summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorVictor Chang <vichang@google.com>2024-04-19 14:14:48 +0100
committerVictor Chang <vichang@google.com>2024-04-19 14:17:02 +0100
commitc3d88a939e51c0dc269275373f86355029a68ecf (patch)
tree5e2677c1ebacaa9758773efccf3dad755fce778a
parent3a89ee6eeb9deebb9c667a34465a471e558475c7 (diff)
downloadicu-c3d88a939e51c0dc269275373f86355029a68ecf.tar.gz
Keep an copy CalendarAstronomer of in android_icu4j/src/icu74
In the ICU4J 75, due to ICU-22698, dead code is removed from CalendarAstronomer. However, it's still used by system server and and Wallpaper app. We keep a copy from ICU 74. Test: m droid Change-Id: I982ba9bc070ed3f1075e8ec680d1b2ddca4f81dc
-rw-r--r--android_icu4j/src/icu74/Android.bp46
-rw-r--r--android_icu4j/src/icu74/main/java/com/ibm/icu/impl/CalendarAstronomer.java1674
-rw-r--r--icu4j/Android.bp15
3 files changed, 1720 insertions, 15 deletions
diff --git a/android_icu4j/src/icu74/Android.bp b/android_icu4j/src/icu74/Android.bp
new file mode 100644
index 000000000..e9085323e
--- /dev/null
+++ b/android_icu4j/src/icu74/Android.bp
@@ -0,0 +1,46 @@
+//
+// Copyright (C) 2024 The Android Open Source Project
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+
+package {
+ default_team: "trendy_team_java_core_libraries",
+ default_visibility: ["//visibility:private"],
+ // See: http://go/android-license-faq
+ // A large-scale-change added 'default_applicable_licenses' to import
+ // all of the 'license_kinds' from "external_icu_license"
+ // to get the below license kinds:
+ // SPDX-license-identifier-Apache-2.0
+ // SPDX-license-identifier-BSD
+ // SPDX-license-identifier-ICU
+ // SPDX-license-identifier-MIT
+ // SPDX-license-identifier-Unicode-DFS
+ // legacy_unencumbered
+ default_applicable_licenses: ["external_icu_license"],
+}
+
+// Small static library used by TwilightService in the system server and WallpaperPicker2 app. To
+// avoid @CorePlaformApi, the system server doesn't use CalendarAstronomer in android.icu.
+// Don't link this in boot classpath or Zygote to avoid class collision with the
+// com.ibm.icu.impl.CalendarAstronomer in the app classloader.
+java_library_static {
+ name: "icu4j_calendar_astronomer",
+ host_supported: false,
+ sdk_version: "core_current",
+ srcs: ["main/java/com/ibm/icu/impl/CalendarAstronomer.java"],
+ visibility: [
+ "//frameworks/base/services/core",
+ "//packages/apps/WallpaperPicker2",
+ ],
+}
diff --git a/android_icu4j/src/icu74/main/java/com/ibm/icu/impl/CalendarAstronomer.java b/android_icu4j/src/icu74/main/java/com/ibm/icu/impl/CalendarAstronomer.java
new file mode 100644
index 000000000..1aaaf2b47
--- /dev/null
+++ b/android_icu4j/src/icu74/main/java/com/ibm/icu/impl/CalendarAstronomer.java
@@ -0,0 +1,1674 @@
+// © 2016 and later: Unicode, Inc. and others.
+// License & terms of use: http://www.unicode.org/copyright.html
+/*
+ *******************************************************************************
+ * Copyright (C) 1996-2011, International Business Machines Corporation and *
+ * others. All Rights Reserved. *
+ *******************************************************************************
+ */
+
+package com.ibm.icu.impl;
+
+import java.util.Date;
+import java.util.TimeZone;
+
+/**
+ * <code>CalendarAstronomer</code> is a class that can perform the calculations to
+ * determine the positions of the sun and moon, the time of sunrise and
+ * sunset, and other astronomy-related data. The calculations it performs
+ * are in some cases quite complicated, and this utility class saves you
+ * the trouble of worrying about them.
+ * <p>
+ * The measurement of time is a very important part of astronomy. Because
+ * astronomical bodies are constantly in motion, observations are only valid
+ * at a given moment in time. Accordingly, each <code>CalendarAstronomer</code>
+ * object has a <code>time</code> property that determines the date
+ * and time for which its calculations are performed. You can set and
+ * retrieve this property with {@link #setDate setDate}, {@link #getDate getDate}
+ * and related methods.
+ * <p>
+ * Almost all of the calculations performed by this class, or by any
+ * astronomer, are approximations to various degrees of accuracy. The
+ * calculations in this class are mostly modelled after those described
+ * in the book
+ * <a href="http://www.amazon.com/exec/obidos/ISBN=0521356997" target="_top">
+ * Practical Astronomy With Your Calculator</a>, by Peter J.
+ * Duffett-Smith, Cambridge University Press, 1990. This is an excellent
+ * book, and if you want a greater understanding of how these calculations
+ * are performed it a very good, readable starting point.
+ * <p>
+ * <strong>WARNING:</strong> This class is very early in its development, and
+ * it is highly likely that its API will change to some degree in the future.
+ * At the moment, it basically does just enough to support {@link com.ibm.icu.util.IslamicCalendar}
+ * and {@link com.ibm.icu.util.ChineseCalendar}.
+ *
+ * @author Laura Werner
+ * @author Alan Liu
+ * @internal
+ */
+public class CalendarAstronomer {
+
+ //-------------------------------------------------------------------------
+ // Astronomical constants
+ //-------------------------------------------------------------------------
+
+ /**
+ * The number of standard hours in one sidereal day.
+ * Approximately 24.93.
+ * @internal
+ */
+ public static final double SIDEREAL_DAY = 23.93446960027;
+
+ /**
+ * The number of sidereal hours in one mean solar day.
+ * Approximately 24.07.
+ * @internal
+ */
+ public static final double SOLAR_DAY = 24.065709816;
+
+ /**
+ * The average number of solar days from one new moon to the next. This is the time
+ * it takes for the moon to return the same ecliptic longitude as the sun.
+ * It is longer than the sidereal month because the sun's longitude increases
+ * during the year due to the revolution of the earth around the sun.
+ * Approximately 29.53.
+ *
+ * @see #SIDEREAL_MONTH
+ * @internal
+ */
+ public static final double SYNODIC_MONTH = 29.530588853;
+
+ /**
+ * The average number of days it takes
+ * for the moon to return to the same ecliptic longitude relative to the
+ * stellar background. This is referred to as the sidereal month.
+ * It is shorter than the synodic month due to
+ * the revolution of the earth around the sun.
+ * Approximately 27.32.
+ *
+ * @see #SYNODIC_MONTH
+ * @internal
+ */
+ public static final double SIDEREAL_MONTH = 27.32166;
+
+ /**
+ * The average number number of days between successive vernal equinoxes.
+ * Due to the precession of the earth's
+ * axis, this is not precisely the same as the sidereal year.
+ * Approximately 365.24
+ *
+ * @see #SIDEREAL_YEAR
+ * @internal
+ */
+ public static final double TROPICAL_YEAR = 365.242191;
+
+ /**
+ * The average number of days it takes
+ * for the sun to return to the same position against the fixed stellar
+ * background. This is the duration of one orbit of the earth about the sun
+ * as it would appear to an outside observer.
+ * Due to the precession of the earth's
+ * axis, this is not precisely the same as the tropical year.
+ * Approximately 365.25.
+ *
+ * @see #TROPICAL_YEAR
+ * @internal
+ */
+ public static final double SIDEREAL_YEAR = 365.25636;
+
+ //-------------------------------------------------------------------------
+ // Time-related constants
+ //-------------------------------------------------------------------------
+
+ /**
+ * The number of milliseconds in one second.
+ * @internal
+ */
+ public static final int SECOND_MS = 1000;
+
+ /**
+ * The number of milliseconds in one minute.
+ * @internal
+ */
+ public static final int MINUTE_MS = 60*SECOND_MS;
+
+ /**
+ * The number of milliseconds in one hour.
+ * @internal
+ */
+ public static final int HOUR_MS = 60*MINUTE_MS;
+
+ /**
+ * The number of milliseconds in one day.
+ * @internal
+ */
+ public static final long DAY_MS = 24*HOUR_MS;
+
+ /**
+ * The start of the julian day numbering scheme used by astronomers, which
+ * is 1/1/4713 BC (Julian), 12:00 GMT. This is given as the number of milliseconds
+ * since 1/1/1970 AD (Gregorian), a negative number.
+ * Note that julian day numbers and
+ * the Julian calendar are <em>not</em> the same thing. Also note that
+ * julian days start at <em>noon</em>, not midnight.
+ * @internal
+ */
+ public static final long JULIAN_EPOCH_MS = -210866760000000L;
+
+// static {
+// Calendar cal = new GregorianCalendar(TimeZone.getTimeZone("GMT"));
+// cal.clear();
+// cal.set(cal.ERA, 0);
+// cal.set(cal.YEAR, 4713);
+// cal.set(cal.MONTH, cal.JANUARY);
+// cal.set(cal.DATE, 1);
+// cal.set(cal.HOUR_OF_DAY, 12);
+// System.out.println("1.5 Jan 4713 BC = " + cal.getTime().getTime());
+
+// cal.clear();
+// cal.set(cal.YEAR, 2000);
+// cal.set(cal.MONTH, cal.JANUARY);
+// cal.set(cal.DATE, 1);
+// cal.add(cal.DATE, -1);
+// System.out.println("0.0 Jan 2000 = " + cal.getTime().getTime());
+// }
+
+ /**
+ * Milliseconds value for 0.0 January 2000 AD.
+ */
+ static final long EPOCH_2000_MS = 946598400000L;
+
+ //-------------------------------------------------------------------------
+ // Assorted private data used for conversions
+ //-------------------------------------------------------------------------
+
+ // My own copies of these so compilers are more likely to optimize them away
+ static private final double PI = 3.14159265358979323846;
+ static private final double PI2 = PI * 2.0;
+
+ static private final double RAD_HOUR = 12 / PI; // radians -> hours
+ static private final double DEG_RAD = PI / 180; // degrees -> radians
+ static private final double RAD_DEG = 180 / PI; // radians -> degrees
+
+ //-------------------------------------------------------------------------
+ // Constructors
+ //-------------------------------------------------------------------------
+
+ /**
+ * Construct a new <code>CalendarAstronomer</code> object that is initialized to
+ * the current date and time.
+ * @internal
+ */
+ public CalendarAstronomer() {
+ this(System.currentTimeMillis());
+ }
+
+ /**
+ * Construct a new <code>CalendarAstronomer</code> object that is initialized to
+ * the specified date and time.
+ * @internal
+ */
+ public CalendarAstronomer(Date d) {
+ this(d.getTime());
+ }
+
+ /**
+ * Construct a new <code>CalendarAstronomer</code> object that is initialized to
+ * the specified time. The time is expressed as a number of milliseconds since
+ * January 1, 1970 AD (Gregorian).
+ *
+ * @see java.util.Date#getTime()
+ * @internal
+ */
+ public CalendarAstronomer(long aTime) {
+ time = aTime;
+ }
+
+ /**
+ * Construct a new <code>CalendarAstronomer</code> object with the given
+ * latitude and longitude. The object's time is set to the current
+ * date and time.
+ * <p>
+ * @param longitude The desired longitude, in <em>degrees</em> east of
+ * the Greenwich meridian.
+ *
+ * @param latitude The desired latitude, in <em>degrees</em>. Positive
+ * values signify North, negative South.
+ *
+ * @see java.util.Date#getTime()
+ * @internal
+ */
+ public CalendarAstronomer(double longitude, double latitude) {
+ this();
+ fLongitude = normPI(longitude * DEG_RAD);
+ fLatitude = normPI(latitude * DEG_RAD);
+ fGmtOffset = (long)(fLongitude * 24 * HOUR_MS / PI2);
+ }
+
+
+ //-------------------------------------------------------------------------
+ // Time and date getters and setters
+ //-------------------------------------------------------------------------
+
+ /**
+ * Set the current date and time of this <code>CalendarAstronomer</code> object. All
+ * astronomical calculations are performed based on this time setting.
+ *
+ * @param aTime the date and time, expressed as the number of milliseconds since
+ * 1/1/1970 0:00 GMT (Gregorian).
+ *
+ * @see #setDate
+ * @see #getTime
+ * @internal
+ */
+ public void setTime(long aTime) {
+ time = aTime;
+ clearCache();
+ }
+
+ /**
+ * Set the current date and time of this <code>CalendarAstronomer</code> object. All
+ * astronomical calculations are performed based on this time setting.
+ *
+ * @param date the time and date, expressed as a <code>Date</code> object.
+ *
+ * @see #setTime
+ * @see #getDate
+ * @internal
+ */
+ public void setDate(Date date) {
+ setTime(date.getTime());
+ }
+
+ /**
+ * Set the current date and time of this <code>CalendarAstronomer</code> object. All
+ * astronomical calculations are performed based on this time setting.
+ *
+ * @param jdn the desired time, expressed as a "julian day number",
+ * which is the number of elapsed days since
+ * 1/1/4713 BC (Julian), 12:00 GMT. Note that julian day
+ * numbers start at <em>noon</em>. To get the jdn for
+ * the corresponding midnight, subtract 0.5.
+ *
+ * @see #getJulianDay
+ * @see #JULIAN_EPOCH_MS
+ * @internal
+ */
+ public void setJulianDay(double jdn) {
+ time = (long)(jdn * DAY_MS) + JULIAN_EPOCH_MS;
+ clearCache();
+ julianDay = jdn;
+ }
+
+ /**
+ * Get the current time of this <code>CalendarAstronomer</code> object,
+ * represented as the number of milliseconds since
+ * 1/1/1970 AD 0:00 GMT (Gregorian).
+ *
+ * @see #setTime
+ * @see #getDate
+ * @internal
+ */
+ public long getTime() {
+ return time;
+ }
+
+ /**
+ * Get the current time of this <code>CalendarAstronomer</code> object,
+ * represented as a <code>Date</code> object.
+ *
+ * @see #setDate
+ * @see #getTime
+ * @internal
+ */
+ public Date getDate() {
+ return new Date(time);
+ }
+
+ /**
+ * Get the current time of this <code>CalendarAstronomer</code> object,
+ * expressed as a "julian day number", which is the number of elapsed
+ * days since 1/1/4713 BC (Julian), 12:00 GMT.
+ *
+ * @see #setJulianDay
+ * @see #JULIAN_EPOCH_MS
+ * @internal
+ */
+ public double getJulianDay() {
+ if (julianDay == INVALID) {
+ julianDay = (double)(time - JULIAN_EPOCH_MS) / (double)DAY_MS;
+ }
+ return julianDay;
+ }
+
+ /**
+ * Return this object's time expressed in julian centuries:
+ * the number of centuries after 1/1/1900 AD, 12:00 GMT
+ *
+ * @see #getJulianDay
+ * @internal
+ */
+ public double getJulianCentury() {
+ if (julianCentury == INVALID) {
+ julianCentury = (getJulianDay() - 2415020.0) / 36525;
+ }
+ return julianCentury;
+ }
+
+ /**
+ * Returns the current Greenwich sidereal time, measured in hours
+ * @internal
+ */
+ public double getGreenwichSidereal() {
+ if (siderealTime == INVALID) {
+ // See page 86 of "Practical Astronomy with your Calculator",
+ // by Peter Duffet-Smith, for details on the algorithm.
+
+ double UT = normalize((double)time/HOUR_MS, 24);
+
+ siderealTime = normalize(getSiderealOffset() + UT*1.002737909, 24);
+ }
+ return siderealTime;
+ }
+
+ private double getSiderealOffset() {
+ if (siderealT0 == INVALID) {
+ double JD = Math.floor(getJulianDay() - 0.5) + 0.5;
+ double S = JD - 2451545.0;
+ double T = S / 36525.0;
+ siderealT0 = normalize(6.697374558 + 2400.051336*T + 0.000025862*T*T, 24);
+ }
+ return siderealT0;
+ }
+
+ /**
+ * Returns the current local sidereal time, measured in hours
+ * @internal
+ */
+ public double getLocalSidereal() {
+ return normalize(getGreenwichSidereal() + (double)fGmtOffset/HOUR_MS, 24);
+ }
+
+ /**
+ * Converts local sidereal time to Universal Time.
+ *
+ * @param lst The Local Sidereal Time, in hours since sidereal midnight
+ * on this object's current date.
+ *
+ * @return The corresponding Universal Time, in milliseconds since
+ * 1 Jan 1970, GMT.
+ */
+ private long lstToUT(double lst) {
+ // Convert to local mean time
+ double lt = normalize((lst - getSiderealOffset()) * 0.9972695663, 24);
+
+ // Then find local midnight on this day
+ long base = DAY_MS * ((time + fGmtOffset)/DAY_MS) - fGmtOffset;
+
+ //out(" lt =" + lt + " hours");
+ //out(" base=" + new Date(base));
+
+ return base + (long)(lt * HOUR_MS);
+ }
+
+
+ //-------------------------------------------------------------------------
+ // Coordinate transformations, all based on the current time of this object
+ //-------------------------------------------------------------------------
+
+ /**
+ * Convert from ecliptic to equatorial coordinates.
+ *
+ * @param ecliptic A point in the sky in ecliptic coordinates.
+ * @return The corresponding point in equatorial coordinates.
+ * @internal
+ */
+ public final Equatorial eclipticToEquatorial(Ecliptic ecliptic)
+ {
+ return eclipticToEquatorial(ecliptic.longitude, ecliptic.latitude);
+ }
+
+ /**
+ * Convert from ecliptic to equatorial coordinates.
+ *
+ * @param eclipLong The ecliptic longitude
+ * @param eclipLat The ecliptic latitude
+ *
+ * @return The corresponding point in equatorial coordinates.
+ * @internal
+ */
+ public final Equatorial eclipticToEquatorial(double eclipLong, double eclipLat)
+ {
+ // See page 42 of "Practical Astronomy with your Calculator",
+ // by Peter Duffet-Smith, for details on the algorithm.
+
+ double obliq = eclipticObliquity();
+ double sinE = Math.sin(obliq);
+ double cosE = Math.cos(obliq);
+
+ double sinL = Math.sin(eclipLong);
+ double cosL = Math.cos(eclipLong);
+
+ double sinB = Math.sin(eclipLat);
+ double cosB = Math.cos(eclipLat);
+ double tanB = Math.tan(eclipLat);
+
+ return new Equatorial(Math.atan2(sinL*cosE - tanB*sinE, cosL),
+ Math.asin(sinB*cosE + cosB*sinE*sinL) );
+ }
+
+ /**
+ * Convert from ecliptic longitude to equatorial coordinates.
+ *
+ * @param eclipLong The ecliptic longitude
+ *
+ * @return The corresponding point in equatorial coordinates.
+ * @internal
+ */
+ public final Equatorial eclipticToEquatorial(double eclipLong)
+ {
+ return eclipticToEquatorial(eclipLong, 0); // TODO: optimize
+ }
+
+ /**
+ * @internal
+ */
+ public Horizon eclipticToHorizon(double eclipLong)
+ {
+ Equatorial equatorial = eclipticToEquatorial(eclipLong);
+
+ double H = getLocalSidereal()*PI/12 - equatorial.ascension; // Hour-angle
+
+ double sinH = Math.sin(H);
+ double cosH = Math.cos(H);
+ double sinD = Math.sin(equatorial.declination);
+ double cosD = Math.cos(equatorial.declination);
+ double sinL = Math.sin(fLatitude);
+ double cosL = Math.cos(fLatitude);
+
+ double altitude = Math.asin(sinD*sinL + cosD*cosL*cosH);
+ double azimuth = Math.atan2(-cosD*cosL*sinH, sinD - sinL * Math.sin(altitude));
+
+ return new Horizon(azimuth, altitude);
+ }
+
+
+ //-------------------------------------------------------------------------
+ // The Sun
+ //-------------------------------------------------------------------------
+
+ //
+ // Parameters of the Sun's orbit as of the epoch Jan 0.0 1990
+ // Angles are in radians (after multiplying by PI/180)
+ //
+ static final double JD_EPOCH = 2447891.5; // Julian day of epoch
+
+ static final double SUN_ETA_G = 279.403303 * PI/180; // Ecliptic longitude at epoch
+ static final double SUN_OMEGA_G = 282.768422 * PI/180; // Ecliptic longitude of perigee
+ static final double SUN_E = 0.016713; // Eccentricity of orbit
+ //double sunR0 = 1.495585e8; // Semi-major axis in KM
+ //double sunTheta0 = 0.533128 * PI/180; // Angular diameter at R0
+
+ // The following three methods, which compute the sun parameters
+ // given above for an arbitrary epoch (whatever time the object is
+ // set to), make only a small difference as compared to using the
+ // above constants. E.g., Sunset times might differ by ~12
+ // seconds. Furthermore, the eta-g computation is befuddled by
+ // Duffet-Smith's incorrect coefficients (p.86). I've corrected
+ // the first-order coefficient but the others may be off too - no
+ // way of knowing without consulting another source.
+
+// /**
+// * Return the sun's ecliptic longitude at perigee for the current time.
+// * See Duffett-Smith, p. 86.
+// * @return radians
+// */
+// private double getSunOmegaG() {
+// double T = getJulianCentury();
+// return (281.2208444 + (1.719175 + 0.000452778*T)*T) * DEG_RAD;
+// }
+
+// /**
+// * Return the sun's ecliptic longitude for the current time.
+// * See Duffett-Smith, p. 86.
+// * @return radians
+// */
+// private double getSunEtaG() {
+// double T = getJulianCentury();
+// //return (279.6966778 + (36000.76892 + 0.0003025*T)*T) * DEG_RAD;
+// //
+// // The above line is from Duffett-Smith, and yields manifestly wrong
+// // results. The below constant is derived empirically to match the
+// // constant he gives for the 1990 EPOCH.
+// //
+// return (279.6966778 + (-0.3262541582718024 + 0.0003025*T)*T) * DEG_RAD;
+// }
+
+// /**
+// * Return the sun's eccentricity of orbit for the current time.
+// * See Duffett-Smith, p. 86.
+// * @return double
+// */
+// private double getSunE() {
+// double T = getJulianCentury();
+// return 0.01675104 - (0.0000418 + 0.000000126*T)*T;
+// }
+
+ /**
+ * The longitude of the sun at the time specified by this object.
+ * The longitude is measured in radians along the ecliptic
+ * from the "first point of Aries," the point at which the ecliptic
+ * crosses the earth's equatorial plane at the vernal equinox.
+ * <p>
+ * Currently, this method uses an approximation of the two-body Kepler's
+ * equation for the earth and the sun. It does not take into account the
+ * perturbations caused by the other planets, the moon, etc.
+ * @internal
+ */
+ public double getSunLongitude()
+ {
+ // See page 86 of "Practical Astronomy with your Calculator",
+ // by Peter Duffet-Smith, for details on the algorithm.
+
+ if (sunLongitude == INVALID) {
+ double[] result = getSunLongitude(getJulianDay());
+ sunLongitude = result[0];
+ meanAnomalySun = result[1];
+ }
+ return sunLongitude;
+ }
+
+ /**
+ * TODO Make this public when the entire class is package-private.
+ */
+ /*public*/ double[] getSunLongitude(double julian)
+ {
+ // See page 86 of "Practical Astronomy with your Calculator",
+ // by Peter Duffet-Smith, for details on the algorithm.
+
+ double day = julian - JD_EPOCH; // Days since epoch
+
+ // Find the angular distance the sun in a fictitious
+ // circular orbit has travelled since the epoch.
+ double epochAngle = norm2PI(PI2/TROPICAL_YEAR*day);
+
+ // The epoch wasn't at the sun's perigee; find the angular distance
+ // since perigee, which is called the "mean anomaly"
+ double meanAnomaly = norm2PI(epochAngle + SUN_ETA_G - SUN_OMEGA_G);
+
+ // Now find the "true anomaly", e.g. the real solar longitude
+ // by solving Kepler's equation for an elliptical orbit
+ // NOTE: The 3rd ed. of the book lists omega_g and eta_g in different
+ // equations; omega_g is to be correct.
+ return new double[] {
+ norm2PI(trueAnomaly(meanAnomaly, SUN_E) + SUN_OMEGA_G),
+ meanAnomaly
+ };
+ }
+
+ /**
+ * The position of the sun at this object's current date and time,
+ * in equatorial coordinates.
+ * @internal
+ */
+ public Equatorial getSunPosition() {
+ return eclipticToEquatorial(getSunLongitude(), 0);
+ }
+
+ private static class SolarLongitude {
+ double value;
+ SolarLongitude(double val) { value = val; }
+ }
+
+ /**
+ * Constant representing the vernal equinox.
+ * For use with {@link #getSunTime(SolarLongitude, boolean) getSunTime}.
+ * Note: In this case, "vernal" refers to the northern hemisphere's seasons.
+ * @internal
+ */
+ public static final SolarLongitude VERNAL_EQUINOX = new SolarLongitude(0);
+
+ /**
+ * Constant representing the summer solstice.
+ * For use with {@link #getSunTime(SolarLongitude, boolean) getSunTime}.
+ * Note: In this case, "summer" refers to the northern hemisphere's seasons.
+ * @internal
+ */
+ public static final SolarLongitude SUMMER_SOLSTICE = new SolarLongitude(PI/2);
+
+ /**
+ * Constant representing the autumnal equinox.
+ * For use with {@link #getSunTime(SolarLongitude, boolean) getSunTime}.
+ * Note: In this case, "autumn" refers to the northern hemisphere's seasons.
+ * @internal
+ */
+ public static final SolarLongitude AUTUMN_EQUINOX = new SolarLongitude(PI);
+
+ /**
+ * Constant representing the winter solstice.
+ * For use with {@link #getSunTime(SolarLongitude, boolean) getSunTime}.
+ * Note: In this case, "winter" refers to the northern hemisphere's seasons.
+ * @internal
+ */
+ public static final SolarLongitude WINTER_SOLSTICE = new SolarLongitude((PI*3)/2);
+
+ /**
+ * Find the next time at which the sun's ecliptic longitude will have
+ * the desired value.
+ * @internal
+ */
+ public long getSunTime(double desired, boolean next)
+ {
+ return timeOfAngle( new AngleFunc() { @Override
+ public double eval() { return getSunLongitude(); } },
+ desired,
+ TROPICAL_YEAR,
+ MINUTE_MS,
+ next);
+ }
+
+ /**
+ * Find the next time at which the sun's ecliptic longitude will have
+ * the desired value.
+ * @internal
+ */
+ public long getSunTime(SolarLongitude desired, boolean next) {
+ return getSunTime(desired.value, next);
+ }
+
+ /**
+ * Returns the time (GMT) of sunrise or sunset on the local date to which
+ * this calendar is currently set.
+ *
+ * NOTE: This method only works well if this object is set to a
+ * time near local noon. Because of variations between the local
+ * official time zone and the geographic longitude, the
+ * computation can flop over into an adjacent day if this object
+ * is set to a time near local midnight.
+ *
+ * @internal
+ */
+ public long getSunRiseSet(boolean rise) {
+ long t0 = time;
+
+ // Make a rough guess: 6am or 6pm local time on the current day
+ long noon = ((time + fGmtOffset)/DAY_MS)*DAY_MS - fGmtOffset + 12*HOUR_MS;
+
+ setTime(noon + (rise ? -6L : 6L) * HOUR_MS);
+
+ long t = riseOrSet(new CoordFunc() {
+ @Override
+ public Equatorial eval() { return getSunPosition(); }
+ },
+ rise,
+ .533 * DEG_RAD, // Angular Diameter
+ 34 /60.0 * DEG_RAD, // Refraction correction
+ MINUTE_MS / 12); // Desired accuracy
+
+ setTime(t0);
+ return t;
+ }
+
+// Commented out - currently unused. ICU 2.6, Alan
+// //-------------------------------------------------------------------------
+// // Alternate Sun Rise/Set
+// // See Duffett-Smith p.93
+// //-------------------------------------------------------------------------
+//
+// // This yields worse results (as compared to USNO data) than getSunRiseSet().
+// /**
+// * TODO Make this public when the entire class is package-private.
+// */
+// /*public*/ long getSunRiseSet2(boolean rise) {
+// // 1. Calculate coordinates of the sun's center for midnight
+// double jd = Math.floor(getJulianDay() - 0.5) + 0.5;
+// double[] sl = getSunLongitude(jd);
+// double lambda1 = sl[0];
+// Equatorial pos1 = eclipticToEquatorial(lambda1, 0);
+//
+// // 2. Add ... to lambda to get position 24 hours later
+// double lambda2 = lambda1 + 0.985647*DEG_RAD;
+// Equatorial pos2 = eclipticToEquatorial(lambda2, 0);
+//
+// // 3. Calculate LSTs of rising and setting for these two positions
+// double tanL = Math.tan(fLatitude);
+// double H = Math.acos(-tanL * Math.tan(pos1.declination));
+// double lst1r = (PI2 + pos1.ascension - H) * 24 / PI2;
+// double lst1s = (pos1.ascension + H) * 24 / PI2;
+// H = Math.acos(-tanL * Math.tan(pos2.declination));
+// double lst2r = (PI2-H + pos2.ascension ) * 24 / PI2;
+// double lst2s = (H + pos2.ascension ) * 24 / PI2;
+// if (lst1r > 24) lst1r -= 24;
+// if (lst1s > 24) lst1s -= 24;
+// if (lst2r > 24) lst2r -= 24;
+// if (lst2s > 24) lst2s -= 24;
+//
+// // 4. Convert LSTs to GSTs. If GST1 > GST2, add 24 to GST2.
+// double gst1r = lstToGst(lst1r);
+// double gst1s = lstToGst(lst1s);
+// double gst2r = lstToGst(lst2r);
+// double gst2s = lstToGst(lst2s);
+// if (gst1r > gst2r) gst2r += 24;
+// if (gst1s > gst2s) gst2s += 24;
+//
+// // 5. Calculate GST at 0h UT of this date
+// double t00 = utToGst(0);
+//
+// // 6. Calculate GST at 0h on the observer's longitude
+// double offset = Math.round(fLongitude*12/PI); // p.95 step 6; he _rounds_ to nearest 15 deg.
+// double t00p = t00 - offset*1.002737909;
+// if (t00p < 0) t00p += 24; // do NOT normalize
+//
+// // 7. Adjust
+// if (gst1r < t00p) {
+// gst1r += 24;
+// gst2r += 24;
+// }
+// if (gst1s < t00p) {
+// gst1s += 24;
+// gst2s += 24;
+// }
+//
+// // 8.
+// double gstr = (24.07*gst1r-t00*(gst2r-gst1r))/(24.07+gst1r-gst2r);
+// double gsts = (24.07*gst1s-t00*(gst2s-gst1s))/(24.07+gst1s-gst2s);
+//
+// // 9. Correct for parallax, refraction, and sun's diameter
+// double dec = (pos1.declination + pos2.declination) / 2;
+// double psi = Math.acos(Math.sin(fLatitude) / Math.cos(dec));
+// double x = 0.830725 * DEG_RAD; // parallax+refraction+diameter
+// double y = Math.asin(Math.sin(x) / Math.sin(psi)) * RAD_DEG;
+// double delta_t = 240 * y / Math.cos(dec) / 3600; // hours
+//
+// // 10. Add correction to GSTs, subtract from GSTr
+// gstr -= delta_t;
+// gsts += delta_t;
+//
+// // 11. Convert GST to UT and then to local civil time
+// double ut = gstToUt(rise ? gstr : gsts);
+// //System.out.println((rise?"rise=":"set=") + ut + ", delta_t=" + delta_t);
+// long midnight = DAY_MS * (time / DAY_MS); // Find UT midnight on this day
+// return midnight + (long) (ut * 3600000);
+// }
+
+// Commented out - currently unused. ICU 2.6, Alan
+// /**
+// * Convert local sidereal time to Greenwich sidereal time.
+// * Section 15. Duffett-Smith p.21
+// * @param lst in hours (0..24)
+// * @return GST in hours (0..24)
+// */
+// double lstToGst(double lst) {
+// double delta = fLongitude * 24 / PI2;
+// return normalize(lst - delta, 24);
+// }
+
+// Commented out - currently unused. ICU 2.6, Alan
+// /**
+// * Convert UT to GST on this date.
+// * Section 12. Duffett-Smith p.17
+// * @param ut in hours
+// * @return GST in hours
+// */
+// double utToGst(double ut) {
+// return normalize(getT0() + ut*1.002737909, 24);
+// }
+
+// Commented out - currently unused. ICU 2.6, Alan
+// /**
+// * Convert GST to UT on this date.
+// * Section 13. Duffett-Smith p.18
+// * @param gst in hours
+// * @return UT in hours
+// */
+// double gstToUt(double gst) {
+// return normalize(gst - getT0(), 24) * 0.9972695663;
+// }
+
+// Commented out - currently unused. ICU 2.6, Alan
+// double getT0() {
+// // Common computation for UT <=> GST
+//
+// // Find JD for 0h UT
+// double jd = Math.floor(getJulianDay() - 0.5) + 0.5;
+//
+// double s = jd - 2451545.0;
+// double t = s / 36525.0;
+// double t0 = 6.697374558 + (2400.051336 + 0.000025862*t)*t;
+// return t0;
+// }
+
+// Commented out - currently unused. ICU 2.6, Alan
+// //-------------------------------------------------------------------------
+// // Alternate Sun Rise/Set
+// // See sci.astro FAQ
+// // http://www.faqs.org/faqs/astronomy/faq/part3/section-5.html
+// //-------------------------------------------------------------------------
+//
+// // Note: This method appears to produce inferior accuracy as
+// // compared to getSunRiseSet().
+//
+// /**
+// * TODO Make this public when the entire class is package-private.
+// */
+// /*public*/ long getSunRiseSet3(boolean rise) {
+//
+// // Compute day number for 0.0 Jan 2000 epoch
+// double d = (double)(time - EPOCH_2000_MS) / DAY_MS;
+//
+// // Now compute the Local Sidereal Time, LST:
+// //
+// double LST = 98.9818 + 0.985647352 * d + /*UT*15 + long*/
+// fLongitude*RAD_DEG;
+// //
+// // (east long. positive). Note that LST is here expressed in degrees,
+// // where 15 degrees corresponds to one hour. Since LST really is an angle,
+// // it's convenient to use one unit---degrees---throughout.
+//
+// // COMPUTING THE SUN'S POSITION
+// // ----------------------------
+// //
+// // To be able to compute the Sun's rise/set times, you need to be able to
+// // compute the Sun's position at any time. First compute the "day
+// // number" d as outlined above, for the desired moment. Next compute:
+// //
+// double oblecl = 23.4393 - 3.563E-7 * d;
+// //
+// double w = 282.9404 + 4.70935E-5 * d;
+// double M = 356.0470 + 0.9856002585 * d;
+// double e = 0.016709 - 1.151E-9 * d;
+// //
+// // This is the obliquity of the ecliptic, plus some of the elements of
+// // the Sun's apparent orbit (i.e., really the Earth's orbit): w =
+// // argument of perihelion, M = mean anomaly, e = eccentricity.
+// // Semi-major axis is here assumed to be exactly 1.0 (while not strictly
+// // true, this is still an accurate approximation). Next compute E, the
+// // eccentric anomaly:
+// //
+// double E = M + e*(180/PI) * Math.sin(M*DEG_RAD) * ( 1.0 + e*Math.cos(M*DEG_RAD) );
+// //
+// // where E and M are in degrees. This is it---no further iterations are
+// // needed because we know e has a sufficiently small value. Next compute
+// // the true anomaly, v, and the distance, r:
+// //
+// /* r * cos(v) = */ double A = Math.cos(E*DEG_RAD) - e;
+// /* r * sin(v) = */ double B = Math.sqrt(1 - e*e) * Math.sin(E*DEG_RAD);
+// //
+// // and
+// //
+// // r = sqrt( A*A + B*B )
+// double v = Math.atan2( B, A )*RAD_DEG;
+// //
+// // The Sun's true longitude, slon, can now be computed:
+// //
+// double slon = v + w;
+// //
+// // Since the Sun is always at the ecliptic (or at least very very close to
+// // it), we can use simplified formulae to convert slon (the Sun's ecliptic
+// // longitude) to sRA and sDec (the Sun's RA and Dec):
+// //
+// // sin(slon) * cos(oblecl)
+// // tan(sRA) = -------------------------
+// // cos(slon)
+// //
+// // sin(sDec) = sin(oblecl) * sin(slon)
+// //
+// // As was the case when computing az, the Azimuth, if possible use an
+// // atan2() function to compute sRA.
+//
+// double sRA = Math.atan2(Math.sin(slon*DEG_RAD) * Math.cos(oblecl*DEG_RAD), Math.cos(slon*DEG_RAD))*RAD_DEG;
+//
+// double sin_sDec = Math.sin(oblecl*DEG_RAD) * Math.sin(slon*DEG_RAD);
+// double sDec = Math.asin(sin_sDec)*RAD_DEG;
+//
+// // COMPUTING RISE AND SET TIMES
+// // ----------------------------
+// //
+// // To compute when an object rises or sets, you must compute when it
+// // passes the meridian and the HA of rise/set. Then the rise time is
+// // the meridian time minus HA for rise/set, and the set time is the
+// // meridian time plus the HA for rise/set.
+// //
+// // To find the meridian time, compute the Local Sidereal Time at 0h local
+// // time (or 0h UT if you prefer to work in UT) as outlined above---name
+// // that quantity LST0. The Meridian Time, MT, will now be:
+// //
+// // MT = RA - LST0
+// double MT = normalize(sRA - LST, 360);
+// //
+// // where "RA" is the object's Right Ascension (in degrees!). If negative,
+// // add 360 deg to MT. If the object is the Sun, leave the time as it is,
+// // but if it's stellar, multiply MT by 365.2422/366.2422, to convert from
+// // sidereal to solar time. Now, compute HA for rise/set, name that
+// // quantity HA0:
+// //
+// // sin(h0) - sin(lat) * sin(Dec)
+// // cos(HA0) = ---------------------------------
+// // cos(lat) * cos(Dec)
+// //
+// // where h0 is the altitude selected to represent rise/set. For a purely
+// // mathematical horizon, set h0 = 0 and simplify to:
+// //
+// // cos(HA0) = - tan(lat) * tan(Dec)
+// //
+// // If you want to account for refraction on the atmosphere, set h0 = -35/60
+// // degrees (-35 arc minutes), and if you want to compute the rise/set times
+// // for the Sun's upper limb, set h0 = -50/60 (-50 arc minutes).
+// //
+// double h0 = -50/60 * DEG_RAD;
+//
+// double HA0 = Math.acos(
+// (Math.sin(h0) - Math.sin(fLatitude) * sin_sDec) /
+// (Math.cos(fLatitude) * Math.cos(sDec*DEG_RAD)))*RAD_DEG;
+//
+// // When HA0 has been computed, leave it as it is for the Sun but multiply
+// // by 365.2422/366.2422 for stellar objects, to convert from sidereal to
+// // solar time. Finally compute:
+// //
+// // Rise time = MT - HA0
+// // Set time = MT + HA0
+// //
+// // convert the times from degrees to hours by dividing by 15.
+// //
+// // If you'd like to check that your calculations are accurate or just
+// // need a quick result, check the USNO's Sun or Moon Rise/Set Table,
+// // <URL:http://aa.usno.navy.mil/AA/data/docs/RS_OneYear.html>.
+//
+// double result = MT + (rise ? -HA0 : HA0); // in degrees
+//
+// // Find UT midnight on this day
+// long midnight = DAY_MS * (time / DAY_MS);
+//
+// return midnight + (long) (result * 3600000 / 15);
+// }
+
+ //-------------------------------------------------------------------------
+ // The Moon
+ //-------------------------------------------------------------------------
+
+ static final double moonL0 = 318.351648 * PI/180; // Mean long. at epoch
+ static final double moonP0 = 36.340410 * PI/180; // Mean long. of perigee
+ static final double moonN0 = 318.510107 * PI/180; // Mean long. of node
+ static final double moonI = 5.145366 * PI/180; // Inclination of orbit
+ static final double moonE = 0.054900; // Eccentricity of orbit
+
+ // These aren't used right now
+ static final double moonA = 3.84401e5; // semi-major axis (km)
+ static final double moonT0 = 0.5181 * PI/180; // Angular size at distance A
+ static final double moonPi = 0.9507 * PI/180; // Parallax at distance A
+
+ /**
+ * The position of the moon at the time set on this
+ * object, in equatorial coordinates.
+ * @internal
+ */
+ public Equatorial getMoonPosition()
+ {
+ //
+ // See page 142 of "Practical Astronomy with your Calculator",
+ // by Peter Duffet-Smith, for details on the algorithm.
+ //
+ if (moonPosition == null) {
+ // Calculate the solar longitude. Has the side effect of
+ // filling in "meanAnomalySun" as well.
+ double sunLong = getSunLongitude();
+
+ //
+ // Find the # of days since the epoch of our orbital parameters.
+ // TODO: Convert the time of day portion into ephemeris time
+ //
+ double day = getJulianDay() - JD_EPOCH; // Days since epoch
+
+ // Calculate the mean longitude and anomaly of the moon, based on
+ // a circular orbit. Similar to the corresponding solar calculation.
+ double meanLongitude = norm2PI(13.1763966*PI/180*day + moonL0);
+ double meanAnomalyMoon = norm2PI(meanLongitude - 0.1114041*PI/180 * day - moonP0);
+
+ //
+ // Calculate the following corrections:
+ // Evection: the sun's gravity affects the moon's eccentricity
+ // Annual Eqn: variation in the effect due to earth-sun distance
+ // A3: correction factor (for ???)
+ //
+ double evection = 1.2739*PI/180 * Math.sin(2 * (meanLongitude - sunLong)
+ - meanAnomalyMoon);
+ double annual = 0.1858*PI/180 * Math.sin(meanAnomalySun);
+ double a3 = 0.3700*PI/180 * Math.sin(meanAnomalySun);
+
+ meanAnomalyMoon += evection - annual - a3;
+
+ //
+ // More correction factors:
+ // center equation of the center correction
+ // a4 yet another error correction (???)
+ //
+ // TODO: Skip the equation of the center correction and solve Kepler's eqn?
+ //
+ double center = 6.2886*PI/180 * Math.sin(meanAnomalyMoon);
+ double a4 = 0.2140*PI/180 * Math.sin(2 * meanAnomalyMoon);
+
+ // Now find the moon's corrected longitude
+ moonLongitude = meanLongitude + evection + center - annual + a4;
+
+ //
+ // And finally, find the variation, caused by the fact that the sun's
+ // gravitational pull on the moon varies depending on which side of
+ // the earth the moon is on
+ //
+ double variation = 0.6583*PI/180 * Math.sin(2*(moonLongitude - sunLong));
+
+ moonLongitude += variation;
+
+ //
+ // What we've calculated so far is the moon's longitude in the plane
+ // of its own orbit. Now map to the ecliptic to get the latitude
+ // and longitude. First we need to find the longitude of the ascending
+ // node, the position on the ecliptic where it is crossed by the moon's
+ // orbit as it crosses from the southern to the northern hemisphere.
+ //
+ double nodeLongitude = norm2PI(moonN0 - 0.0529539*PI/180 * day);
+
+ nodeLongitude -= 0.16*PI/180 * Math.sin(meanAnomalySun);
+
+ double y = Math.sin(moonLongitude - nodeLongitude);
+ double x = Math.cos(moonLongitude - nodeLongitude);
+
+ moonEclipLong = Math.atan2(y*Math.cos(moonI), x) + nodeLongitude;
+ double moonEclipLat = Math.asin(y * Math.sin(moonI));
+
+ moonPosition = eclipticToEquatorial(moonEclipLong, moonEclipLat);
+ }
+ return moonPosition;
+ }
+
+ /**
+ * The "age" of the moon at the time specified in this object.
+ * This is really the angle between the
+ * current ecliptic longitudes of the sun and the moon,
+ * measured in radians.
+ *
+ * @see #getMoonPhase
+ * @internal
+ */
+ public double getMoonAge() {
+ // See page 147 of "Practical Astronomy with your Calculator",
+ // by Peter Duffet-Smith, for details on the algorithm.
+ //
+ // Force the moon's position to be calculated. We're going to use
+ // some the intermediate results cached during that calculation.
+ //
+ getMoonPosition();
+
+ return norm2PI(moonEclipLong - sunLongitude);
+ }
+
+ /**
+ * Calculate the phase of the moon at the time set in this object.
+ * The returned phase is a <code>double</code> in the range
+ * <code>0 <= phase < 1</code>, interpreted as follows:
+ * <ul>
+ * <li>0.00: New moon
+ * <li>0.25: First quarter
+ * <li>0.50: Full moon
+ * <li>0.75: Last quarter
+ * </ul>
+ *
+ * @see #getMoonAge
+ * @internal
+ */
+ public double getMoonPhase() {
+ // See page 147 of "Practical Astronomy with your Calculator",
+ // by Peter Duffet-Smith, for details on the algorithm.
+ return 0.5 * (1 - Math.cos(getMoonAge()));
+ }
+
+ private static class MoonAge {
+ double value;
+ MoonAge(double val) { value = val; }
+ }
+
+ /**
+ * Constant representing a new moon.
+ * For use with {@link #getMoonTime(MoonAge, boolean) getMoonTime}
+ * @internal
+ */
+ public static final MoonAge NEW_MOON = new MoonAge(0);
+
+ /**
+ * Constant representing the moon's first quarter.
+ * For use with {@link #getMoonTime(MoonAge, boolean) getMoonTime}
+ * @internal
+ */
+ public static final MoonAge FIRST_QUARTER = new MoonAge(PI/2);
+
+ /**
+ * Constant representing a full moon.
+ * For use with {@link #getMoonTime(MoonAge, boolean) getMoonTime}
+ * @internal
+ */
+ public static final MoonAge FULL_MOON = new MoonAge(PI);
+
+ /**
+ * Constant representing the moon's last quarter.
+ * For use with {@link #getMoonTime(MoonAge, boolean) getMoonTime}
+ * @internal
+ */
+ public static final MoonAge LAST_QUARTER = new MoonAge((PI*3)/2);
+
+ /**
+ * Find the next or previous time at which the Moon's ecliptic
+ * longitude will have the desired value.
+ * <p>
+ * @param desired The desired longitude.
+ * @param next <tt>true</tt> if the next occurrance of the phase
+ * is desired, <tt>false</tt> for the previous occurrance.
+ * @internal
+ */
+ public long getMoonTime(double desired, boolean next)
+ {
+ return timeOfAngle( new AngleFunc() {
+ @Override
+ public double eval() { return getMoonAge(); } },
+ desired,
+ SYNODIC_MONTH,
+ MINUTE_MS,
+ next);
+ }
+
+ /**
+ * Find the next or previous time at which the moon will be in the
+ * desired phase.
+ * <p>
+ * @param desired The desired phase of the moon.
+ * @param next <tt>true</tt> if the next occurrance of the phase
+ * is desired, <tt>false</tt> for the previous occurrance.
+ * @internal
+ */
+ public long getMoonTime(MoonAge desired, boolean next) {
+ return getMoonTime(desired.value, next);
+ }
+
+ /**
+ * Returns the time (GMT) of sunrise or sunset on the local date to which
+ * this calendar is currently set.
+ * @internal
+ */
+ public long getMoonRiseSet(boolean rise)
+ {
+ return riseOrSet(new CoordFunc() {
+ @Override
+ public Equatorial eval() { return getMoonPosition(); }
+ },
+ rise,
+ .533 * DEG_RAD, // Angular Diameter
+ 34 /60.0 * DEG_RAD, // Refraction correction
+ MINUTE_MS); // Desired accuracy
+ }
+
+ //-------------------------------------------------------------------------
+ // Interpolation methods for finding the time at which a given event occurs
+ //-------------------------------------------------------------------------
+
+ private interface AngleFunc {
+ public double eval();
+ }
+
+ private long timeOfAngle(AngleFunc func, double desired,
+ double periodDays, long epsilon, boolean next)
+ {
+ // Find the value of the function at the current time
+ double lastAngle = func.eval();
+
+ // Find out how far we are from the desired angle
+ double deltaAngle = norm2PI(desired - lastAngle) ;
+
+ // Using the average period, estimate the next (or previous) time at
+ // which the desired angle occurs.
+ double deltaT = (deltaAngle + (next ? 0 : -PI2)) * (periodDays*DAY_MS) / PI2;
+
+ double lastDeltaT = deltaT; // Liu
+ long startTime = time; // Liu
+
+ setTime(time + (long)deltaT);
+
+ // Now iterate until we get the error below epsilon. Throughout
+ // this loop we use normPI to get values in the range -Pi to Pi,
+ // since we're using them as correction factors rather than absolute angles.
+ do {
+ // Evaluate the function at the time we've estimated
+ double angle = func.eval();
+
+ // Find the # of milliseconds per radian at this point on the curve
+ double factor = Math.abs(deltaT / normPI(angle-lastAngle));
+
+ // Correct the time estimate based on how far off the angle is
+ deltaT = normPI(desired - angle) * factor;
+
+ // HACK:
+ //
+ // If abs(deltaT) begins to diverge we need to quit this loop.
+ // This only appears to happen when attempting to locate, for
+ // example, a new moon on the day of the new moon. E.g.:
+ //
+ // This result is correct:
+ // newMoon(7508(Mon Jul 23 00:00:00 CST 1990,false))=
+ // Sun Jul 22 10:57:41 CST 1990
+ //
+ // But attempting to make the same call a day earlier causes deltaT
+ // to diverge:
+ // CalendarAstronomer.timeOfAngle() diverging: 1.348508727575625E9 ->
+ // 1.3649828540224032E9
+ // newMoon(7507(Sun Jul 22 00:00:00 CST 1990,false))=
+ // Sun Jul 08 13:56:15 CST 1990
+ //
+ // As a temporary solution, we catch this specific condition and
+ // adjust our start time by one eighth period days (either forward
+ // or backward) and try again.
+ // Liu 11/9/00
+ if (Math.abs(deltaT) > Math.abs(lastDeltaT)) {
+ long delta = (long) (periodDays * DAY_MS / 8);
+ setTime(startTime + (next ? delta : -delta));
+ return timeOfAngle(func, desired, periodDays, epsilon, next);
+ }
+
+ lastDeltaT = deltaT;
+ lastAngle = angle;
+
+ setTime(time + (long)deltaT);
+ }
+ while (Math.abs(deltaT) > epsilon);
+
+ return time;
+ }
+
+ private interface CoordFunc {
+ public Equatorial eval();
+ }
+
+ private long riseOrSet(CoordFunc func, boolean rise,
+ double diameter, double refraction,
+ long epsilon)
+ {
+ Equatorial pos = null;
+ double tanL = Math.tan(fLatitude);
+ long deltaT = Long.MAX_VALUE;
+ int count = 0;
+
+ //
+ // Calculate the object's position at the current time, then use that
+ // position to calculate the time of rising or setting. The position
+ // will be different at that time, so iterate until the error is allowable.
+ //
+ do {
+ // See "Practical Astronomy With Your Calculator, section 33.
+ pos = func.eval();
+ double angle = Math.acos(-tanL * Math.tan(pos.declination));
+ double lst = ((rise ? PI2-angle : angle) + pos.ascension ) * 24 / PI2;
+
+ // Convert from LST to Universal Time.
+ long newTime = lstToUT( lst );
+
+ deltaT = newTime - time;
+ setTime(newTime);
+ }
+ while (++ count < 5 && Math.abs(deltaT) > epsilon);
+
+ // Calculate the correction due to refraction and the object's angular diameter
+ double cosD = Math.cos(pos.declination);
+ double psi = Math.acos(Math.sin(fLatitude) / cosD);
+ double x = diameter / 2 + refraction;
+ double y = Math.asin(Math.sin(x) / Math.sin(psi));
+ long delta = (long)((240 * y * RAD_DEG / cosD)*SECOND_MS);
+
+ return time + (rise ? -delta : delta);
+ }
+
+ //-------------------------------------------------------------------------
+ // Other utility methods
+ //-------------------------------------------------------------------------
+
+ /***
+ * Given 'value', add or subtract 'range' until 0 <= 'value' < range.
+ * The modulus operator.
+ */
+ private static final double normalize(double value, double range) {
+ return value - range * Math.floor(value / range);
+ }
+
+ /**
+ * Normalize an angle so that it's in the range 0 - 2pi.
+ * For positive angles this is just (angle % 2pi), but the Java
+ * mod operator doesn't work that way for negative numbers....
+ */
+ private static final double norm2PI(double angle) {
+ return normalize(angle, PI2);
+ }
+
+ /**
+ * Normalize an angle into the range -PI - PI
+ */
+ private static final double normPI(double angle) {
+ return normalize(angle + PI, PI2) - PI;
+ }
+
+ /**
+ * Find the "true anomaly" (longitude) of an object from
+ * its mean anomaly and the eccentricity of its orbit. This uses
+ * an iterative solution to Kepler's equation.
+ *
+ * @param meanAnomaly The object's longitude calculated as if it were in
+ * a regular, circular orbit, measured in radians
+ * from the point of perigee.
+ *
+ * @param eccentricity The eccentricity of the orbit
+ *
+ * @return The true anomaly (longitude) measured in radians
+ */
+ private double trueAnomaly(double meanAnomaly, double eccentricity)
+ {
+ // First, solve Kepler's equation iteratively
+ // Duffett-Smith, p.90
+ double delta;
+ double E = meanAnomaly;
+ do {
+ delta = E - eccentricity * Math.sin(E) - meanAnomaly;
+ E = E - delta / (1 - eccentricity * Math.cos(E));
+ }
+ while (Math.abs(delta) > 1e-5); // epsilon = 1e-5 rad
+
+ return 2.0 * Math.atan( Math.tan(E/2) * Math.sqrt( (1+eccentricity)
+ /(1-eccentricity) ) );
+ }
+
+ /**
+ * Return the obliquity of the ecliptic (the angle between the ecliptic
+ * and the earth's equator) at the current time. This varies due to
+ * the precession of the earth's axis.
+ *
+ * @return the obliquity of the ecliptic relative to the equator,
+ * measured in radians.
+ */
+ private double eclipticObliquity() {
+ if (eclipObliquity == INVALID) {
+ final double epoch = 2451545.0; // 2000 AD, January 1.5
+
+ double T = (getJulianDay() - epoch) / 36525;
+
+ eclipObliquity = 23.439292
+ - 46.815/3600 * T
+ - 0.0006/3600 * T*T
+ + 0.00181/3600 * T*T*T;
+
+ eclipObliquity *= DEG_RAD;
+ }
+ return eclipObliquity;
+ }
+
+
+ //-------------------------------------------------------------------------
+ // Private data
+ //-------------------------------------------------------------------------
+
+ /**
+ * Current time in milliseconds since 1/1/1970 AD
+ * @see java.util.Date#getTime
+ */
+ private long time;
+
+ /* These aren't used yet, but they'll be needed for sunset calculations
+ * and equatorial to horizon coordinate conversions
+ */
+ private double fLongitude = 0.0;
+ private double fLatitude = 0.0;
+ private long fGmtOffset = 0;
+
+ //
+ // The following fields are used to cache calculated results for improved
+ // performance. These values all depend on the current time setting
+ // of this object, so the clearCache method is provided.
+ //
+ static final private double INVALID = Double.MIN_VALUE;
+
+ private transient double julianDay = INVALID;
+ private transient double julianCentury = INVALID;
+ private transient double sunLongitude = INVALID;
+ private transient double meanAnomalySun = INVALID;
+ private transient double moonLongitude = INVALID;
+ private transient double moonEclipLong = INVALID;
+ //private transient double meanAnomalyMoon = INVALID;
+ private transient double eclipObliquity = INVALID;
+ private transient double siderealT0 = INVALID;
+ private transient double siderealTime = INVALID;
+
+ private transient Equatorial moonPosition = null;
+
+ private void clearCache() {
+ julianDay = INVALID;
+ julianCentury = INVALID;
+ sunLongitude = INVALID;
+ meanAnomalySun = INVALID;
+ moonLongitude = INVALID;
+ moonEclipLong = INVALID;
+ //meanAnomalyMoon = INVALID;
+ eclipObliquity = INVALID;
+ siderealTime = INVALID;
+ siderealT0 = INVALID;
+ moonPosition = null;
+ }
+
+ //private static void out(String s) {
+ // System.out.println(s);
+ //}
+
+ //private static String deg(double rad) {
+ // return Double.toString(rad * RAD_DEG);
+ //}
+
+ //private static String hours(long ms) {
+ // return Double.toString((double)ms / HOUR_MS) + " hours";
+ //}
+
+ /**
+ * @internal
+ */
+ public String local(long localMillis) {
+ return new Date(localMillis - TimeZone.getDefault().getRawOffset()).toString();
+ }
+
+
+ /**
+ * Represents the position of an object in the sky relative to the ecliptic,
+ * the plane of the earth's orbit around the Sun.
+ * This is a spherical coordinate system in which the latitude
+ * specifies the position north or south of the plane of the ecliptic.
+ * The longitude specifies the position along the ecliptic plane
+ * relative to the "First Point of Aries", which is the Sun's position in the sky
+ * at the Vernal Equinox.
+ * <p>
+ * Note that Ecliptic objects are immutable and cannot be modified
+ * once they are constructed. This allows them to be passed and returned by
+ * value without worrying about whether other code will modify them.
+ *
+ * @see CalendarAstronomer.Equatorial
+ * @see CalendarAstronomer.Horizon
+ * @internal
+ */
+ public static final class Ecliptic {
+ /**
+ * Constructs an Ecliptic coordinate object.
+ * <p>
+ * @param lat The ecliptic latitude, measured in radians.
+ * @param lon The ecliptic longitude, measured in radians.
+ * @internal
+ */
+ public Ecliptic(double lat, double lon) {
+ latitude = lat;
+ longitude = lon;
+ }
+
+ /**
+ * Return a string representation of this object
+ * @internal
+ */
+ @Override
+ public String toString() {
+ return Double.toString(longitude*RAD_DEG) + "," + (latitude*RAD_DEG);
+ }
+
+ /**
+ * The ecliptic latitude, in radians. This specifies an object's
+ * position north or south of the plane of the ecliptic,
+ * with positive angles representing north.
+ * @internal
+ */
+ public final double latitude;
+
+ /**
+ * The ecliptic longitude, in radians.
+ * This specifies an object's position along the ecliptic plane
+ * relative to the "First Point of Aries", which is the Sun's position
+ * in the sky at the Vernal Equinox,
+ * with positive angles representing east.
+ * <p>
+ * A bit of trivia: the first point of Aries is currently in the
+ * constellation Pisces, due to the precession of the earth's axis.
+ * @internal
+ */
+ public final double longitude;
+ }
+
+ /**
+ * Represents the position of an
+ * object in the sky relative to the plane of the earth's equator.
+ * The <i>Right Ascension</i> specifies the position east or west
+ * along the equator, relative to the sun's position at the vernal
+ * equinox. The <i>Declination</i> is the position north or south
+ * of the equatorial plane.
+ * <p>
+ * Note that Equatorial objects are immutable and cannot be modified
+ * once they are constructed. This allows them to be passed and returned by
+ * value without worrying about whether other code will modify them.
+ *
+ * @see CalendarAstronomer.Ecliptic
+ * @see CalendarAstronomer.Horizon
+ * @internal
+ */
+ public static final class Equatorial {
+ /**
+ * Constructs an Equatorial coordinate object.
+ * <p>
+ * @param asc The right ascension, measured in radians.
+ * @param dec The declination, measured in radians.
+ * @internal
+ */
+ public Equatorial(double asc, double dec) {
+ ascension = asc;
+ declination = dec;
+ }
+
+ /**
+ * Return a string representation of this object, with the
+ * angles measured in degrees.
+ * @internal
+ */
+ @Override
+ public String toString() {
+ return Double.toString(ascension*RAD_DEG) + "," + (declination*RAD_DEG);
+ }
+
+ /**
+ * Return a string representation of this object with the right ascension
+ * measured in hours, minutes, and seconds.
+ * @internal
+ */
+ public String toHmsString() {
+ return radToHms(ascension) + "," + radToDms(declination);
+ }
+
+ /**
+ * The right ascension, in radians.
+ * This is the position east or west along the equator
+ * relative to the sun's position at the vernal equinox,
+ * with positive angles representing East.
+ * @internal
+ */
+ public final double ascension;
+
+ /**
+ * The declination, in radians.
+ * This is the position north or south of the equatorial plane,
+ * with positive angles representing north.
+ * @internal
+ */
+ public final double declination;
+ }
+
+ /**
+ * Represents the position of an object in the sky relative to
+ * the local horizon.
+ * The <i>Altitude</i> represents the object's elevation above the horizon,
+ * with objects below the horizon having a negative altitude.
+ * The <i>Azimuth</i> is the geographic direction of the object from the
+ * observer's position, with 0 representing north. The azimuth increases
+ * clockwise from north.
+ * <p>
+ * Note that Horizon objects are immutable and cannot be modified
+ * once they are constructed. This allows them to be passed and returned by
+ * value without worrying about whether other code will modify them.
+ *
+ * @see CalendarAstronomer.Ecliptic
+ * @see CalendarAstronomer.Equatorial
+ * @internal
+ */
+ public static final class Horizon {
+ /**
+ * Constructs a Horizon coordinate object.
+ * <p>
+ * @param alt The altitude, measured in radians above the horizon.
+ * @param azim The azimuth, measured in radians clockwise from north.
+ * @internal
+ */
+ public Horizon(double alt, double azim) {
+ altitude = alt;
+ azimuth = azim;
+ }
+
+ /**
+ * Return a string representation of this object, with the
+ * angles measured in degrees.
+ * @internal
+ */
+ @Override
+ public String toString() {
+ return Double.toString(altitude*RAD_DEG) + "," + (azimuth*RAD_DEG);
+ }
+
+ /**
+ * The object's altitude above the horizon, in radians.
+ * @internal
+ */
+ public final double altitude;
+
+ /**
+ * The object's direction, in radians clockwise from north.
+ * @internal
+ */
+ public final double azimuth;
+ }
+
+ static private String radToHms(double angle) {
+ int hrs = (int) (angle*RAD_HOUR);
+ int min = (int)((angle*RAD_HOUR - hrs) * 60);
+ int sec = (int)((angle*RAD_HOUR - hrs - min/60.0) * 3600);
+
+ return Integer.toString(hrs) + "h" + min + "m" + sec + "s";
+ }
+
+ static private String radToDms(double angle) {
+ int deg = (int) (angle*RAD_DEG);
+ int min = (int)((angle*RAD_DEG - deg) * 60);
+ int sec = (int)((angle*RAD_DEG - deg - min/60.0) * 3600);
+
+ return Integer.toString(deg) + "\u00b0" + min + "'" + sec + "\"";
+ }
+}
diff --git a/icu4j/Android.bp b/icu4j/Android.bp
index 45867d6b3..beaca6a33 100644
--- a/icu4j/Android.bp
+++ b/icu4j/Android.bp
@@ -103,21 +103,6 @@ java_library {
],
}
-// Small static library used by TwilightService in the system server and WallpaperPicker2 app. To
-// avoid @CorePlaformApi, the system server doesn't use CalendarAstronomer in android.icu.
-// Don't link this in boot classpath or Zygote to avoid class collision with the
-// com.ibm.icu.impl.CalendarAstronomer in the app classloader.
-java_library_static {
- name: "icu4j_calendar_astronomer",
- host_supported: false,
- sdk_version: "core_current",
- srcs: ["main/core/src/main/java/com/ibm/icu/impl/CalendarAstronomer.java"],
- visibility: [
- "//frameworks/base/services/core",
- "//packages/apps/WallpaperPicker2",
- ],
-}
-
java_test {
name: "icu4j-tests",
defaults: ["icu4j-defaults"],