_saver_quantizer, params_.max_quantizer);
  OSP_DCHECK_LE(params_.max_quantizer, kMaxQuantizer);
  OSP_DCHECK_LT(0.0, params_.max_time_utilization);
  OSP_DCHECK_LE(params_.max_time_utilization, 1.0);
  OSP_DCHECK(main_task_runner_);
  OSP_DCHECK(sender_);

  const auto result =
      vpx_codec_enc_config_default(vpx_codec_vp8_cx(), &config_, 0);
  OSP_CHECK_EQ(result, VPX_CODEC_OK);

  // This is set to non-zero in ConfigureForNewFrameSize() later, to flag that
  // the encoder has been initialized.
  config_.g_threads = 0;

  // Set the timebase to match that of openscreen::Clock::duration.
  config_.g_timebase.num = Clock::duration::period::num;
  config_.g_timebase.den = Clock::duration::period::den;

  // |g_pass| and |g_lag_in_frames| must be "one pass" and zero, respectively,
  // because of the way the libvpx API is used.
  config_.g_pass = VPX_RC_ONE_PASS;
  config_.g_lag_in_frames = 0;

  // Rate control settings.
  config_.rc_dropframe_thresh = 0;  // The encoder may not drop any frames.
  config_.rc_resize_allowed = 0;
  config_.rc_end_usage = VPX_CBR;
  config_.rc_target_bitrate = target_bitrate_ / kBytesPerKilobyte;
  config_.rc_min_quantizer = params_.min_quantizer;
  config_.rc_max_quantizer = params_.max_quantizer;

  // The reasons for the values chosen here (rc_*shoot_pct and rc_buf_*_sz) are
  // lost in history. They were brought-over from the legacy Chrome Cast
  // Streaming Sender implemenation.
  config_.rc_undershoot_pct = 100;
  config_.rc_overshoot_pct = 15;
  config_.rc_buf_initial_sz = 500;
  config_.rc_buf_optimal_sz = 600;
  config_.rc_buf_sz = 1000;

  config_.kf_mode = VPX_KF_DISABLED;
}

StreamingVp8Encoder::~StreamingVp8Encoder() {
  {
    std::unique_lock<std::mutex> lock(mutex_);
    target_bitrate_ = 0;
    cv_.notify_one();
  }
  encode_thread_.join();
}

int StreamingVp8Encoder::GetTargetBitrate() const {
  // Note: No need to lock the |mutex_| since this method should be called on
  // the same thread as SetTargetBitrate().
  return target_bitrate_;
}

void StreamingVp8Encoder::SetTargetBitrate(int new_bitrate) {
  // Ensure that, when bps is converted to kbps downstream, that the encoder
  // bitrate will not be zero.
  new_bitrate = std::max(new_bitrate, kBytesPerKilobyte);

  std::unique_lock<std::mutex> lock(mutex_);
  // Only assign the new target bitrate if |target_bitrate_| has not yet been
  // used to signal the |encode_thread_| to end.
  if (target_bitrate_ > 0) {
    target_bitrate_ = new_bitrate;
  }
}

void StreamingVp8Encoder::EncodeAndSend(
    const VideoFrame& frame,
    Clock::time_point reference_time,
    std::function<void(Stats)> stats_callback) {
  WorkUnit work_unit;

  // TODO(miu): The |VideoFrame| struct should provide the media timestamp,
  // instead of this code inferring it from the reference timestamps, since: 1)
  // the video capturer's clock may tick at a different rate than the system
  // clock; and 2) to reduce jitter.
  if (start_time_ == Clock::time_point::min()) {
    start_time_ = reference_time;
    work_unit.rtp_timestamp = RtpTimeTicks();
  } else {
    work_unit.rtp_timestamp = RtpTimeTicks::FromTimeSinceOrigin(
        reference_time - start_time_, sender_->rtp_timebase());
    if (work_unit.rtp_timestamp <= last_enqueued_rtp_timestamp_) {
      OSP_LOG_WARN << "VIDEO[" << sender_->ssrc()
                   << "] Dropping: RTP timestamp is not monotonically "
                      "increasing from last frame.";
      return;
    }
  }
  if (sender_->GetInFlightMediaDuration(work_unit.rtp_timestamp) >
      sender_->GetMaxInFlightMediaDuration()) {
    OSP_LOG_WARN << "VIDEO[" << sender_->ssrc()
                 << "] Dropping: In-flight media duration would be too high.";
    return;
  }

  Clock::duration frame_duration = frame.duration;
  if (frame_duration <= Clock::duration::zero()) {
    // The caller did not provide the frame duration in |frame|.
    if (reference_time == start_time_) {
      // Use the max for the first frame so libvpx will spend extra effort on
      // its quality.
      frame_duration = kMaxFrameDuration;
    } else {
      // Use the actual amount of time between the current and previous frame as
      // a prediction for the next frame's duration.
      frame_duration =
          (work_unit.rtp_timestamp - last_enqueued_rtp_timestamp_)
              .ToDuration<Clock::duration>(sender_->rtp_timebase());
    }
  }
  work_unit.duration =
      std::max(std::min(frame_duration, kMaxFrameDuration), kMinFrameDuration);

  last_enqueued_rtp_timestamp_ = work_unit.rtp_timestamp;

  work_unit.image = CloneAsVpxImage(frame);
  work_unit.reference_time = reference_time;
  work_unit.stats_callback = std::move(stats_callback);
  const bool force_key_frame = sender_->NeedsKeyFrame();
  {
    std::unique_lock<std::mutex> lock(mutex_);
    needs_key_frame_ |= force_key_frame;
    encode_queue_.push(std::move(work_unit));
    cv_.notify_one();
  }
}

void StreamingVp8Encoder::DestroyEncoder() {
  OSP_DCHECK_EQ(std::this_thread::get_id(), encode_thread_.get_id());

  if (is_encoder_initialized()) {
    vpx_codec_destroy(&encoder_);
    // Flag that the encoder is not initialized. See header comments for
    // is_encoder_initialized().
    config_.g_threads = 0;
  }
}

void StreamingVp8Encoder::ProcessWorkUnitsUntilTimeToQuit() {
  OSP_DCHECK_EQ(std::this_thread::get_id(), encode_thread_.get_id());

  for (;;) {
    WorkUnitWithResults work_unit{};
    bool force_key_frame;
    int target_bitrate;
    {
      std::unique_lock<std::mutex> lock(mutex_);
      if (target_bitrate_ <= 0) {
        break;  // Time to end this thread.
      }
      if (encode_queue_.empty()) {
        cv_.wait(lock);
        if (encode_queue_.empty()) {
          continue;
        }
      }
      static_cast<WorkUnit&>(work_unit) = std::move(encode_queue_.front());
      encode_queue_.pop();
      force_key_frame = needs_key_frame_;
      needs_key_frame_ = false;
      target_bitrate = target_bitrate_;
    }

    // Clock::now() is being called directly, instead of using a
    // dependency-injected "now function," since actual wall time is being
    // measured.
    const Clock::time_point encode_start_time = Clock::now();
    PrepareEncoder(work_unit.image->d_w, work_unit.image->d_h, target_bitrate);
    EncodeFrame(force_key_frame, &work_unit);
    ComputeFrameEncodeStats(Clock::now() - encode_start_time, target_bitrate,
                            &work_unit);
    UpdateSpeedSettingForNextFrame(work_unit.stats);

    main_task_runner_->PostTask(
        [this, results = std::move(work_unit)]() mutable {
          SendEncodedFrame(std::move(results));
        });
  }

  DestroyEncoder();
}

void StreamingVp8Encoder::PrepareEncoder(int width,
                                         int height,
                                         int target_bitrate) {
  OSP_DCHECK_EQ(std::this_thread::get_id(), encode_thread_.get_id());

  const int target_kbps = target_bitrate / kBytesPerKilobyte;

  // Translate the |ideal_speed_setting_| into the VP8E_SET_CPUUSED setting and
  // the minimum quantizer to use.
  int speed;
  int min_quantizer;
  if (ideal_speed_setting_ > kHighestEncodingSpeed) {
    speed = kHighestEncodingSpeed;
    const double remainder = ideal_speed_setting_ - speed;
    min_quantizer = rounded_saturate_cast<int>(
        remainder / kEquivalentEncodingSpeedStepPerQuantizerStep +
        params_.min_quantizer);
    min_quantizer = std::min(min_quantizer, params_.max_cpu_saver_quantizer);
  } else {
    speed = std::max(rounded_saturate_cast<int>(ideal_speed_setting_),
                     kLowestEncodingSpeed);
    min_quantizer = params_.min_quantizer;
  }

  if (static_cast<int>(config_.g_w) != width ||
      static_cast<int>(config_.g_h) != height) {
    DestroyEncoder();
  }

  if (!is_encoder_initialized()) {
    config_.g_threads = params_.num_encode_threads;
    config_.g_w = width;
    config_.g_h = height;
    config_.rc_target_bitrate = target_kbps;
    config_.rc_min_quantizer = min_quantizer;

    encoder_ = {};
    const vpx_codec_flags_t flags = 0;
    const auto init_result =
        vpx_codec_enc_init(&encoder_, vpx_codec_vp8_cx(), &config_, flags);
    OSP_CHECK_EQ(init_result, VPX_CODEC_OK);

    // Raise the threshold for considering macroblocks as static. The default is
    // zero, so this setting makes the encoder less sensitive to motion. This
    // lowers the probability of needing to utilize more CPU to search for
    // motion vectors.
    const auto ctl_result =
        vpx_codec_control(&encoder_, VP8E_SET_STATIC_THRESHOLD, 1);
    OSP_CHECK_EQ(ctl_result, VPX_CODEC_OK);

    // Ensure the speed will be set (below).
    current_speed_setting_ = ~speed;
  } else if (static_cast<int>(config_.rc_target_bitrate) != target_kbps ||
             static_cast<int>(config_.rc_min_quantizer) != min_quantizer) {
    config_.rc_target_bitrate = target_kbps;
    config_.rc_min_quantizer = min_quantizer;
    const auto update_config_result =
        vpx_codec_enc_config_set(&encoder_, &config_);
    OSP_CHECK_EQ(update_config_result, VPX_CODEC_OK);
  }

  if (current_speed_setting_ != speed) {
    // Pass the |speed| as a negative value to turn off VP8's automatic speed
    // selection logic and force the exact setting.
    const auto ctl_result =
        vpx_codec_control(&encoder_, VP8E_SET_CPUUSED, -speed);
    OSP_CHECK_EQ(ctl_result, VPX_CODEC_OK);
    current_speed_setting_ = speed;
  }
}

void StreamingVp8Encoder::EncodeFrame(bool force_key_frame,
                                      WorkUnitWithResults* work_unit) {
  OSP_DCHECK_EQ(std::this_thread::get_id(), encode_thread_.get_id());

  // The presentation timestamp argument here is fixed to zero to force the
  // encoder to base its single-frame bandwidth calculations entirely on
  // |frame_duration| and the target bitrate setting.
  const vpx_codec_pts_t pts = 0;
  const vpx_enc_frame_flags_t flags = force_key_frame ? VPX_EFLAG_FORCE_KF : 0;
  const auto encode_result =
      vpx_codec_encode(&encoder_, work_unit->image.get(), pts,
                       work_unit->duration.count(), flags, VPX_DL_REALTIME);
  OSP_CHECK_EQ(encode_result, VPX_CODEC_OK);

  const vpx_codec_cx_pkt_t* pkt;
  for (vpx_codec_iter_t iter = nullptr;;) {
    pkt = vpx_codec_get_cx_data(&encoder_, &iter);
    // vpx_codec_get_cx_data() returns null once the "iteration" is complete.
    // However, that point should never be reached because a
    // VPX_CODEC_CX_FRAME_PKT must be encountered before that.
    OSP_CHECK(pkt);
    if (pkt->kind == VPX_CODEC_CX_FRAME_PKT) {
      break;
    }
  }

  // A copy of the payload data is being made here. That's okay since it has to
  // be copied at some point anyway, to be passed back to the main thread.
  auto* const begin = static_cast<const uint8_t*>(pkt->data.frame.buf);
  auto* const end = begin + pkt->data.frame.sz;
  work_unit->payload.assign(begin, end);
  work_unit->is_key_frame = !!(pkt->data.frame.flags & VPX_FRAME_IS_KEY);
}

void StreamingVp8Encoder::ComputeFrameEncodeStats(
    Clock::duration encode_wall_time,
    int target_bitrate,
    WorkUnitWithResults* work_unit) {
  OSP_DCHECK_EQ(std::this_thread::get_id(), encode_thread_.get_id());

  Stats& stats = work_unit->stats;

  // Note: stats.frame_id is set later, in SendEncodedFrame().
  stats.rtp_timestamp = work_unit->rtp_timestamp;
  stats.encode_wall_time = encode_wall_time;
  stats.frame_duration = work_unit->duration;
  stats.encoded_size = work_unit->payload.size();

  constexpr double kBytesPerBit = 1.0 / CHAR_BIT;
  constexpr double kSecondsPerClockTick =
      1.0 / Clock::to_duration(seconds(1)).count();
  const double target_bytes_per_clock_tick =
      target_bitrate * (kBytesPerBit * kSecondsPerClockTick);
  stats.target_size = target_bytes_per_clock_tick * work_unit->duration.count();

  // The quantizer the encoder used. This is the result of the VP8 encoder
  // taking a guess at what quantizer value would produce an encoded frame size
  // as close to the target as possible.
  const auto get_quantizer_result = vpx_codec_control(
      &encoder_, VP8E_GET_LAST_QUANTIZER_64, &stats.quantizer);
  OSP_CHECK_EQ(get_quantizer_result, VPX_CODEC_OK);

  // Now that the frame has been encoded and the number of bytes is known, the
  // perfect quantizer value (i.e., the one that should have been used) can be
  // determined.
  stats.perfect_quantizer = stats.quantizer * stats.space_utilization();
}

void StreamingVp8Encoder::UpdateSpeedSettingForNextFrame(const Stats& stats) {
  OSP_DCHECK_EQ(std::this_thread::get_id(), encode_thread_.get_id());

  // Combine the speed setting that was used to encode the last frame, and the
  // quantizer the encoder chose into a single speed metric.
  const double speed = current_speed_setting_ +
                       kEquivalentEncodingSpeedStepPerQuantizerStep *
                           std::max(0, stats.quantizer - params_.min_quantizer);

  // Like |Stats::perfect_quantizer|, this computes a "hindsight" speed setting
  // for the last frame, one that may have potentially allowed for a
  // better-quality quantizer choice by the encoder, while also keeping CPU
  // utilization within budget.
  const double perfect_speed =
      speed * stats.time_utilization() / params_.max_time_utilization;

  // Update the ideal speed setting, to be used for the next frame. An
  // exponentially-decaying weighted average is used here to smooth-out noise.
  // The weight is based on the duration of the frame that was encoded.
  constexpr Clock::duration kDecayHalfLife = milliseconds(120);
  const double ticks = stats.frame_duration.count();
  const double weight = ticks / (ticks + kDecayHalfLife.count());
  ideal_speed_setting_ =
      weight * perfect_speed + (1.0 - weight) * ideal_speed_setting_;
  OSP_DCHECK(std::isfinite(ideal_speed_setting_));
}

void StreamingVp8Encoder::SendEncodedFrame(WorkUnitWithResults results) {
  OSP_DCHECK(main_task_runner_->IsRunningOnTaskRunner());

  EncodedFrame frame;
  frame.frame_id = sender_->GetNextFrameId();
  if (results.is_key_frame) {
    frame.dependency = EncodedFrame::KEY_FRAME;
    frame.referenced_frame_id = frame.frame_id;
  } else {
    frame.dependency = EncodedFrame::DEPENDS_ON_ANOTHER;
    frame.referenced_frame_id = frame.frame_id - 1;
  }
  frame.rtp_timestamp = results.rtp_timestamp;
  frame.reference_time = results.reference_time;
  frame.data = absl::Span<uint8_t>(results.payload);

  if (sender_->EnqueueFrame(frame) != Sender::OK) {
    // Since the frame will not be sent, the encoder's frame dependency chain
    // has been broken. Force a key frame for the next frame.
    std::unique_lock<std::mutex> lock(mutex_);
    needs_key_frame_ = true;
  }

  if (results.stats_callback) {
    results.stats.frame_id = frame.frame_id;
    results.stats_callback(results.stats);
  }
}

namespace {
void CopyPlane(const uint8_t* src,
               int src_stride,
               int num_rows,
               uint8_t* dst,
               int dst_stride) {
  if (src_stride == dst_stride) {
    memcpy(dst, src, src_stride * num_rows);
    return;
  }
  const int bytes_per_row = std::min(src_stride, dst_stride);
  while (--num_rows >= 0) {
    memcpy(dst, src, bytes_per_row);
    dst += dst_stride;
    src += src_stride;
  }
}
}  // namespace

// static
StreamingVp8Encoder::VpxImageUniquePtr StreamingVp8Encoder::CloneAsVpxImage(
    const VideoFrame& frame) {
  OSP_DCHECK_GE(frame.width, 0);
  OSP_DCHECK_GE(frame.height, 0);
  OSP_DCHECK_GE(frame.yuv_strides[0], 0);
  OSP_DCHECK_GE(frame.yuv_strides[1], 0);
  OSP_DCHECK_GE(frame.yuv_strides[2], 0);

  constexpr int kAlignment = 32;
  VpxImageUniquePtr image(vpx_img_alloc(nullptr, VPX_IMG_FMT_I420, frame.width,
                                        frame.height, kAlignment));
  OSP_CHECK(image);

  CopyPlane(frame.yuv_planes[0], frame.yuv_strides[0], frame.height,
            image->planes[VPX_PLANE_Y], image->stride[VPX_PLANE_Y]);
  CopyPlane(frame.yuv_planes[1], frame.yuv_strides[1], (frame.height + 1) / 2,
            image->planes[VPX_PLANE_U], image->stride[VPX_PLANE_U]);
  CopyPlane(frame.yuv_planes[2], frame.yuv_strides[2], (frame.height + 1) / 2,
            image->planes[VPX_PLANE_V], image->stride[VPX_PLANE_V]);

  return image;
}

}  // namespace cast
}  // namespace openscreen