summaryrefslogtreecommitdiff
path: root/abseil-cpp/absl/container/inlined_vector.h
diff options
context:
space:
mode:
Diffstat (limited to 'abseil-cpp/absl/container/inlined_vector.h')
-rw-r--r--abseil-cpp/absl/container/inlined_vector.h469
1 files changed, 313 insertions, 156 deletions
diff --git a/abseil-cpp/absl/container/inlined_vector.h b/abseil-cpp/absl/container/inlined_vector.h
index 90bb96e..04e2c38 100644
--- a/abseil-cpp/absl/container/inlined_vector.h
+++ b/abseil-cpp/absl/container/inlined_vector.h
@@ -36,7 +36,6 @@
#define ABSL_CONTAINER_INLINED_VECTOR_H_
#include <algorithm>
-#include <cassert>
#include <cstddef>
#include <cstdlib>
#include <cstring>
@@ -53,6 +52,7 @@
#include "absl/base/port.h"
#include "absl/container/internal/inlined_vector.h"
#include "absl/memory/memory.h"
+#include "absl/meta/type_traits.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
@@ -72,37 +72,49 @@ class InlinedVector {
using Storage = inlined_vector_internal::Storage<T, N, A>;
- using AllocatorTraits = typename Storage::AllocatorTraits;
- using RValueReference = typename Storage::RValueReference;
- using MoveIterator = typename Storage::MoveIterator;
- using IsMemcpyOk = typename Storage::IsMemcpyOk;
+ template <typename TheA>
+ using AllocatorTraits = inlined_vector_internal::AllocatorTraits<TheA>;
+ template <typename TheA>
+ using MoveIterator = inlined_vector_internal::MoveIterator<TheA>;
+ template <typename TheA>
+ using IsMoveAssignOk = inlined_vector_internal::IsMoveAssignOk<TheA>;
- template <typename Iterator>
+ template <typename TheA, typename Iterator>
using IteratorValueAdapter =
- typename Storage::template IteratorValueAdapter<Iterator>;
- using CopyValueAdapter = typename Storage::CopyValueAdapter;
- using DefaultValueAdapter = typename Storage::DefaultValueAdapter;
+ inlined_vector_internal::IteratorValueAdapter<TheA, Iterator>;
+ template <typename TheA>
+ using CopyValueAdapter = inlined_vector_internal::CopyValueAdapter<TheA>;
+ template <typename TheA>
+ using DefaultValueAdapter =
+ inlined_vector_internal::DefaultValueAdapter<TheA>;
template <typename Iterator>
using EnableIfAtLeastForwardIterator = absl::enable_if_t<
- inlined_vector_internal::IsAtLeastForwardIterator<Iterator>::value>;
+ inlined_vector_internal::IsAtLeastForwardIterator<Iterator>::value, int>;
template <typename Iterator>
using DisableIfAtLeastForwardIterator = absl::enable_if_t<
- !inlined_vector_internal::IsAtLeastForwardIterator<Iterator>::value>;
+ !inlined_vector_internal::IsAtLeastForwardIterator<Iterator>::value, int>;
+
+ using MemcpyPolicy = typename Storage::MemcpyPolicy;
+ using ElementwiseAssignPolicy = typename Storage::ElementwiseAssignPolicy;
+ using ElementwiseConstructPolicy =
+ typename Storage::ElementwiseConstructPolicy;
+ using MoveAssignmentPolicy = typename Storage::MoveAssignmentPolicy;
public:
- using allocator_type = typename Storage::allocator_type;
- using value_type = typename Storage::value_type;
- using pointer = typename Storage::pointer;
- using const_pointer = typename Storage::const_pointer;
- using size_type = typename Storage::size_type;
- using difference_type = typename Storage::difference_type;
- using reference = typename Storage::reference;
- using const_reference = typename Storage::const_reference;
- using iterator = typename Storage::iterator;
- using const_iterator = typename Storage::const_iterator;
- using reverse_iterator = typename Storage::reverse_iterator;
- using const_reverse_iterator = typename Storage::const_reverse_iterator;
+ using allocator_type = A;
+ using value_type = inlined_vector_internal::ValueType<A>;
+ using pointer = inlined_vector_internal::Pointer<A>;
+ using const_pointer = inlined_vector_internal::ConstPointer<A>;
+ using size_type = inlined_vector_internal::SizeType<A>;
+ using difference_type = inlined_vector_internal::DifferenceType<A>;
+ using reference = inlined_vector_internal::Reference<A>;
+ using const_reference = inlined_vector_internal::ConstReference<A>;
+ using iterator = inlined_vector_internal::Iterator<A>;
+ using const_iterator = inlined_vector_internal::ConstIterator<A>;
+ using reverse_iterator = inlined_vector_internal::ReverseIterator<A>;
+ using const_reverse_iterator =
+ inlined_vector_internal::ConstReverseIterator<A>;
// ---------------------------------------------------------------------------
// InlinedVector Constructors and Destructor
@@ -111,28 +123,28 @@ class InlinedVector {
// Creates an empty inlined vector with a value-initialized allocator.
InlinedVector() noexcept(noexcept(allocator_type())) : storage_() {}
- // Creates an empty inlined vector with a copy of `alloc`.
- explicit InlinedVector(const allocator_type& alloc) noexcept
- : storage_(alloc) {}
+ // Creates an empty inlined vector with a copy of `allocator`.
+ explicit InlinedVector(const allocator_type& allocator) noexcept
+ : storage_(allocator) {}
// Creates an inlined vector with `n` copies of `value_type()`.
explicit InlinedVector(size_type n,
- const allocator_type& alloc = allocator_type())
- : storage_(alloc) {
- storage_.Initialize(DefaultValueAdapter(), n);
+ const allocator_type& allocator = allocator_type())
+ : storage_(allocator) {
+ storage_.Initialize(DefaultValueAdapter<A>(), n);
}
// Creates an inlined vector with `n` copies of `v`.
InlinedVector(size_type n, const_reference v,
- const allocator_type& alloc = allocator_type())
- : storage_(alloc) {
- storage_.Initialize(CopyValueAdapter(v), n);
+ const allocator_type& allocator = allocator_type())
+ : storage_(allocator) {
+ storage_.Initialize(CopyValueAdapter<A>(std::addressof(v)), n);
}
// Creates an inlined vector with copies of the elements of `list`.
InlinedVector(std::initializer_list<value_type> list,
- const allocator_type& alloc = allocator_type())
- : InlinedVector(list.begin(), list.end(), alloc) {}
+ const allocator_type& allocator = allocator_type())
+ : InlinedVector(list.begin(), list.end(), allocator) {}
// Creates an inlined vector with elements constructed from the provided
// forward iterator range [`first`, `last`).
@@ -141,38 +153,50 @@ class InlinedVector {
// this constructor with two integral arguments and a call to the above
// `InlinedVector(size_type, const_reference)` constructor.
template <typename ForwardIterator,
- EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr>
+ EnableIfAtLeastForwardIterator<ForwardIterator> = 0>
InlinedVector(ForwardIterator first, ForwardIterator last,
- const allocator_type& alloc = allocator_type())
- : storage_(alloc) {
- storage_.Initialize(IteratorValueAdapter<ForwardIterator>(first),
- std::distance(first, last));
+ const allocator_type& allocator = allocator_type())
+ : storage_(allocator) {
+ storage_.Initialize(IteratorValueAdapter<A, ForwardIterator>(first),
+ static_cast<size_t>(std::distance(first, last)));
}
// Creates an inlined vector with elements constructed from the provided input
// iterator range [`first`, `last`).
template <typename InputIterator,
- DisableIfAtLeastForwardIterator<InputIterator>* = nullptr>
+ DisableIfAtLeastForwardIterator<InputIterator> = 0>
InlinedVector(InputIterator first, InputIterator last,
- const allocator_type& alloc = allocator_type())
- : storage_(alloc) {
+ const allocator_type& allocator = allocator_type())
+ : storage_(allocator) {
std::copy(first, last, std::back_inserter(*this));
}
// Creates an inlined vector by copying the contents of `other` using
// `other`'s allocator.
InlinedVector(const InlinedVector& other)
- : InlinedVector(other, *other.storage_.GetAllocPtr()) {}
+ : InlinedVector(other, other.storage_.GetAllocator()) {}
+
+ // Creates an inlined vector by copying the contents of `other` using the
+ // provided `allocator`.
+ InlinedVector(const InlinedVector& other, const allocator_type& allocator)
+ : storage_(allocator) {
+ // Fast path: if the other vector is empty, there's nothing for us to do.
+ if (other.empty()) {
+ return;
+ }
- // Creates an inlined vector by copying the contents of `other` using `alloc`.
- InlinedVector(const InlinedVector& other, const allocator_type& alloc)
- : storage_(alloc) {
- if (IsMemcpyOk::value && !other.storage_.GetIsAllocated()) {
+ // Fast path: if the value type is trivially copy constructible, we know the
+ // allocator doesn't do anything fancy, and there is nothing on the heap
+ // then we know it is legal for us to simply memcpy the other vector's
+ // inlined bytes to form our copy of its elements.
+ if (absl::is_trivially_copy_constructible<value_type>::value &&
+ std::is_same<A, std::allocator<value_type>>::value &&
+ !other.storage_.GetIsAllocated()) {
storage_.MemcpyFrom(other.storage_);
- } else {
- storage_.Initialize(IteratorValueAdapter<const_pointer>(other.data()),
- other.size());
+ return;
}
+
+ storage_.InitFrom(other.storage_);
}
// Creates an inlined vector by moving in the contents of `other` without
@@ -192,55 +216,81 @@ class InlinedVector {
InlinedVector(InlinedVector&& other) noexcept(
absl::allocator_is_nothrow<allocator_type>::value ||
std::is_nothrow_move_constructible<value_type>::value)
- : storage_(*other.storage_.GetAllocPtr()) {
- if (IsMemcpyOk::value) {
+ : storage_(other.storage_.GetAllocator()) {
+ // Fast path: if the value type can be trivially relocated (i.e. moved from
+ // and destroyed), and we know the allocator doesn't do anything fancy, then
+ // it's safe for us to simply adopt the contents of the storage for `other`
+ // and remove its own reference to them. It's as if we had individually
+ // move-constructed each value and then destroyed the original.
+ if (absl::is_trivially_relocatable<value_type>::value &&
+ std::is_same<A, std::allocator<value_type>>::value) {
storage_.MemcpyFrom(other.storage_);
-
other.storage_.SetInlinedSize(0);
- } else if (other.storage_.GetIsAllocated()) {
- storage_.SetAllocatedData(other.storage_.GetAllocatedData(),
- other.storage_.GetAllocatedCapacity());
+ return;
+ }
+
+ // Fast path: if the other vector is on the heap, we can simply take over
+ // its allocation.
+ if (other.storage_.GetIsAllocated()) {
+ storage_.SetAllocation({other.storage_.GetAllocatedData(),
+ other.storage_.GetAllocatedCapacity()});
storage_.SetAllocatedSize(other.storage_.GetSize());
other.storage_.SetInlinedSize(0);
- } else {
- IteratorValueAdapter<MoveIterator> other_values(
- MoveIterator(other.storage_.GetInlinedData()));
+ return;
+ }
- inlined_vector_internal::ConstructElements(
- storage_.GetAllocPtr(), storage_.GetInlinedData(), &other_values,
- other.storage_.GetSize());
+ // Otherwise we must move each element individually.
+ IteratorValueAdapter<A, MoveIterator<A>> other_values(
+ MoveIterator<A>(other.storage_.GetInlinedData()));
- storage_.SetInlinedSize(other.storage_.GetSize());
- }
+ inlined_vector_internal::ConstructElements<A>(
+ storage_.GetAllocator(), storage_.GetInlinedData(), other_values,
+ other.storage_.GetSize());
+
+ storage_.SetInlinedSize(other.storage_.GetSize());
}
// Creates an inlined vector by moving in the contents of `other` with a copy
- // of `alloc`.
+ // of `allocator`.
//
- // NOTE: if `other`'s allocator is not equal to `alloc`, even if `other`
+ // NOTE: if `other`'s allocator is not equal to `allocator`, even if `other`
// contains allocated memory, this move constructor will still allocate. Since
// allocation is performed, this constructor can only be `noexcept` if the
// specified allocator is also `noexcept`.
- InlinedVector(InlinedVector&& other, const allocator_type& alloc) noexcept(
- absl::allocator_is_nothrow<allocator_type>::value)
- : storage_(alloc) {
- if (IsMemcpyOk::value) {
+ InlinedVector(
+ InlinedVector&& other,
+ const allocator_type&
+ allocator) noexcept(absl::allocator_is_nothrow<allocator_type>::value)
+ : storage_(allocator) {
+ // Fast path: if the value type can be trivially relocated (i.e. moved from
+ // and destroyed), and we know the allocator doesn't do anything fancy, then
+ // it's safe for us to simply adopt the contents of the storage for `other`
+ // and remove its own reference to them. It's as if we had individually
+ // move-constructed each value and then destroyed the original.
+ if (absl::is_trivially_relocatable<value_type>::value &&
+ std::is_same<A, std::allocator<value_type>>::value) {
storage_.MemcpyFrom(other.storage_);
-
other.storage_.SetInlinedSize(0);
- } else if ((*storage_.GetAllocPtr() == *other.storage_.GetAllocPtr()) &&
- other.storage_.GetIsAllocated()) {
- storage_.SetAllocatedData(other.storage_.GetAllocatedData(),
- other.storage_.GetAllocatedCapacity());
+ return;
+ }
+
+ // Fast path: if the other vector is on the heap and shared the same
+ // allocator, we can simply take over its allocation.
+ if ((storage_.GetAllocator() == other.storage_.GetAllocator()) &&
+ other.storage_.GetIsAllocated()) {
+ storage_.SetAllocation({other.storage_.GetAllocatedData(),
+ other.storage_.GetAllocatedCapacity()});
storage_.SetAllocatedSize(other.storage_.GetSize());
other.storage_.SetInlinedSize(0);
- } else {
- storage_.Initialize(
- IteratorValueAdapter<MoveIterator>(MoveIterator(other.data())),
- other.size());
+ return;
}
+
+ // Otherwise we must move each element individually.
+ storage_.Initialize(
+ IteratorValueAdapter<A, MoveIterator<A>>(MoveIterator<A>(other.data())),
+ other.size());
}
~InlinedVector() {}
@@ -265,8 +315,10 @@ class InlinedVector {
size_type max_size() const noexcept {
// One bit of the size storage is used to indicate whether the inlined
// vector contains allocated memory. As a result, the maximum size that the
- // inlined vector can express is half of the max for `size_type`.
- return (std::numeric_limits<size_type>::max)() / 2;
+ // inlined vector can express is the minimum of the limit of how many
+ // objects we can allocate and std::numeric_limits<size_type>::max() / 2.
+ return (std::min)(AllocatorTraits<A>::max_size(storage_.GetAllocator()),
+ (std::numeric_limits<size_type>::max)() / 2);
}
// `InlinedVector::capacity()`
@@ -289,7 +341,7 @@ class InlinedVector {
// can be used to access and modify the contained elements.
//
// NOTE: only elements within [`data()`, `data() + size()`) are valid.
- pointer data() noexcept {
+ pointer data() noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
return storage_.GetIsAllocated() ? storage_.GetAllocatedData()
: storage_.GetInlinedData();
}
@@ -299,7 +351,7 @@ class InlinedVector {
// modify the contained elements.
//
// NOTE: only elements within [`data()`, `data() + size()`) are valid.
- const_pointer data() const noexcept {
+ const_pointer data() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
return storage_.GetIsAllocated() ? storage_.GetAllocatedData()
: storage_.GetInlinedData();
}
@@ -307,14 +359,14 @@ class InlinedVector {
// `InlinedVector::operator[](...)`
//
// Returns a `reference` to the `i`th element of the inlined vector.
- reference operator[](size_type i) {
+ reference operator[](size_type i) ABSL_ATTRIBUTE_LIFETIME_BOUND {
ABSL_HARDENING_ASSERT(i < size());
return data()[i];
}
// Overload of `InlinedVector::operator[](...)` that returns a
// `const_reference` to the `i`th element of the inlined vector.
- const_reference operator[](size_type i) const {
+ const_reference operator[](size_type i) const ABSL_ATTRIBUTE_LIFETIME_BOUND {
ABSL_HARDENING_ASSERT(i < size());
return data()[i];
}
@@ -325,7 +377,7 @@ class InlinedVector {
//
// NOTE: if `i` is not within the required range of `InlinedVector::at(...)`,
// in both debug and non-debug builds, `std::out_of_range` will be thrown.
- reference at(size_type i) {
+ reference at(size_type i) ABSL_ATTRIBUTE_LIFETIME_BOUND {
if (ABSL_PREDICT_FALSE(i >= size())) {
base_internal::ThrowStdOutOfRange(
"`InlinedVector::at(size_type)` failed bounds check");
@@ -338,7 +390,7 @@ class InlinedVector {
//
// NOTE: if `i` is not within the required range of `InlinedVector::at(...)`,
// in both debug and non-debug builds, `std::out_of_range` will be thrown.
- const_reference at(size_type i) const {
+ const_reference at(size_type i) const ABSL_ATTRIBUTE_LIFETIME_BOUND {
if (ABSL_PREDICT_FALSE(i >= size())) {
base_internal::ThrowStdOutOfRange(
"`InlinedVector::at(size_type) const` failed bounds check");
@@ -349,14 +401,14 @@ class InlinedVector {
// `InlinedVector::front()`
//
// Returns a `reference` to the first element of the inlined vector.
- reference front() {
+ reference front() ABSL_ATTRIBUTE_LIFETIME_BOUND {
ABSL_HARDENING_ASSERT(!empty());
return data()[0];
}
// Overload of `InlinedVector::front()` that returns a `const_reference` to
// the first element of the inlined vector.
- const_reference front() const {
+ const_reference front() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
ABSL_HARDENING_ASSERT(!empty());
return data()[0];
}
@@ -364,14 +416,14 @@ class InlinedVector {
// `InlinedVector::back()`
//
// Returns a `reference` to the last element of the inlined vector.
- reference back() {
+ reference back() ABSL_ATTRIBUTE_LIFETIME_BOUND {
ABSL_HARDENING_ASSERT(!empty());
return data()[size() - 1];
}
// Overload of `InlinedVector::back()` that returns a `const_reference` to the
// last element of the inlined vector.
- const_reference back() const {
+ const_reference back() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
ABSL_HARDENING_ASSERT(!empty());
return data()[size() - 1];
}
@@ -379,68 +431,87 @@ class InlinedVector {
// `InlinedVector::begin()`
//
// Returns an `iterator` to the beginning of the inlined vector.
- iterator begin() noexcept { return data(); }
+ iterator begin() noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND { return data(); }
// Overload of `InlinedVector::begin()` that returns a `const_iterator` to
// the beginning of the inlined vector.
- const_iterator begin() const noexcept { return data(); }
+ const_iterator begin() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
+ return data();
+ }
// `InlinedVector::end()`
//
// Returns an `iterator` to the end of the inlined vector.
- iterator end() noexcept { return data() + size(); }
+ iterator end() noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
+ return data() + size();
+ }
// Overload of `InlinedVector::end()` that returns a `const_iterator` to the
// end of the inlined vector.
- const_iterator end() const noexcept { return data() + size(); }
+ const_iterator end() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
+ return data() + size();
+ }
// `InlinedVector::cbegin()`
//
// Returns a `const_iterator` to the beginning of the inlined vector.
- const_iterator cbegin() const noexcept { return begin(); }
+ const_iterator cbegin() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
+ return begin();
+ }
// `InlinedVector::cend()`
//
// Returns a `const_iterator` to the end of the inlined vector.
- const_iterator cend() const noexcept { return end(); }
+ const_iterator cend() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
+ return end();
+ }
// `InlinedVector::rbegin()`
//
// Returns a `reverse_iterator` from the end of the inlined vector.
- reverse_iterator rbegin() noexcept { return reverse_iterator(end()); }
+ reverse_iterator rbegin() noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
+ return reverse_iterator(end());
+ }
// Overload of `InlinedVector::rbegin()` that returns a
// `const_reverse_iterator` from the end of the inlined vector.
- const_reverse_iterator rbegin() const noexcept {
+ const_reverse_iterator rbegin() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
return const_reverse_iterator(end());
}
// `InlinedVector::rend()`
//
// Returns a `reverse_iterator` from the beginning of the inlined vector.
- reverse_iterator rend() noexcept { return reverse_iterator(begin()); }
+ reverse_iterator rend() noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
+ return reverse_iterator(begin());
+ }
// Overload of `InlinedVector::rend()` that returns a `const_reverse_iterator`
// from the beginning of the inlined vector.
- const_reverse_iterator rend() const noexcept {
+ const_reverse_iterator rend() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
return const_reverse_iterator(begin());
}
// `InlinedVector::crbegin()`
//
// Returns a `const_reverse_iterator` from the end of the inlined vector.
- const_reverse_iterator crbegin() const noexcept { return rbegin(); }
+ const_reverse_iterator crbegin() const noexcept
+ ABSL_ATTRIBUTE_LIFETIME_BOUND {
+ return rbegin();
+ }
// `InlinedVector::crend()`
//
// Returns a `const_reverse_iterator` from the beginning of the inlined
// vector.
- const_reverse_iterator crend() const noexcept { return rend(); }
+ const_reverse_iterator crend() const noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
+ return rend();
+ }
// `InlinedVector::get_allocator()`
//
// Returns a copy of the inlined vector's allocator.
- allocator_type get_allocator() const { return *storage_.GetAllocPtr(); }
+ allocator_type get_allocator() const { return storage_.GetAllocator(); }
// ---------------------------------------------------------------------------
// InlinedVector Member Mutators
@@ -474,18 +545,7 @@ class InlinedVector {
// unspecified state.
InlinedVector& operator=(InlinedVector&& other) {
if (ABSL_PREDICT_TRUE(this != std::addressof(other))) {
- if (IsMemcpyOk::value || other.storage_.GetIsAllocated()) {
- inlined_vector_internal::DestroyElements(storage_.GetAllocPtr(), data(),
- size());
- storage_.DeallocateIfAllocated();
- storage_.MemcpyFrom(other.storage_);
-
- other.storage_.SetInlinedSize(0);
- } else {
- storage_.Assign(IteratorValueAdapter<MoveIterator>(
- MoveIterator(other.storage_.GetInlinedData())),
- other.size());
- }
+ MoveAssignment(MoveAssignmentPolicy{}, std::move(other));
}
return *this;
@@ -495,7 +555,7 @@ class InlinedVector {
//
// Replaces the contents of the inlined vector with `n` copies of `v`.
void assign(size_type n, const_reference v) {
- storage_.Assign(CopyValueAdapter(v), n);
+ storage_.Assign(CopyValueAdapter<A>(std::addressof(v)), n);
}
// Overload of `InlinedVector::assign(...)` that replaces the contents of the
@@ -509,10 +569,10 @@ class InlinedVector {
//
// NOTE: this overload is for iterators that are "forward" category or better.
template <typename ForwardIterator,
- EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr>
+ EnableIfAtLeastForwardIterator<ForwardIterator> = 0>
void assign(ForwardIterator first, ForwardIterator last) {
- storage_.Assign(IteratorValueAdapter<ForwardIterator>(first),
- std::distance(first, last));
+ storage_.Assign(IteratorValueAdapter<A, ForwardIterator>(first),
+ static_cast<size_t>(std::distance(first, last)));
}
// Overload of `InlinedVector::assign(...)` to replace the contents of the
@@ -520,7 +580,7 @@ class InlinedVector {
//
// NOTE: this overload is for iterators that are "input" category.
template <typename InputIterator,
- DisableIfAtLeastForwardIterator<InputIterator>* = nullptr>
+ DisableIfAtLeastForwardIterator<InputIterator> = 0>
void assign(InputIterator first, InputIterator last) {
size_type i = 0;
for (; i < size() && first != last; ++i, static_cast<void>(++first)) {
@@ -539,7 +599,7 @@ class InlinedVector {
// is larger than `size()`, new elements are value-initialized.
void resize(size_type n) {
ABSL_HARDENING_ASSERT(n <= max_size());
- storage_.Resize(DefaultValueAdapter(), n);
+ storage_.Resize(DefaultValueAdapter<A>(), n);
}
// Overload of `InlinedVector::resize(...)` that resizes the inlined vector to
@@ -549,33 +609,49 @@ class InlinedVector {
// is larger than `size()`, new elements are copied-constructed from `v`.
void resize(size_type n, const_reference v) {
ABSL_HARDENING_ASSERT(n <= max_size());
- storage_.Resize(CopyValueAdapter(v), n);
+ storage_.Resize(CopyValueAdapter<A>(std::addressof(v)), n);
}
// `InlinedVector::insert(...)`
//
// Inserts a copy of `v` at `pos`, returning an `iterator` to the newly
// inserted element.
- iterator insert(const_iterator pos, const_reference v) {
+ iterator insert(const_iterator pos,
+ const_reference v) ABSL_ATTRIBUTE_LIFETIME_BOUND {
return emplace(pos, v);
}
// Overload of `InlinedVector::insert(...)` that inserts `v` at `pos` using
// move semantics, returning an `iterator` to the newly inserted element.
- iterator insert(const_iterator pos, RValueReference v) {
+ iterator insert(const_iterator pos,
+ value_type&& v) ABSL_ATTRIBUTE_LIFETIME_BOUND {
return emplace(pos, std::move(v));
}
// Overload of `InlinedVector::insert(...)` that inserts `n` contiguous copies
// of `v` starting at `pos`, returning an `iterator` pointing to the first of
// the newly inserted elements.
- iterator insert(const_iterator pos, size_type n, const_reference v) {
+ iterator insert(const_iterator pos, size_type n,
+ const_reference v) ABSL_ATTRIBUTE_LIFETIME_BOUND {
ABSL_HARDENING_ASSERT(pos >= begin());
ABSL_HARDENING_ASSERT(pos <= end());
if (ABSL_PREDICT_TRUE(n != 0)) {
value_type dealias = v;
- return storage_.Insert(pos, CopyValueAdapter(dealias), n);
+ // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102329#c2
+ // It appears that GCC thinks that since `pos` is a const pointer and may
+ // point to uninitialized memory at this point, a warning should be
+ // issued. But `pos` is actually only used to compute an array index to
+ // write to.
+#if !defined(__clang__) && defined(__GNUC__)
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
+#endif
+ return storage_.Insert(pos, CopyValueAdapter<A>(std::addressof(dealias)),
+ n);
+#if !defined(__clang__) && defined(__GNUC__)
+#pragma GCC diagnostic pop
+#endif
} else {
return const_cast<iterator>(pos);
}
@@ -584,7 +660,8 @@ class InlinedVector {
// Overload of `InlinedVector::insert(...)` that inserts copies of the
// elements of `list` starting at `pos`, returning an `iterator` pointing to
// the first of the newly inserted elements.
- iterator insert(const_iterator pos, std::initializer_list<value_type> list) {
+ iterator insert(const_iterator pos, std::initializer_list<value_type> list)
+ ABSL_ATTRIBUTE_LIFETIME_BOUND {
return insert(pos, list.begin(), list.end());
}
@@ -594,15 +671,16 @@ class InlinedVector {
//
// NOTE: this overload is for iterators that are "forward" category or better.
template <typename ForwardIterator,
- EnableIfAtLeastForwardIterator<ForwardIterator>* = nullptr>
+ EnableIfAtLeastForwardIterator<ForwardIterator> = 0>
iterator insert(const_iterator pos, ForwardIterator first,
- ForwardIterator last) {
+ ForwardIterator last) ABSL_ATTRIBUTE_LIFETIME_BOUND {
ABSL_HARDENING_ASSERT(pos >= begin());
ABSL_HARDENING_ASSERT(pos <= end());
if (ABSL_PREDICT_TRUE(first != last)) {
- return storage_.Insert(pos, IteratorValueAdapter<ForwardIterator>(first),
- std::distance(first, last));
+ return storage_.Insert(
+ pos, IteratorValueAdapter<A, ForwardIterator>(first),
+ static_cast<size_type>(std::distance(first, last)));
} else {
return const_cast<iterator>(pos);
}
@@ -614,12 +692,13 @@ class InlinedVector {
//
// NOTE: this overload is for iterators that are "input" category.
template <typename InputIterator,
- DisableIfAtLeastForwardIterator<InputIterator>* = nullptr>
- iterator insert(const_iterator pos, InputIterator first, InputIterator last) {
+ DisableIfAtLeastForwardIterator<InputIterator> = 0>
+ iterator insert(const_iterator pos, InputIterator first,
+ InputIterator last) ABSL_ATTRIBUTE_LIFETIME_BOUND {
ABSL_HARDENING_ASSERT(pos >= begin());
ABSL_HARDENING_ASSERT(pos <= end());
- size_type index = std::distance(cbegin(), pos);
+ size_type index = static_cast<size_type>(std::distance(cbegin(), pos));
for (size_type i = index; first != last; ++i, static_cast<void>(++first)) {
insert(data() + i, *first);
}
@@ -632,15 +711,28 @@ class InlinedVector {
// Constructs and inserts an element using `args...` in the inlined vector at
// `pos`, returning an `iterator` pointing to the newly emplaced element.
template <typename... Args>
- iterator emplace(const_iterator pos, Args&&... args) {
+ iterator emplace(const_iterator pos,
+ Args&&... args) ABSL_ATTRIBUTE_LIFETIME_BOUND {
ABSL_HARDENING_ASSERT(pos >= begin());
ABSL_HARDENING_ASSERT(pos <= end());
value_type dealias(std::forward<Args>(args)...);
+ // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102329#c2
+ // It appears that GCC thinks that since `pos` is a const pointer and may
+ // point to uninitialized memory at this point, a warning should be
+ // issued. But `pos` is actually only used to compute an array index to
+ // write to.
+#if !defined(__clang__) && defined(__GNUC__)
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
+#endif
return storage_.Insert(pos,
- IteratorValueAdapter<MoveIterator>(
- MoveIterator(std::addressof(dealias))),
+ IteratorValueAdapter<A, MoveIterator<A>>(
+ MoveIterator<A>(std::addressof(dealias))),
1);
+#if !defined(__clang__) && defined(__GNUC__)
+#pragma GCC diagnostic pop
+#endif
}
// `InlinedVector::emplace_back(...)`
@@ -648,7 +740,7 @@ class InlinedVector {
// Constructs and inserts an element using `args...` in the inlined vector at
// `end()`, returning a `reference` to the newly emplaced element.
template <typename... Args>
- reference emplace_back(Args&&... args) {
+ reference emplace_back(Args&&... args) ABSL_ATTRIBUTE_LIFETIME_BOUND {
return storage_.EmplaceBack(std::forward<Args>(args)...);
}
@@ -659,7 +751,7 @@ class InlinedVector {
// Overload of `InlinedVector::push_back(...)` for inserting `v` at `end()`
// using move semantics.
- void push_back(RValueReference v) {
+ void push_back(value_type&& v) {
static_cast<void>(emplace_back(std::move(v)));
}
@@ -669,7 +761,7 @@ class InlinedVector {
void pop_back() noexcept {
ABSL_HARDENING_ASSERT(!empty());
- AllocatorTraits::destroy(*storage_.GetAllocPtr(), data() + (size() - 1));
+ AllocatorTraits<A>::destroy(storage_.GetAllocator(), data() + (size() - 1));
storage_.SubtractSize(1);
}
@@ -678,8 +770,8 @@ class InlinedVector {
// Erases the element at `pos`, returning an `iterator` pointing to where the
// erased element was located.
//
- // NOTE: may return `end()`, which is not dereferencable.
- iterator erase(const_iterator pos) {
+ // NOTE: may return `end()`, which is not dereferenceable.
+ iterator erase(const_iterator pos) ABSL_ATTRIBUTE_LIFETIME_BOUND {
ABSL_HARDENING_ASSERT(pos >= begin());
ABSL_HARDENING_ASSERT(pos < end());
@@ -690,8 +782,9 @@ class InlinedVector {
// range [`from`, `to`), returning an `iterator` pointing to where the first
// erased element was located.
//
- // NOTE: may return `end()`, which is not dereferencable.
- iterator erase(const_iterator from, const_iterator to) {
+ // NOTE: may return `end()`, which is not dereferenceable.
+ iterator erase(const_iterator from,
+ const_iterator to) ABSL_ATTRIBUTE_LIFETIME_BOUND {
ABSL_HARDENING_ASSERT(from >= begin());
ABSL_HARDENING_ASSERT(from <= to);
ABSL_HARDENING_ASSERT(to <= end());
@@ -708,8 +801,8 @@ class InlinedVector {
// Destroys all elements in the inlined vector, setting the size to `0` and
// deallocating any held memory.
void clear() noexcept {
- inlined_vector_internal::DestroyElements(storage_.GetAllocPtr(), data(),
- size());
+ inlined_vector_internal::DestroyAdapter<A>::DestroyElements(
+ storage_.GetAllocator(), data(), size());
storage_.DeallocateIfAllocated();
storage_.SetInlinedSize(0);
@@ -722,15 +815,12 @@ class InlinedVector {
// `InlinedVector::shrink_to_fit()`
//
- // Reduces memory usage by freeing unused memory. After being called, calls to
- // `capacity()` will be equal to `max(N, size())`.
- //
- // If `size() <= N` and the inlined vector contains allocated memory, the
- // elements will all be moved to the inlined space and the allocated memory
- // will be deallocated.
+ // Attempts to reduce memory usage by moving elements to (or keeping elements
+ // in) the smallest available buffer sufficient for containing `size()`
+ // elements.
//
- // If `size() > N` and `size() < capacity()`, the elements will be moved to a
- // smaller allocation.
+ // If `size()` is sufficiently small, the elements will be moved into (or kept
+ // in) the inlined space.
void shrink_to_fit() {
if (storage_.GetIsAllocated()) {
storage_.ShrinkToFit();
@@ -750,6 +840,73 @@ class InlinedVector {
template <typename H, typename TheT, size_t TheN, typename TheA>
friend H AbslHashValue(H h, const absl::InlinedVector<TheT, TheN, TheA>& a);
+ void MoveAssignment(MemcpyPolicy, InlinedVector&& other) {
+ // Assumption check: we shouldn't be told to use memcpy to implement move
+ // assignment unless we have trivially destructible elements and an
+ // allocator that does nothing fancy.
+ static_assert(absl::is_trivially_destructible<value_type>::value, "");
+ static_assert(std::is_same<A, std::allocator<value_type>>::value, "");
+
+ // Throw away our existing heap allocation, if any. There is no need to
+ // destroy the existing elements one by one because we know they are
+ // trivially destructible.
+ storage_.DeallocateIfAllocated();
+
+ // Adopt the other vector's inline elements or heap allocation.
+ storage_.MemcpyFrom(other.storage_);
+ other.storage_.SetInlinedSize(0);
+ }
+
+ // Destroy our existing elements, if any, and adopt the heap-allocated
+ // elements of the other vector.
+ //
+ // REQUIRES: other.storage_.GetIsAllocated()
+ void DestroyExistingAndAdopt(InlinedVector&& other) {
+ ABSL_HARDENING_ASSERT(other.storage_.GetIsAllocated());
+
+ inlined_vector_internal::DestroyAdapter<A>::DestroyElements(
+ storage_.GetAllocator(), data(), size());
+ storage_.DeallocateIfAllocated();
+
+ storage_.MemcpyFrom(other.storage_);
+ other.storage_.SetInlinedSize(0);
+ }
+
+ void MoveAssignment(ElementwiseAssignPolicy, InlinedVector&& other) {
+ // Fast path: if the other vector is on the heap then we don't worry about
+ // actually move-assigning each element. Instead we only throw away our own
+ // existing elements and adopt the heap allocation of the other vector.
+ if (other.storage_.GetIsAllocated()) {
+ DestroyExistingAndAdopt(std::move(other));
+ return;
+ }
+
+ storage_.Assign(IteratorValueAdapter<A, MoveIterator<A>>(
+ MoveIterator<A>(other.storage_.GetInlinedData())),
+ other.size());
+ }
+
+ void MoveAssignment(ElementwiseConstructPolicy, InlinedVector&& other) {
+ // Fast path: if the other vector is on the heap then we don't worry about
+ // actually move-assigning each element. Instead we only throw away our own
+ // existing elements and adopt the heap allocation of the other vector.
+ if (other.storage_.GetIsAllocated()) {
+ DestroyExistingAndAdopt(std::move(other));
+ return;
+ }
+
+ inlined_vector_internal::DestroyAdapter<A>::DestroyElements(
+ storage_.GetAllocator(), data(), size());
+ storage_.DeallocateIfAllocated();
+
+ IteratorValueAdapter<A, MoveIterator<A>> other_values(
+ MoveIterator<A>(other.storage_.GetInlinedData()));
+ inlined_vector_internal::ConstructElements<A>(
+ storage_.GetAllocator(), storage_.GetInlinedData(), other_values,
+ other.storage_.GetSize());
+ storage_.SetInlinedSize(other.storage_.GetSize());
+ }
+
Storage storage_;
};
@@ -774,7 +931,7 @@ bool operator==(const absl::InlinedVector<T, N, A>& a,
const absl::InlinedVector<T, N, A>& b) {
auto a_data = a.data();
auto b_data = b.data();
- return absl::equal(a_data, a_data + a.size(), b_data, b_data + b.size());
+ return std::equal(a_data, a_data + a.size(), b_data, b_data + b.size());
}
// `operator!=(...)`