summaryrefslogtreecommitdiff
path: root/abseil-cpp/absl/debugging/internal/stacktrace_aarch64-inl.inc
diff options
context:
space:
mode:
Diffstat (limited to 'abseil-cpp/absl/debugging/internal/stacktrace_aarch64-inl.inc')
-rw-r--r--abseil-cpp/absl/debugging/internal/stacktrace_aarch64-inl.inc118
1 files changed, 82 insertions, 36 deletions
diff --git a/abseil-cpp/absl/debugging/internal/stacktrace_aarch64-inl.inc b/abseil-cpp/absl/debugging/internal/stacktrace_aarch64-inl.inc
index 14a76f1..3f08716 100644
--- a/abseil-cpp/absl/debugging/internal/stacktrace_aarch64-inl.inc
+++ b/abseil-cpp/absl/debugging/internal/stacktrace_aarch64-inl.inc
@@ -13,13 +13,18 @@
#include <cassert>
#include <cstdint>
#include <iostream>
+#include <limits>
#include "absl/base/attributes.h"
#include "absl/debugging/internal/address_is_readable.h"
#include "absl/debugging/internal/vdso_support.h" // a no-op on non-elf or non-glibc systems
#include "absl/debugging/stacktrace.h"
-static const uintptr_t kUnknownFrameSize = 0;
+static const size_t kUnknownFrameSize = 0;
+// Stack end to use when we don't know the actual stack end
+// (effectively just the end of address space).
+constexpr uintptr_t kUnknownStackEnd =
+ std::numeric_limits<size_t>::max() - sizeof(void *);
#if defined(__linux__)
// Returns the address of the VDSO __kernel_rt_sigreturn function, if present.
@@ -37,8 +42,11 @@ static const unsigned char* GetKernelRtSigreturnAddress() {
absl::debugging_internal::VDSOSupport vdso;
if (vdso.IsPresent()) {
absl::debugging_internal::VDSOSupport::SymbolInfo symbol_info;
- if (!vdso.LookupSymbol("__kernel_rt_sigreturn", "LINUX_2.6.39", STT_FUNC,
- &symbol_info) ||
+ auto lookup = [&](int type) {
+ return vdso.LookupSymbol("__kernel_rt_sigreturn", "LINUX_2.6.39", type,
+ &symbol_info);
+ };
+ if ((!lookup(STT_FUNC) && !lookup(STT_NOTYPE)) ||
symbol_info.address == nullptr) {
// Unexpected: VDSO is present, yet the expected symbol is missing
// or null.
@@ -62,11 +70,12 @@ static const unsigned char* GetKernelRtSigreturnAddress() {
// Compute the size of a stack frame in [low..high). We assume that
// low < high. Return size of kUnknownFrameSize.
template<typename T>
-static inline uintptr_t ComputeStackFrameSize(const T* low,
- const T* high) {
+static inline size_t ComputeStackFrameSize(const T* low,
+ const T* high) {
const char* low_char_ptr = reinterpret_cast<const char *>(low);
const char* high_char_ptr = reinterpret_cast<const char *>(high);
- return low < high ? high_char_ptr - low_char_ptr : kUnknownFrameSize;
+ return low < high ? static_cast<size_t>(high_char_ptr - low_char_ptr)
+ : kUnknownFrameSize;
}
// Given a pointer to a stack frame, locate and return the calling
@@ -75,8 +84,9 @@ static inline uintptr_t ComputeStackFrameSize(const T* low,
// "STRICT_UNWINDING") to reduce the chance that a bad pointer is returned.
template<bool STRICT_UNWINDING, bool WITH_CONTEXT>
ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS // May read random elements from stack.
-ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY // May read random elements from stack.
-static void **NextStackFrame(void **old_frame_pointer, const void *uc) {
+ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY // May read random elements from stack.
+static void **NextStackFrame(void **old_frame_pointer, const void *uc,
+ size_t stack_low, size_t stack_high) {
void **new_frame_pointer = reinterpret_cast<void**>(*old_frame_pointer);
bool check_frame_size = true;
@@ -90,16 +100,21 @@ static void **NextStackFrame(void **old_frame_pointer, const void *uc) {
void **const pre_signal_frame_pointer =
reinterpret_cast<void **>(ucv->uc_mcontext.regs[29]);
+ // The most recent signal always needs special handling to find the frame
+ // pointer, but a nested signal does not. If pre_signal_frame_pointer is
+ // earlier in the stack than the old_frame_pointer, then use it. If it is
+ // later, then we have already unwound through it and it needs no special
+ // handling.
+ if (pre_signal_frame_pointer >= old_frame_pointer) {
+ new_frame_pointer = pre_signal_frame_pointer;
+ }
// Check that alleged frame pointer is actually readable. This is to
// prevent "double fault" in case we hit the first fault due to e.g.
// stack corruption.
if (!absl::debugging_internal::AddressIsReadable(
- pre_signal_frame_pointer))
+ new_frame_pointer))
return nullptr;
- // Alleged frame pointer is readable, use it for further unwinding.
- new_frame_pointer = pre_signal_frame_pointer;
-
// Skip frame size check if we return from a signal. We may be using a
// an alternate stack for signals.
check_frame_size = false;
@@ -107,18 +122,36 @@ static void **NextStackFrame(void **old_frame_pointer, const void *uc) {
}
#endif
- // aarch64 ABI requires stack pointer to be 16-byte-aligned.
- if ((reinterpret_cast<uintptr_t>(new_frame_pointer) & 15) != 0)
+ // The frame pointer should be 8-byte aligned.
+ if ((reinterpret_cast<uintptr_t>(new_frame_pointer) & 7) != 0)
return nullptr;
// Check frame size. In strict mode, we assume frames to be under
// 100,000 bytes. In non-strict mode, we relax the limit to 1MB.
if (check_frame_size) {
- const uintptr_t max_size = STRICT_UNWINDING ? 100000 : 1000000;
- const uintptr_t frame_size =
+ const size_t max_size = STRICT_UNWINDING ? 100000 : 1000000;
+ const size_t frame_size =
ComputeStackFrameSize(old_frame_pointer, new_frame_pointer);
- if (frame_size == kUnknownFrameSize || frame_size > max_size)
- return nullptr;
+ if (frame_size == kUnknownFrameSize)
+ return nullptr;
+ // A very large frame may mean corrupt memory or an erroneous frame
+ // pointer. But also maybe just a plain-old large frame. Assume that if the
+ // frame is within the known stack, then it is valid.
+ if (frame_size > max_size) {
+ if (stack_high < kUnknownStackEnd &&
+ static_cast<size_t>(getpagesize()) < stack_low) {
+ const uintptr_t new_fp_u =
+ reinterpret_cast<uintptr_t>(new_frame_pointer);
+ // Stack bounds are known.
+ if (!(stack_low < new_fp_u && new_fp_u <= stack_high)) {
+ // new_frame_pointer is not within the known stack.
+ return nullptr;
+ }
+ } else {
+ // Stack bounds are unknown, prefer truncated stack to possible crash.
+ return nullptr;
+ }
+ }
}
return new_frame_pointer;
@@ -134,51 +167,64 @@ static int UnwindImpl(void** result, int* sizes, int max_depth, int skip_count,
#else
# error reading stack point not yet supported on this platform.
#endif
-
skip_count++; // Skip the frame for this function.
int n = 0;
+ // Assume that the first page is not stack.
+ size_t stack_low = static_cast<size_t>(getpagesize());
+ size_t stack_high = kUnknownStackEnd;
+
// The frame pointer points to low address of a frame. The first 64-bit
// word of a frame points to the next frame up the call chain, which normally
// is just after the high address of the current frame. The second word of
- // a frame contains return adress of to the caller. To find a pc value
+ // a frame contains return address of to the caller. To find a pc value
// associated with the current frame, we need to go down a level in the call
// chain. So we remember return the address of the last frame seen. This
// does not work for the first stack frame, which belongs to UnwindImp() but
// we skip the frame for UnwindImp() anyway.
void* prev_return_address = nullptr;
+ // The nth frame size is the difference between the nth frame pointer and the
+ // the frame pointer below it in the call chain. There is no frame below the
+ // leaf frame, but this function is the leaf anyway, and we skip it.
+ void** prev_frame_pointer = nullptr;
- while (frame_pointer && n < max_depth) {
- // The absl::GetStackFrames routine is called when we are in some
- // informational context (the failure signal handler for example).
- // Use the non-strict unwinding rules to produce a stack trace
- // that is as complete as possible (even if it contains a few bogus
- // entries in some rare cases).
- void **next_frame_pointer =
- NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(frame_pointer, ucp);
-
+ while (frame_pointer && n < max_depth) {
if (skip_count > 0) {
skip_count--;
} else {
result[n] = prev_return_address;
if (IS_STACK_FRAMES) {
- sizes[n] = ComputeStackFrameSize(frame_pointer, next_frame_pointer);
+ sizes[n] = static_cast<int>(
+ ComputeStackFrameSize(prev_frame_pointer, frame_pointer));
}
n++;
}
prev_return_address = frame_pointer[1];
- frame_pointer = next_frame_pointer;
+ prev_frame_pointer = frame_pointer;
+ // The absl::GetStackFrames routine is called when we are in some
+ // informational context (the failure signal handler for example).
+ // Use the non-strict unwinding rules to produce a stack trace
+ // that is as complete as possible (even if it contains a few bogus
+ // entries in some rare cases).
+ frame_pointer = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(
+ frame_pointer, ucp, stack_low, stack_high);
}
+
if (min_dropped_frames != nullptr) {
// Implementation detail: we clamp the max of frames we are willing to
// count, so as not to spend too much time in the loop below.
const int kMaxUnwind = 200;
- int j = 0;
- for (; frame_pointer != nullptr && j < kMaxUnwind; j++) {
- frame_pointer =
- NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(frame_pointer, ucp);
+ int num_dropped_frames = 0;
+ for (int j = 0; frame_pointer != nullptr && j < kMaxUnwind; j++) {
+ if (skip_count > 0) {
+ skip_count--;
+ } else {
+ num_dropped_frames++;
+ }
+ frame_pointer = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(
+ frame_pointer, ucp, stack_low, stack_high);
}
- *min_dropped_frames = j;
+ *min_dropped_frames = num_dropped_frames;
}
return n;
}