aboutsummaryrefslogtreecommitdiff
path: root/src/include/fst/queue.h
blob: e31f08792338e99678713caa8269770815bbffeb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
// queue.h

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Copyright 2005-2010 Google, Inc.
// Author: allauzen@google.com (Cyril Allauzen)
//
// \file
// Functions and classes for various Fst state queues with
// a unified interface.

#ifndef FST_LIB_QUEUE_H__
#define FST_LIB_QUEUE_H__

#include <deque>
#include <vector>
using std::vector;

#include <fst/arcfilter.h>
#include <fst/connect.h>
#include <fst/heap.h>
#include <fst/topsort.h>


namespace fst {

// template <class S>
// class Queue {
//  public:
//   typedef typename S StateId;
//
//   // Ctr: may need args (e.g., Fst, comparator) for some queues
//   Queue(...);
//   // Returns the head of the queue
//   StateId Head() const;
//   // Inserts a state
//   void Enqueue(StateId s);
//   // Removes the head of the queue
//   void Dequeue();
//   // Updates ordering of state s when weight changes, if necessary
//   void Update(StateId s);
//   // Does the queue contain no elements?
//   bool Empty() const;
//   // Remove all states from queue
//   void Clear();
// };

// State queue types.
enum QueueType {
  TRIVIAL_QUEUE = 0,         // Single state queue
  FIFO_QUEUE = 1,            // First-in, first-out queue
  LIFO_QUEUE = 2,            // Last-in, first-out queue
  SHORTEST_FIRST_QUEUE = 3,  // Shortest-first queue
  TOP_ORDER_QUEUE = 4,       // Topologically-ordered queue
  STATE_ORDER_QUEUE = 5,     // State-ID ordered queue
  SCC_QUEUE = 6,             // Component graph top-ordered meta-queue
  AUTO_QUEUE = 7,            // Auto-selected queue
  OTHER_QUEUE = 8
 };


// QueueBase, templated on the StateId, is the base class shared by the
// queues considered by AutoQueue.
template <class S>
class QueueBase {
 public:
  typedef S StateId;

  QueueBase(QueueType type) : queue_type_(type), error_(false) {}
  virtual ~QueueBase() {}
  StateId Head() const { return Head_(); }
  void Enqueue(StateId s) { Enqueue_(s); }
  void Dequeue() { Dequeue_(); }
  void Update(StateId s) { Update_(s); }
  bool Empty() const { return Empty_(); }
  void Clear() { Clear_(); }
  QueueType Type() { return queue_type_; }
  bool Error() const { return error_; }
  void SetError(bool error) { error_ = error; }

 private:
  // This allows base-class virtual access to non-virtual derived-
  // class members of the same name. It makes the derived class more
  // efficient to use but unsafe to further derive.
  virtual StateId Head_() const = 0;
  virtual void Enqueue_(StateId s) = 0;
  virtual void Dequeue_() = 0;
  virtual void Update_(StateId s) = 0;
  virtual bool Empty_() const = 0;
  virtual void Clear_() = 0;

  QueueType queue_type_;
  bool error_;
};


// Trivial queue discipline, templated on the StateId. You may enqueue
// at most one state at a time. It is used for strongly connected components
// with only one state and no self loops.
template <class S>
class TrivialQueue : public QueueBase<S> {
public:
  typedef S StateId;

  TrivialQueue() : QueueBase<S>(TRIVIAL_QUEUE), front_(kNoStateId) {}
  StateId Head() const { return front_; }
  void Enqueue(StateId s) { front_ = s; }
  void Dequeue() { front_ = kNoStateId; }
  void Update(StateId s) {}
  bool Empty() const { return front_ == kNoStateId; }
  void Clear() { front_ = kNoStateId; }


private:
  // This allows base-class virtual access to non-virtual derived-
  // class members of the same name. It makes the derived class more
  // efficient to use but unsafe to further derive.
  virtual StateId Head_() const { return Head(); }
  virtual void Enqueue_(StateId s) { Enqueue(s); }
  virtual void Dequeue_() { Dequeue(); }
  virtual void Update_(StateId s) { Update(s); }
  virtual bool Empty_() const { return Empty(); }
  virtual void Clear_() { return Clear(); }

  StateId front_;
};


// First-in, first-out queue discipline, templated on the StateId.
template <class S>
class FifoQueue : public QueueBase<S>, public deque<S> {
 public:
  using deque<S>::back;
  using deque<S>::push_front;
  using deque<S>::pop_back;
  using deque<S>::empty;
  using deque<S>::clear;

  typedef S StateId;

  FifoQueue() : QueueBase<S>(FIFO_QUEUE) {}
  StateId Head() const { return back(); }
  void Enqueue(StateId s) { push_front(s); }
  void Dequeue() { pop_back(); }
  void Update(StateId s) {}
  bool Empty() const { return empty(); }
  void Clear() { clear(); }

 private:
  // This allows base-class virtual access to non-virtual derived-
  // class members of the same name. It makes the derived class more
  // efficient to use but unsafe to further derive.
  virtual StateId Head_() const { return Head(); }
  virtual void Enqueue_(StateId s) { Enqueue(s); }
  virtual void Dequeue_() { Dequeue(); }
  virtual void Update_(StateId s) { Update(s); }
  virtual bool Empty_() const { return Empty(); }
  virtual void Clear_() { return Clear(); }
};


// Last-in, first-out queue discipline, templated on the StateId.
template <class S>
class LifoQueue : public QueueBase<S>, public deque<S> {
 public:
  using deque<S>::front;
  using deque<S>::push_front;
  using deque<S>::pop_front;
  using deque<S>::empty;
  using deque<S>::clear;

  typedef S StateId;

  LifoQueue() : QueueBase<S>(LIFO_QUEUE) {}
  StateId Head() const { return front(); }
  void Enqueue(StateId s) { push_front(s); }
  void Dequeue() { pop_front(); }
  void Update(StateId s) {}
  bool Empty() const { return empty(); }
  void Clear() { clear(); }

 private:
  // This allows base-class virtual access to non-virtual derived-
  // class members of the same name. It makes the derived class more
  // efficient to use but unsafe to further derive.
  virtual StateId Head_() const { return Head(); }
  virtual void Enqueue_(StateId s) { Enqueue(s); }
  virtual void Dequeue_() { Dequeue(); }
  virtual void Update_(StateId s) { Update(s); }
  virtual bool Empty_() const { return Empty(); }
  virtual void Clear_() { return Clear(); }
};


// Shortest-first queue discipline, templated on the StateId and
// comparison function object.  Comparison function object COMP is
// used to compare two StateIds. If a (single) state's order changes,
// it can be reordered in the queue with a call to Update().
// If 'update == false', call to Update() does not reorder the queue.
template <typename S, typename C, bool update = true>
class ShortestFirstQueue : public QueueBase<S> {
 public:
  typedef S StateId;
  typedef C Compare;

  ShortestFirstQueue(C comp)
      : QueueBase<S>(SHORTEST_FIRST_QUEUE), heap_(comp) {}

  StateId Head() const { return heap_.Top(); }

  void Enqueue(StateId s) {
    if (update) {
      for (StateId i = key_.size(); i <= s; ++i)
        key_.push_back(kNoKey);
      key_[s] = heap_.Insert(s);
    } else {
      heap_.Insert(s);
    }
  }

  void Dequeue() {
    if (update)
      key_[heap_.Pop()] = kNoKey;
    else
      heap_.Pop();
  }

  void Update(StateId s) {
    if (!update)
      return;
    if (s >= key_.size() || key_[s] == kNoKey) {
      Enqueue(s);
    } else {
      heap_.Update(key_[s], s);
    }
  }

  bool Empty() const { return heap_.Empty(); }

  void Clear() {
    heap_.Clear();
    if (update) key_.clear();
  }

 private:
  Heap<S, C, false> heap_;
  vector<ssize_t> key_;

  // This allows base-class virtual access to non-virtual derived-
  // class members of the same name. It makes the derived class more
  // efficient to use but unsafe to further derive.
  virtual StateId Head_() const { return Head(); }
  virtual void Enqueue_(StateId s) { Enqueue(s); }
  virtual void Dequeue_() { Dequeue(); }
  virtual void Update_(StateId s) { Update(s); }
  virtual bool Empty_() const { return Empty(); }
  virtual void Clear_() { return Clear(); }
};


// Given a vector that maps from states to weights and a Less
// comparison function object between weights, this class defines a
// comparison function object between states.
template <typename S, typename L>
class StateWeightCompare {
 public:
  typedef L Less;
  typedef typename L::Weight Weight;
  typedef S StateId;

  StateWeightCompare(const vector<Weight>& weights, const L &less)
      : weights_(weights), less_(less) {}

  bool operator()(const S x, const S y) const {
    return less_(weights_[x], weights_[y]);
  }

 private:
  const vector<Weight>& weights_;
  L less_;
};


// Shortest-first queue discipline, templated on the StateId and Weight, is
// specialized to use the weight's natural order for the comparison function.
template <typename S, typename W>
class NaturalShortestFirstQueue :
      public ShortestFirstQueue<S, StateWeightCompare<S, NaturalLess<W> > > {
 public:
  typedef StateWeightCompare<S, NaturalLess<W> > C;

  NaturalShortestFirstQueue(const vector<W> &distance) :
      ShortestFirstQueue<S, C>(C(distance, less_)) {}

 private:
  NaturalLess<W> less_;
};

// Topological-order queue discipline, templated on the StateId.
// States are ordered in the queue topologically. The FST must be acyclic.
template <class S>
class TopOrderQueue : public QueueBase<S> {
 public:
  typedef S StateId;

  // This constructor computes the top. order. It accepts an arc filter
  // to limit the transitions considered in that computation (e.g., only
  // the epsilon graph).
  template <class Arc, class ArcFilter>
  TopOrderQueue(const Fst<Arc> &fst, ArcFilter filter)
      : QueueBase<S>(TOP_ORDER_QUEUE), front_(0), back_(kNoStateId),
        order_(0), state_(0) {
    bool acyclic;
    TopOrderVisitor<Arc> top_order_visitor(&order_, &acyclic);
    DfsVisit(fst, &top_order_visitor, filter);
    if (!acyclic) {
      FSTERROR() << "TopOrderQueue: fst is not acyclic.";
      QueueBase<S>::SetError(true);
    }
    state_.resize(order_.size(), kNoStateId);
  }

  // This constructor is passed the top. order, useful when we know it
  // beforehand.
  TopOrderQueue(const vector<StateId> &order)
      : QueueBase<S>(TOP_ORDER_QUEUE), front_(0), back_(kNoStateId),
        order_(order), state_(order.size(), kNoStateId) {}

  StateId Head() const { return state_[front_]; }

  void Enqueue(StateId s) {
    if (front_ > back_) front_ = back_ = order_[s];
    else if (order_[s] > back_) back_ = order_[s];
    else if (order_[s] < front_) front_ = order_[s];
    state_[order_[s]] = s;
  }

  void Dequeue() {
    state_[front_] = kNoStateId;
    while ((front_ <= back_) && (state_[front_] == kNoStateId)) ++front_;
  }

  void Update(StateId s) {}

  bool Empty() const { return front_ > back_; }

  void Clear() {
    for (StateId i = front_; i <= back_; ++i) state_[i] = kNoStateId;
    back_ = kNoStateId;
    front_ = 0;
  }

 private:
  StateId front_;
  StateId back_;
  vector<StateId> order_;
  vector<StateId> state_;

  // This allows base-class virtual access to non-virtual derived-
  // class members of the same name. It makes the derived class more
  // efficient to use but unsafe to further derive.
  virtual StateId Head_() const { return Head(); }
  virtual void Enqueue_(StateId s) { Enqueue(s); }
  virtual void Dequeue_() { Dequeue(); }
  virtual void Update_(StateId s) { Update(s); }
  virtual bool Empty_() const { return Empty(); }
  virtual void Clear_() { return Clear(); }
};


// State order queue discipline, templated on the StateId.
// States are ordered in the queue by state Id.
template <class S>
class StateOrderQueue : public QueueBase<S> {
public:
  typedef S StateId;

  StateOrderQueue()
      : QueueBase<S>(STATE_ORDER_QUEUE), front_(0), back_(kNoStateId) {}

  StateId Head() const { return front_; }

  void Enqueue(StateId s) {
    if (front_ > back_) front_ = back_ = s;
    else if (s > back_) back_ = s;
    else if (s < front_) front_ = s;
    while (enqueued_.size() <= s) enqueued_.push_back(false);
    enqueued_[s] = true;
  }

  void Dequeue() {
    enqueued_[front_] = false;
    while ((front_ <= back_) && (enqueued_[front_] == false)) ++front_;
  }

  void Update(StateId s) {}

  bool Empty() const { return front_ > back_; }

  void Clear() {
        for (StateId i = front_; i <= back_; ++i) enqueued_[i] = false;
        front_ = 0;
        back_ = kNoStateId;
  }

private:
  StateId front_;
  StateId back_;
  vector<bool> enqueued_;

  // This allows base-class virtual access to non-virtual derived-
  // class members of the same name. It makes the derived class more
  // efficient to use but unsafe to further derive.
  virtual StateId Head_() const { return Head(); }
  virtual void Enqueue_(StateId s) { Enqueue(s); }
  virtual void Dequeue_() { Dequeue(); }
  virtual void Update_(StateId s) { Update(s); }
  virtual bool Empty_() const { return Empty(); }
  virtual void Clear_() { return Clear(); }

};


// SCC topological-order meta-queue discipline, templated on the StateId S
// and a queue Q, which is used inside each SCC.  It visits the SCC's
// of an FST in topological order. Its constructor is passed the queues to
// to use within an SCC.
template <class S, class Q>
class SccQueue : public QueueBase<S> {
 public:
  typedef S StateId;
  typedef Q Queue;

  // Constructor takes a vector specifying the SCC number per state
  // and a vector giving the queue to use per SCC number.
  SccQueue(const vector<StateId> &scc, vector<Queue*> *queue)
    : QueueBase<S>(SCC_QUEUE), queue_(queue), scc_(scc), front_(0),
      back_(kNoStateId) {}

  StateId Head() const {
    while ((front_ <= back_) &&
           (((*queue_)[front_] && (*queue_)[front_]->Empty())
            || (((*queue_)[front_] == 0) &&
                ((front_ >= trivial_queue_.size())
                 || (trivial_queue_[front_] == kNoStateId)))))
      ++front_;
    if ((*queue_)[front_])
      return (*queue_)[front_]->Head();
    else
      return trivial_queue_[front_];
  }

  void Enqueue(StateId s) {
    if (front_ > back_) front_ = back_ = scc_[s];
    else if (scc_[s] > back_) back_ = scc_[s];
    else if (scc_[s] < front_) front_ = scc_[s];
    if ((*queue_)[scc_[s]]) {
      (*queue_)[scc_[s]]->Enqueue(s);
    } else {
      while (trivial_queue_.size() <= scc_[s])
        trivial_queue_.push_back(kNoStateId);
      trivial_queue_[scc_[s]] = s;
    }
  }

  void Dequeue() {
    if ((*queue_)[front_])
      (*queue_)[front_]->Dequeue();
    else if (front_ < trivial_queue_.size())
      trivial_queue_[front_] = kNoStateId;
  }

  void Update(StateId s) {
    if ((*queue_)[scc_[s]])
      (*queue_)[scc_[s]]->Update(s);
  }

  bool Empty() const {
    if (front_ < back_)  // Queue scc # back_ not empty unless back_==front_
      return false;
    else if (front_ > back_)
      return true;
    else if ((*queue_)[front_])
      return (*queue_)[front_]->Empty();
    else
      return (front_ >= trivial_queue_.size())
        || (trivial_queue_[front_] == kNoStateId);
  }

  void Clear() {
    for (StateId i = front_; i <= back_; ++i)
      if ((*queue_)[i])
        (*queue_)[i]->Clear();
      else if (i < trivial_queue_.size())
        trivial_queue_[i] = kNoStateId;
    front_ = 0;
    back_ = kNoStateId;
  }

private:
  vector<Queue*> *queue_;
  const vector<StateId> &scc_;
  mutable StateId front_;
  StateId back_;
  vector<StateId> trivial_queue_;

  // This allows base-class virtual access to non-virtual derived-
  // class members of the same name. It makes the derived class more
  // efficient to use but unsafe to further derive.
  virtual StateId Head_() const { return Head(); }
  virtual void Enqueue_(StateId s) { Enqueue(s); }
  virtual void Dequeue_() { Dequeue(); }
  virtual void Update_(StateId s) { Update(s); }
  virtual bool Empty_() const { return Empty(); }
  virtual void Clear_() { return Clear(); }

  DISALLOW_COPY_AND_ASSIGN(SccQueue);
};


// Automatic queue discipline, templated on the StateId. It selects a
// queue discipline for a given FST based on its properties.
template <class S>
class AutoQueue : public QueueBase<S> {
public:
  typedef S StateId;

  // This constructor takes a state distance vector that, if non-null and if
  // the Weight type has the path property, will entertain the
  // shortest-first queue using the natural order w.r.t to the distance.
  template <class Arc, class ArcFilter>
  AutoQueue(const Fst<Arc> &fst, const vector<typename Arc::Weight> *distance,
            ArcFilter filter) : QueueBase<S>(AUTO_QUEUE) {
    typedef typename Arc::Weight Weight;
    typedef StateWeightCompare< StateId, NaturalLess<Weight> > Compare;

    //  First check if the FST is known to have these properties.
    uint64 props = fst.Properties(kAcyclic | kCyclic |
                                  kTopSorted | kUnweighted, false);
    if ((props & kTopSorted) || fst.Start() == kNoStateId) {
      queue_ = new StateOrderQueue<StateId>();
      VLOG(2) << "AutoQueue: using state-order discipline";
    } else if (props & kAcyclic) {
      queue_ = new TopOrderQueue<StateId>(fst, filter);
      VLOG(2) << "AutoQueue: using top-order discipline";
    } else if ((props & kUnweighted) && (Weight::Properties() & kIdempotent)) {
      queue_ = new LifoQueue<StateId>();
      VLOG(2) << "AutoQueue: using LIFO discipline";
    } else {
      uint64 properties;
      // Decompose into strongly-connected components.
      SccVisitor<Arc> scc_visitor(&scc_, 0, 0, &properties);
      DfsVisit(fst, &scc_visitor, filter);
      StateId nscc = *max_element(scc_.begin(), scc_.end()) + 1;
      vector<QueueType> queue_types(nscc);
      NaturalLess<Weight> *less = 0;
      Compare *comp = 0;
      if (distance && (Weight::Properties() & kPath)) {
        less = new NaturalLess<Weight>;
        comp = new Compare(*distance, *less);
      }
      // Find the queue type to use per SCC.
      bool unweighted;
      bool all_trivial;
      SccQueueType(fst, scc_, &queue_types, filter, less, &all_trivial,
                                      &unweighted);
      // If unweighted and semiring is idempotent, use lifo queue.
      if (unweighted) {
          queue_ = new LifoQueue<StateId>();
          VLOG(2) << "AutoQueue: using LIFO discipline";
          delete comp;
          delete less;
          return;
      }
      // If all the scc are trivial, FST is acyclic and the scc# gives
      // the topological order.
      if (all_trivial) {
          queue_ = new TopOrderQueue<StateId>(scc_);
          VLOG(2) << "AutoQueue: using top-order discipline";
          delete comp;
          delete less;
          return;
      }
      VLOG(2) << "AutoQueue: using SCC meta-discipline";
      queues_.resize(nscc);
      for (StateId i = 0; i < nscc; ++i) {
        switch(queue_types[i]) {
          case TRIVIAL_QUEUE:
            queues_[i] = 0;
            VLOG(3) << "AutoQueue: SCC #" << i
                    << ": using trivial discipline";
            break;
          case SHORTEST_FIRST_QUEUE:
            queues_[i] = new ShortestFirstQueue<StateId, Compare, false>(*comp);
            VLOG(3) << "AutoQueue: SCC #" << i <<
              ": using shortest-first discipline";
            break;
          case LIFO_QUEUE:
            queues_[i] = new LifoQueue<StateId>();
            VLOG(3) << "AutoQueue: SCC #" << i
                    << ": using LIFO disciplle";
            break;
          case FIFO_QUEUE:
          default:
            queues_[i] = new FifoQueue<StateId>();
            VLOG(3) << "AutoQueue: SCC #" << i
                    << ": using FIFO disciplle";
            break;
        }
      }
      queue_ = new SccQueue< StateId, QueueBase<StateId> >(scc_, &queues_);
      delete comp;
      delete less;
    }
  }

  ~AutoQueue() {
    for (StateId i = 0; i < queues_.size(); ++i)
      delete queues_[i];
    delete queue_;
  }

  StateId Head() const { return queue_->Head(); }

  void Enqueue(StateId s) { queue_->Enqueue(s); }

  void Dequeue() { queue_->Dequeue(); }

  void Update(StateId s) { queue_->Update(s); }

  bool Empty() const { return queue_->Empty(); }

  void Clear() { queue_->Clear(); }


 private:
  QueueBase<StateId> *queue_;
  vector< QueueBase<StateId>* > queues_;
  vector<StateId> scc_;

  template <class Arc, class ArcFilter, class Less>
  static void SccQueueType(const Fst<Arc> &fst,
                           const vector<StateId> &scc,
                           vector<QueueType> *queue_types,
                           ArcFilter filter, Less *less,
                           bool *all_trivial, bool *unweighted);

  // This allows base-class virtual access to non-virtual derived-
  // class members of the same name. It makes the derived class more
  // efficient to use but unsafe to further derive.
  virtual StateId Head_() const { return Head(); }

  virtual void Enqueue_(StateId s) { Enqueue(s); }

  virtual void Dequeue_() { Dequeue(); }

  virtual void Update_(StateId s) { Update(s); }

  virtual bool Empty_() const { return Empty(); }

  virtual void Clear_() { return Clear(); }

  DISALLOW_COPY_AND_ASSIGN(AutoQueue);
};


// Examines the states in an Fst's strongly connected components and
// determines which type of queue to use per SCC. Stores result in
// vector QUEUE_TYPES, which is assumed to have length equal to the
// number of SCCs. An arc filter is used to limit the transitions
// considered (e.g., only the epsilon graph).  ALL_TRIVIAL is set
// to true if every queue is the trivial queue. UNWEIGHTED is set to
// true if the semiring is idempotent and all the arc weights are equal to
// Zero() or One().
template <class StateId>
template <class A, class ArcFilter, class Less>
void AutoQueue<StateId>::SccQueueType(const Fst<A> &fst,
                                      const vector<StateId> &scc,
                                      vector<QueueType> *queue_type,
                                      ArcFilter filter, Less *less,
                                      bool *all_trivial, bool *unweighted) {
  typedef A Arc;
  typedef typename A::StateId StateId;
  typedef typename A::Weight Weight;

  *all_trivial = true;
  *unweighted = true;

  for (StateId i = 0; i < queue_type->size(); ++i)
    (*queue_type)[i] = TRIVIAL_QUEUE;

  for (StateIterator< Fst<Arc> > sit(fst); !sit.Done(); sit.Next()) {
    StateId state = sit.Value();
    for (ArcIterator< Fst<Arc> > ait(fst, state);
	 !ait.Done();
	 ait.Next()) {
      const Arc &arc = ait.Value();
      if (!filter(arc)) continue;
      if (scc[state] == scc[arc.nextstate]) {
        QueueType &type = (*queue_type)[scc[state]];
        if (!less || ((*less)(arc.weight, Weight::One())))
          type = FIFO_QUEUE;
        else if ((type == TRIVIAL_QUEUE) || (type == LIFO_QUEUE)) {
          if (!(Weight::Properties() & kIdempotent) ||
              (arc.weight != Weight::Zero() && arc.weight != Weight::One()))
            type = SHORTEST_FIRST_QUEUE;
          else
            type = LIFO_QUEUE;
        }
        if (type != TRIVIAL_QUEUE) *all_trivial = false;
      }
      if (!(Weight::Properties() & kIdempotent) ||
          (arc.weight != Weight::Zero() && arc.weight != Weight::One()))
        *unweighted = false;
    }
  }
}


// An A* estimate is a function object that maps from a state ID to a
// an estimate of the shortest distance to the final states.
// The trivial A* estimate is always One().
template <typename S, typename W>
struct TrivialAStarEstimate {
  W operator()(S s) const { return W::One(); }
};


// Given a vector that maps from states to weights representing the
// shortest distance from the initial state, a Less comparison
// function object between weights, and an estimate E of the
// shortest distance to the final states, this class defines a
// comparison function object between states.
template <typename S, typename L, typename E>
class AStarWeightCompare {
 public:
  typedef L Less;
  typedef typename L::Weight Weight;
  typedef S StateId;

  AStarWeightCompare(const vector<Weight>& weights, const L &less,
                     const E &estimate)
      : weights_(weights), less_(less), estimate_(estimate) {}

  bool operator()(const S x, const S y) const {
    Weight wx = Times(weights_[x], estimate_(x));
    Weight wy = Times(weights_[y], estimate_(y));
    return less_(wx, wy);
  }

 private:
  const vector<Weight>& weights_;
  L less_;
  const E &estimate_;
};


// A* queue discipline, templated on the StateId, Weight and an
// estimate E of the shortest distance to the final states, is specialized
// to use the weight's natural order for the comparison function.
template <typename S, typename W, typename E>
class NaturalAStarQueue :
      public ShortestFirstQueue<S, AStarWeightCompare<S, NaturalLess<W>, E> > {
 public:
  typedef AStarWeightCompare<S, NaturalLess<W>, E> C;

  NaturalAStarQueue(const vector<W> &distance, const E &estimate) :
      ShortestFirstQueue<S, C>(C(distance, less_, estimate)) {}

 private:
  NaturalLess<W> less_;
};


// A state equivalence class is a function object that
// maps from a state ID to an equivalence class (state) ID.
// The trivial equivalence class maps a state to itself.
template <typename S>
struct TrivialStateEquivClass {
  S operator()(S s) const { return s; }
};


// Pruning queue discipline: Enqueues a state 's' only when its
// shortest distance (so far), as specified by 'distance', is less
// than (as specified by 'comp') the shortest distance Times() the
// 'threshold' to any state in the same equivalence class, as
// specified by the function object 'class_func'. The underlying
// queue discipline is specified by 'queue'. The ownership of 'queue'
// is given to this class.
template <typename Q, typename L, typename C>
class PruneQueue : public QueueBase<typename Q::StateId> {
 public:
  typedef typename Q::StateId StateId;
  typedef typename L::Weight Weight;

  PruneQueue(const vector<Weight> &distance, Q *queue, L comp,
	     const C &class_func, Weight threshold)
    : QueueBase<StateId>(OTHER_QUEUE),
      distance_(distance),
      queue_(queue),
      less_(comp),
      class_func_(class_func),
      threshold_(threshold) {}

  ~PruneQueue() { delete queue_; }

  StateId Head() const { return queue_->Head(); }

  void Enqueue(StateId s) {
    StateId c = class_func_(s);
    if (c >= class_distance_.size())
      class_distance_.resize(c + 1, Weight::Zero());
    if (less_(distance_[s], class_distance_[c]))
      class_distance_[c] = distance_[s];

    // Enqueue only if below threshold limit
    Weight limit = Times(class_distance_[c], threshold_);
    if (less_(distance_[s], limit))
      queue_->Enqueue(s);
  }

  void Dequeue() { queue_->Dequeue(); }

  void Update(StateId s) {
    StateId c = class_func_(s);
    if (less_(distance_[s], class_distance_[c]))
      class_distance_[c] = distance_[s];
    queue_->Update(s);
  }

  bool Empty() const { return queue_->Empty(); }
  void Clear() { queue_->Clear(); }

 private:
  // This allows base-class virtual access to non-virtual derived-
  // class members of the same name. It makes the derived class more
  // efficient to use but unsafe to further derive.
  virtual StateId Head_() const { return Head(); }
  virtual void Enqueue_(StateId s) { Enqueue(s); }
  virtual void Dequeue_() { Dequeue(); }
  virtual void Update_(StateId s) { Update(s); }
  virtual bool Empty_() const { return Empty(); }
  virtual void Clear_() { return Clear(); }

  const vector<Weight> &distance_;         // shortest distance to state
  Q *queue_;
  L less_;
  const C &class_func_;                    // eqv. class function object
  Weight threshold_;                       // pruning weight threshold
  vector<Weight> class_distance_;          // shortest distance to class

  DISALLOW_COPY_AND_ASSIGN(PruneQueue);
};


// Pruning queue discipline (see above) using the weight's natural
// order for the comparison function. The ownership of 'queue' is
// given to this class.
template <typename Q, typename W, typename C>
class NaturalPruneQueue :
      public PruneQueue<Q, NaturalLess<W>, C> {
 public:
  typedef typename Q::StateId StateId;
  typedef W Weight;

  NaturalPruneQueue(const vector<W> &distance, Q *queue,
                    const C &class_func_, Weight threshold) :
      PruneQueue<Q, NaturalLess<W>, C>(distance, queue, less_,
                                       class_func_, threshold) {}

 private:
  NaturalLess<W> less_;
};


}  // namespace fst

#endif