aboutsummaryrefslogtreecommitdiff
path: root/android/guava/src/com/google/common/collect/Lists.java
blob: 047575b57d8fc9595a5b9f5bbdee07cabe7efda9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
/*
 * Copyright (C) 2007 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.collect;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkElementIndex;
import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.base.Preconditions.checkPositionIndex;
import static com.google.common.base.Preconditions.checkPositionIndexes;
import static com.google.common.base.Preconditions.checkState;
import static com.google.common.collect.CollectPreconditions.checkNonnegative;
import static com.google.common.collect.CollectPreconditions.checkRemove;

import com.google.common.annotations.GwtCompatible;
import com.google.common.annotations.GwtIncompatible;
import com.google.common.annotations.J2ktIncompatible;
import com.google.common.annotations.VisibleForTesting;
import com.google.common.base.Function;
import com.google.common.base.Objects;
import com.google.common.math.IntMath;
import com.google.common.primitives.Ints;
import java.io.Serializable;
import java.math.RoundingMode;
import java.util.AbstractList;
import java.util.AbstractSequentialList;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.ListIterator;
import java.util.NoSuchElementException;
import java.util.RandomAccess;
import java.util.concurrent.CopyOnWriteArrayList;
import javax.annotation.CheckForNull;
import org.checkerframework.checker.nullness.qual.Nullable;

/**
 * Static utility methods pertaining to {@link List} instances. Also see this class's counterparts
 * {@link Sets}, {@link Maps} and {@link Queues}.
 *
 * <p>See the Guava User Guide article on <a href=
 * "https://github.com/google/guava/wiki/CollectionUtilitiesExplained#lists">{@code Lists}</a>.
 *
 * @author Kevin Bourrillion
 * @author Mike Bostock
 * @author Louis Wasserman
 * @since 2.0
 */
@GwtCompatible(emulated = true)
@ElementTypesAreNonnullByDefault
public final class Lists {
  private Lists() {}

  // ArrayList

  /**
   * Creates a <i>mutable</i>, empty {@code ArrayList} instance (for Java 6 and earlier).
   *
   * <p><b>Note:</b> if mutability is not required, use {@link ImmutableList#of()} instead.
   *
   * <p><b>Note:</b> this method is now unnecessary and should be treated as deprecated. Instead,
   * use the {@code ArrayList} {@linkplain ArrayList#ArrayList() constructor} directly, taking
   * advantage of <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
   */
  @GwtCompatible(serializable = true)
  public static <E extends @Nullable Object> ArrayList<E> newArrayList() {
    return new ArrayList<>();
  }

  /**
   * Creates a <i>mutable</i> {@code ArrayList} instance containing the given elements.
   *
   * <p><b>Note:</b> essentially the only reason to use this method is when you will need to add or
   * remove elements later. Otherwise, for non-null elements use {@link ImmutableList#of()} (for
   * varargs) or {@link ImmutableList#copyOf(Object[])} (for an array) instead. If any elements
   * might be null, or you need support for {@link List#set(int, Object)}, use {@link
   * Arrays#asList}.
   *
   * <p>Note that even when you do need the ability to add or remove, this method provides only a
   * tiny bit of syntactic sugar for {@code newArrayList(}{@link Arrays#asList asList}{@code
   * (...))}, or for creating an empty list then calling {@link Collections#addAll}. This method is
   * not actually very useful and will likely be deprecated in the future.
   */
  @SafeVarargs
  @GwtCompatible(serializable = true)
  public static <E extends @Nullable Object> ArrayList<E> newArrayList(E... elements) {
    checkNotNull(elements); // for GWT
    // Avoid integer overflow when a large array is passed in
    int capacity = computeArrayListCapacity(elements.length);
    ArrayList<E> list = new ArrayList<>(capacity);
    Collections.addAll(list, elements);
    return list;
  }

  /**
   * Creates a <i>mutable</i> {@code ArrayList} instance containing the given elements; a very thin
   * shortcut for creating an empty list then calling {@link Iterables#addAll}.
   *
   * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
   * ImmutableList#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link
   * FluentIterable} and call {@code elements.toList()}.)
   *
   * <p><b>Note:</b> if {@code elements} is a {@link Collection}, you don't need this method. Use
   * the {@code ArrayList} {@linkplain ArrayList#ArrayList(Collection) constructor} directly, taking
   * advantage of <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
   */
  @GwtCompatible(serializable = true)
  public static <E extends @Nullable Object> ArrayList<E> newArrayList(
      Iterable<? extends E> elements) {
    checkNotNull(elements); // for GWT
    // Let ArrayList's sizing logic work, if possible
    return (elements instanceof Collection)
        ? new ArrayList<>((Collection<? extends E>) elements)
        : newArrayList(elements.iterator());
  }

  /**
   * Creates a <i>mutable</i> {@code ArrayList} instance containing the given elements; a very thin
   * shortcut for creating an empty list and then calling {@link Iterators#addAll}.
   *
   * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
   * ImmutableList#copyOf(Iterator)} instead.
   */
  @GwtCompatible(serializable = true)
  public static <E extends @Nullable Object> ArrayList<E> newArrayList(
      Iterator<? extends E> elements) {
    ArrayList<E> list = newArrayList();
    Iterators.addAll(list, elements);
    return list;
  }

  @VisibleForTesting
  static int computeArrayListCapacity(int arraySize) {
    checkNonnegative(arraySize, "arraySize");

    // TODO(kevinb): Figure out the right behavior, and document it
    return Ints.saturatedCast(5L + arraySize + (arraySize / 10));
  }

  /**
   * Creates an {@code ArrayList} instance backed by an array with the specified initial size;
   * simply delegates to {@link ArrayList#ArrayList(int)}.
   *
   * <p><b>Note:</b> this method is now unnecessary and should be treated as deprecated. Instead,
   * use {@code new }{@link ArrayList#ArrayList(int) ArrayList}{@code <>(int)} directly, taking
   * advantage of <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>. (Unlike here, there is no risk
   * of overload ambiguity, since the {@code ArrayList} constructors very wisely did not accept
   * varargs.)
   *
   * @param initialArraySize the exact size of the initial backing array for the returned array list
   *     ({@code ArrayList} documentation calls this value the "capacity")
   * @return a new, empty {@code ArrayList} which is guaranteed not to resize itself unless its size
   *     reaches {@code initialArraySize + 1}
   * @throws IllegalArgumentException if {@code initialArraySize} is negative
   */
  @GwtCompatible(serializable = true)
  public static <E extends @Nullable Object> ArrayList<E> newArrayListWithCapacity(
      int initialArraySize) {
    checkNonnegative(initialArraySize, "initialArraySize"); // for GWT.
    return new ArrayList<>(initialArraySize);
  }

  /**
   * Creates an {@code ArrayList} instance to hold {@code estimatedSize} elements, <i>plus</i> an
   * unspecified amount of padding; you almost certainly mean to call {@link
   * #newArrayListWithCapacity} (see that method for further advice on usage).
   *
   * <p><b>Note:</b> This method will soon be deprecated. Even in the rare case that you do want
   * some amount of padding, it's best if you choose your desired amount explicitly.
   *
   * @param estimatedSize an estimate of the eventual {@link List#size()} of the new list
   * @return a new, empty {@code ArrayList}, sized appropriately to hold the estimated number of
   *     elements
   * @throws IllegalArgumentException if {@code estimatedSize} is negative
   */
  @GwtCompatible(serializable = true)
  public static <E extends @Nullable Object> ArrayList<E> newArrayListWithExpectedSize(
      int estimatedSize) {
    return new ArrayList<>(computeArrayListCapacity(estimatedSize));
  }

  // LinkedList

  /**
   * Creates a <i>mutable</i>, empty {@code LinkedList} instance (for Java 6 and earlier).
   *
   * <p><b>Note:</b> if you won't be adding any elements to the list, use {@link ImmutableList#of()}
   * instead.
   *
   * <p><b>Performance note:</b> {@link ArrayList} and {@link java.util.ArrayDeque} consistently
   * outperform {@code LinkedList} except in certain rare and specific situations. Unless you have
   * spent a lot of time benchmarking your specific needs, use one of those instead.
   *
   * <p><b>Note:</b> this method is now unnecessary and should be treated as deprecated. Instead,
   * use the {@code LinkedList} {@linkplain LinkedList#LinkedList() constructor} directly, taking
   * advantage of <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
   */
  @GwtCompatible(serializable = true)
  public static <E extends @Nullable Object> LinkedList<E> newLinkedList() {
    return new LinkedList<>();
  }

  /**
   * Creates a <i>mutable</i> {@code LinkedList} instance containing the given elements; a very thin
   * shortcut for creating an empty list then calling {@link Iterables#addAll}.
   *
   * <p><b>Note:</b> if mutability is not required and the elements are non-null, use {@link
   * ImmutableList#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link
   * FluentIterable} and call {@code elements.toList()}.)
   *
   * <p><b>Performance note:</b> {@link ArrayList} and {@link java.util.ArrayDeque} consistently
   * outperform {@code LinkedList} except in certain rare and specific situations. Unless you have
   * spent a lot of time benchmarking your specific needs, use one of those instead.
   *
   * <p><b>Note:</b> if {@code elements} is a {@link Collection}, you don't need this method. Use
   * the {@code LinkedList} {@linkplain LinkedList#LinkedList(Collection) constructor} directly,
   * taking advantage of <a href="http://goo.gl/iz2Wi">"diamond" syntax</a>.
   */
  @GwtCompatible(serializable = true)
  public static <E extends @Nullable Object> LinkedList<E> newLinkedList(
      Iterable<? extends E> elements) {
    LinkedList<E> list = newLinkedList();
    Iterables.addAll(list, elements);
    return list;
  }

  /**
   * Creates an empty {@code CopyOnWriteArrayList} instance.
   *
   * <p><b>Note:</b> if you need an immutable empty {@link List}, use {@link Collections#emptyList}
   * instead.
   *
   * @return a new, empty {@code CopyOnWriteArrayList}
   * @since 12.0
   */
  @J2ktIncompatible
  @GwtIncompatible // CopyOnWriteArrayList
  public static <E extends @Nullable Object> CopyOnWriteArrayList<E> newCopyOnWriteArrayList() {
    return new CopyOnWriteArrayList<>();
  }

  /**
   * Creates a {@code CopyOnWriteArrayList} instance containing the given elements.
   *
   * @param elements the elements that the list should contain, in order
   * @return a new {@code CopyOnWriteArrayList} containing those elements
   * @since 12.0
   */
  @J2ktIncompatible
  @GwtIncompatible // CopyOnWriteArrayList
  public static <E extends @Nullable Object> CopyOnWriteArrayList<E> newCopyOnWriteArrayList(
      Iterable<? extends E> elements) {
    // We copy elements to an ArrayList first, rather than incurring the
    // quadratic cost of adding them to the COWAL directly.
    Collection<? extends E> elementsCollection =
        (elements instanceof Collection)
            ? (Collection<? extends E>) elements
            : newArrayList(elements);
    return new CopyOnWriteArrayList<>(elementsCollection);
  }

  /**
   * Returns an unmodifiable list containing the specified first element and backed by the specified
   * array of additional elements. Changes to the {@code rest} array will be reflected in the
   * returned list. Unlike {@link Arrays#asList}, the returned list is unmodifiable.
   *
   * <p>This is useful when a varargs method needs to use a signature such as {@code (Foo firstFoo,
   * Foo... moreFoos)}, in order to avoid overload ambiguity or to enforce a minimum argument count.
   *
   * <p>The returned list is serializable and implements {@link RandomAccess}.
   *
   * @param first the first element
   * @param rest an array of additional elements, possibly empty
   * @return an unmodifiable list containing the specified elements
   */
  public static <E extends @Nullable Object> List<E> asList(@ParametricNullness E first, E[] rest) {
    return new OnePlusArrayList<>(first, rest);
  }

  /**
   * Returns an unmodifiable list containing the specified first and second element, and backed by
   * the specified array of additional elements. Changes to the {@code rest} array will be reflected
   * in the returned list. Unlike {@link Arrays#asList}, the returned list is unmodifiable.
   *
   * <p>This is useful when a varargs method needs to use a signature such as {@code (Foo firstFoo,
   * Foo secondFoo, Foo... moreFoos)}, in order to avoid overload ambiguity or to enforce a minimum
   * argument count.
   *
   * <p>The returned list is serializable and implements {@link RandomAccess}.
   *
   * @param first the first element
   * @param second the second element
   * @param rest an array of additional elements, possibly empty
   * @return an unmodifiable list containing the specified elements
   */
  public static <E extends @Nullable Object> List<E> asList(
      @ParametricNullness E first, @ParametricNullness E second, E[] rest) {
    return new TwoPlusArrayList<>(first, second, rest);
  }

  /** @see Lists#asList(Object, Object[]) */
  private static class OnePlusArrayList<E extends @Nullable Object> extends AbstractList<E>
      implements Serializable, RandomAccess {
    @ParametricNullness final E first;
    final E[] rest;

    OnePlusArrayList(@ParametricNullness E first, E[] rest) {
      this.first = first;
      this.rest = checkNotNull(rest);
    }

    @Override
    public int size() {
      return IntMath.saturatedAdd(rest.length, 1);
    }

    @Override
    @ParametricNullness
    public E get(int index) {
      // check explicitly so the IOOBE will have the right message
      checkElementIndex(index, size());
      return (index == 0) ? first : rest[index - 1];
    }

    @J2ktIncompatible private static final long serialVersionUID = 0;
  }

  /** @see Lists#asList(Object, Object, Object[]) */
  private static class TwoPlusArrayList<E extends @Nullable Object> extends AbstractList<E>
      implements Serializable, RandomAccess {
    @ParametricNullness final E first;
    @ParametricNullness final E second;
    final E[] rest;

    TwoPlusArrayList(@ParametricNullness E first, @ParametricNullness E second, E[] rest) {
      this.first = first;
      this.second = second;
      this.rest = checkNotNull(rest);
    }

    @Override
    public int size() {
      return IntMath.saturatedAdd(rest.length, 2);
    }

    @Override
    @ParametricNullness
    public E get(int index) {
      switch (index) {
        case 0:
          return first;
        case 1:
          return second;
        default:
          // check explicitly so the IOOBE will have the right message
          checkElementIndex(index, size());
          return rest[index - 2];
      }
    }

    @J2ktIncompatible private static final long serialVersionUID = 0;
  }

  /**
   * Returns every possible list that can be formed by choosing one element from each of the given
   * lists in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
   * product</a>" of the lists. For example:
   *
   * <pre>{@code
   * Lists.cartesianProduct(ImmutableList.of(
   *     ImmutableList.of(1, 2),
   *     ImmutableList.of("A", "B", "C")))
   * }</pre>
   *
   * <p>returns a list containing six lists in the following order:
   *
   * <ul>
   *   <li>{@code ImmutableList.of(1, "A")}
   *   <li>{@code ImmutableList.of(1, "B")}
   *   <li>{@code ImmutableList.of(1, "C")}
   *   <li>{@code ImmutableList.of(2, "A")}
   *   <li>{@code ImmutableList.of(2, "B")}
   *   <li>{@code ImmutableList.of(2, "C")}
   * </ul>
   *
   * <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian
   * products that you would get from nesting for loops:
   *
   * <pre>{@code
   * for (B b0 : lists.get(0)) {
   *   for (B b1 : lists.get(1)) {
   *     ...
   *     ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...);
   *     // operate on tuple
   *   }
   * }
   * }</pre>
   *
   * <p>Note that if any input list is empty, the Cartesian product will also be empty. If no lists
   * at all are provided (an empty list), the resulting Cartesian product has one element, an empty
   * list (counter-intuitive, but mathematically consistent).
   *
   * <p><i>Performance notes:</i> while the cartesian product of lists of size {@code m, n, p} is a
   * list of size {@code m x n x p}, its actual memory consumption is much smaller. When the
   * cartesian product is constructed, the input lists are merely copied. Only as the resulting list
   * is iterated are the individual lists created, and these are not retained after iteration.
   *
   * @param lists the lists to choose elements from, in the order that the elements chosen from
   *     those lists should appear in the resulting lists
   * @param <B> any common base class shared by all axes (often just {@link Object})
   * @return the Cartesian product, as an immutable list containing immutable lists
   * @throws IllegalArgumentException if the size of the cartesian product would be greater than
   *     {@link Integer#MAX_VALUE}
   * @throws NullPointerException if {@code lists}, any one of the {@code lists}, or any element of
   *     a provided list is null
   * @since 19.0
   */
  public static <B> List<List<B>> cartesianProduct(List<? extends List<? extends B>> lists) {
    return CartesianList.create(lists);
  }

  /**
   * Returns every possible list that can be formed by choosing one element from each of the given
   * lists in order; the "n-ary <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
   * product</a>" of the lists. For example:
   *
   * <pre>{@code
   * Lists.cartesianProduct(ImmutableList.of(
   *     ImmutableList.of(1, 2),
   *     ImmutableList.of("A", "B", "C")))
   * }</pre>
   *
   * <p>returns a list containing six lists in the following order:
   *
   * <ul>
   *   <li>{@code ImmutableList.of(1, "A")}
   *   <li>{@code ImmutableList.of(1, "B")}
   *   <li>{@code ImmutableList.of(1, "C")}
   *   <li>{@code ImmutableList.of(2, "A")}
   *   <li>{@code ImmutableList.of(2, "B")}
   *   <li>{@code ImmutableList.of(2, "C")}
   * </ul>
   *
   * <p>The result is guaranteed to be in the "traditional", lexicographical order for Cartesian
   * products that you would get from nesting for loops:
   *
   * <pre>{@code
   * for (B b0 : lists.get(0)) {
   *   for (B b1 : lists.get(1)) {
   *     ...
   *     ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...);
   *     // operate on tuple
   *   }
   * }
   * }</pre>
   *
   * <p>Note that if any input list is empty, the Cartesian product will also be empty. If no lists
   * at all are provided (an empty list), the resulting Cartesian product has one element, an empty
   * list (counter-intuitive, but mathematically consistent).
   *
   * <p><i>Performance notes:</i> while the cartesian product of lists of size {@code m, n, p} is a
   * list of size {@code m x n x p}, its actual memory consumption is much smaller. When the
   * cartesian product is constructed, the input lists are merely copied. Only as the resulting list
   * is iterated are the individual lists created, and these are not retained after iteration.
   *
   * @param lists the lists to choose elements from, in the order that the elements chosen from
   *     those lists should appear in the resulting lists
   * @param <B> any common base class shared by all axes (often just {@link Object})
   * @return the Cartesian product, as an immutable list containing immutable lists
   * @throws IllegalArgumentException if the size of the cartesian product would be greater than
   *     {@link Integer#MAX_VALUE}
   * @throws NullPointerException if {@code lists}, any one of the {@code lists}, or any element of
   *     a provided list is null
   * @since 19.0
   */
  @SafeVarargs
  public static <B> List<List<B>> cartesianProduct(List<? extends B>... lists) {
    return cartesianProduct(Arrays.asList(lists));
  }

  /**
   * Returns a list that applies {@code function} to each element of {@code fromList}. The returned
   * list is a transformed view of {@code fromList}; changes to {@code fromList} will be reflected
   * in the returned list and vice versa.
   *
   * <p>Since functions are not reversible, the transform is one-way and new items cannot be stored
   * in the returned list. The {@code add}, {@code addAll} and {@code set} methods are unsupported
   * in the returned list.
   *
   * <p>The function is applied lazily, invoked when needed. This is necessary for the returned list
   * to be a view, but it means that the function will be applied many times for bulk operations
   * like {@link List#contains} and {@link List#hashCode}. For this to perform well, {@code
   * function} should be fast. To avoid lazy evaluation when the returned list doesn't need to be a
   * view, copy the returned list into a new list of your choosing.
   *
   * <p>If {@code fromList} implements {@link RandomAccess}, so will the returned list. The returned
   * list is threadsafe if the supplied list and function are.
   *
   * <p>If only a {@code Collection} or {@code Iterable} input is available, use {@link
   * Collections2#transform} or {@link Iterables#transform}.
   *
   * <p><b>Note:</b> serializing the returned list is implemented by serializing {@code fromList},
   * its contents, and {@code function} -- <i>not</i> by serializing the transformed values. This
   * can lead to surprising behavior, so serializing the returned list is <b>not recommended</b>.
   * Instead, copy the list using {@link ImmutableList#copyOf(Collection)} (for example), then
   * serialize the copy. Other methods similar to this do not implement serialization at all for
   * this reason.
   *
   * <p><b>Java 8 users:</b> many use cases for this method are better addressed by {@link
   * java.util.stream.Stream#map}. This method is not being deprecated, but we gently encourage you
   * to migrate to streams.
   */
  public static <F extends @Nullable Object, T extends @Nullable Object> List<T> transform(
      List<F> fromList, Function<? super F, ? extends T> function) {
    return (fromList instanceof RandomAccess)
        ? new TransformingRandomAccessList<>(fromList, function)
        : new TransformingSequentialList<>(fromList, function);
  }

  /**
   * Implementation of a sequential transforming list.
   *
   * @see Lists#transform
   */
  private static class TransformingSequentialList<
          F extends @Nullable Object, T extends @Nullable Object>
      extends AbstractSequentialList<T> implements Serializable {
    final List<F> fromList;
    final Function<? super F, ? extends T> function;

    TransformingSequentialList(List<F> fromList, Function<? super F, ? extends T> function) {
      this.fromList = checkNotNull(fromList);
      this.function = checkNotNull(function);
    }

    /**
     * The default implementation inherited is based on iteration and removal of each element which
     * can be overkill. That's why we forward this call directly to the backing list.
     */
    @Override
    protected void removeRange(int fromIndex, int toIndex) {
      fromList.subList(fromIndex, toIndex).clear();
    }

    @Override
    public int size() {
      return fromList.size();
    }

    @Override
    public ListIterator<T> listIterator(final int index) {
      return new TransformedListIterator<F, T>(fromList.listIterator(index)) {
        @Override
        @ParametricNullness
        T transform(@ParametricNullness F from) {
          return function.apply(from);
        }
      };
    }

    private static final long serialVersionUID = 0;
  }

  /**
   * Implementation of a transforming random access list. We try to make as many of these methods
   * pass-through to the source list as possible so that the performance characteristics of the
   * source list and transformed list are similar.
   *
   * @see Lists#transform
   */
  private static class TransformingRandomAccessList<
          F extends @Nullable Object, T extends @Nullable Object>
      extends AbstractList<T> implements RandomAccess, Serializable {
    final List<F> fromList;
    final Function<? super F, ? extends T> function;

    TransformingRandomAccessList(List<F> fromList, Function<? super F, ? extends T> function) {
      this.fromList = checkNotNull(fromList);
      this.function = checkNotNull(function);
    }

    /**
     * The default implementation inherited is based on iteration and removal of each element which
     * can be overkill. That's why we forward this call directly to the backing list.
     */
    @Override
    protected void removeRange(int fromIndex, int toIndex) {
      fromList.subList(fromIndex, toIndex).clear();
    }

    @Override
    @ParametricNullness
    public T get(int index) {
      return function.apply(fromList.get(index));
    }

    @Override
    public Iterator<T> iterator() {
      return listIterator();
    }

    @Override
    public ListIterator<T> listIterator(int index) {
      return new TransformedListIterator<F, T>(fromList.listIterator(index)) {
        @Override
        T transform(F from) {
          return function.apply(from);
        }
      };
    }

    // TODO: cpovirk - Why override `isEmpty` here but not in TransformingSequentialList?

    @Override
    public boolean isEmpty() {
      return fromList.isEmpty();
    }

    @Override
    public T remove(int index) {
      return function.apply(fromList.remove(index));
    }

    @Override
    public int size() {
      return fromList.size();
    }

    private static final long serialVersionUID = 0;
  }

  /**
   * Returns consecutive {@linkplain List#subList(int, int) sublists} of a list, each of the same
   * size (the final list may be smaller). For example, partitioning a list containing {@code [a, b,
   * c, d, e]} with a partition size of 3 yields {@code [[a, b, c], [d, e]]} -- an outer list
   * containing two inner lists of three and two elements, all in the original order.
   *
   * <p>The outer list is unmodifiable, but reflects the latest state of the source list. The inner
   * lists are sublist views of the original list, produced on demand using {@link List#subList(int,
   * int)}, and are subject to all the usual caveats about modification as explained in that API.
   *
   * @param list the list to return consecutive sublists of
   * @param size the desired size of each sublist (the last may be smaller)
   * @return a list of consecutive sublists
   * @throws IllegalArgumentException if {@code partitionSize} is nonpositive
   */
  public static <T extends @Nullable Object> List<List<T>> partition(List<T> list, int size) {
    checkNotNull(list);
    checkArgument(size > 0);
    return (list instanceof RandomAccess)
        ? new RandomAccessPartition<>(list, size)
        : new Partition<>(list, size);
  }

  private static class Partition<T extends @Nullable Object> extends AbstractList<List<T>> {
    final List<T> list;
    final int size;

    Partition(List<T> list, int size) {
      this.list = list;
      this.size = size;
    }

    @Override
    public List<T> get(int index) {
      checkElementIndex(index, size());
      int start = index * size;
      int end = Math.min(start + size, list.size());
      return list.subList(start, end);
    }

    @Override
    public int size() {
      return IntMath.divide(list.size(), size, RoundingMode.CEILING);
    }

    @Override
    public boolean isEmpty() {
      return list.isEmpty();
    }
  }

  private static class RandomAccessPartition<T extends @Nullable Object> extends Partition<T>
      implements RandomAccess {
    RandomAccessPartition(List<T> list, int size) {
      super(list, size);
    }
  }

  /**
   * Returns a view of the specified string as an immutable list of {@code Character} values.
   *
   * @since 7.0
   */
  public static ImmutableList<Character> charactersOf(String string) {
    return new StringAsImmutableList(checkNotNull(string));
  }

  /**
   * Returns a view of the specified {@code CharSequence} as a {@code List<Character>}, viewing
   * {@code sequence} as a sequence of Unicode code units. The view does not support any
   * modification operations, but reflects any changes to the underlying character sequence.
   *
   * @param sequence the character sequence to view as a {@code List} of characters
   * @return an {@code List<Character>} view of the character sequence
   * @since 7.0
   */
  public static List<Character> charactersOf(CharSequence sequence) {
    return new CharSequenceAsList(checkNotNull(sequence));
  }

  @SuppressWarnings("serial") // serialized using ImmutableList serialization
  private static final class StringAsImmutableList extends ImmutableList<Character> {

    private final String string;

    StringAsImmutableList(String string) {
      this.string = string;
    }

    @Override
    public int indexOf(@CheckForNull Object object) {
      return (object instanceof Character) ? string.indexOf((Character) object) : -1;
    }

    @Override
    public int lastIndexOf(@CheckForNull Object object) {
      return (object instanceof Character) ? string.lastIndexOf((Character) object) : -1;
    }

    @Override
    public ImmutableList<Character> subList(int fromIndex, int toIndex) {
      checkPositionIndexes(fromIndex, toIndex, size()); // for GWT
      return charactersOf(string.substring(fromIndex, toIndex));
    }

    @Override
    boolean isPartialView() {
      return false;
    }

    @Override
    public Character get(int index) {
      checkElementIndex(index, size()); // for GWT
      return string.charAt(index);
    }

    @Override
    public int size() {
      return string.length();
    }
  }

  private static final class CharSequenceAsList extends AbstractList<Character> {
    private final CharSequence sequence;

    CharSequenceAsList(CharSequence sequence) {
      this.sequence = sequence;
    }

    @Override
    public Character get(int index) {
      checkElementIndex(index, size()); // for GWT
      return sequence.charAt(index);
    }

    @Override
    public int size() {
      return sequence.length();
    }
  }

  /**
   * Returns a reversed view of the specified list. For example, {@code
   * Lists.reverse(Arrays.asList(1, 2, 3))} returns a list containing {@code 3, 2, 1}. The returned
   * list is backed by this list, so changes in the returned list are reflected in this list, and
   * vice-versa. The returned list supports all of the optional list operations supported by this
   * list.
   *
   * <p>The returned list is random-access if the specified list is random access.
   *
   * @since 7.0
   */
  public static <T extends @Nullable Object> List<T> reverse(List<T> list) {
    if (list instanceof ImmutableList) {
      // Avoid nullness warnings.
      List<?> reversed = ((ImmutableList<?>) list).reverse();
      @SuppressWarnings("unchecked")
      List<T> result = (List<T>) reversed;
      return result;
    } else if (list instanceof ReverseList) {
      return ((ReverseList<T>) list).getForwardList();
    } else if (list instanceof RandomAccess) {
      return new RandomAccessReverseList<>(list);
    } else {
      return new ReverseList<>(list);
    }
  }

  private static class ReverseList<T extends @Nullable Object> extends AbstractList<T> {
    private final List<T> forwardList;

    ReverseList(List<T> forwardList) {
      this.forwardList = checkNotNull(forwardList);
    }

    List<T> getForwardList() {
      return forwardList;
    }

    private int reverseIndex(int index) {
      int size = size();
      checkElementIndex(index, size);
      return (size - 1) - index;
    }

    private int reversePosition(int index) {
      int size = size();
      checkPositionIndex(index, size);
      return size - index;
    }

    @Override
    public void add(int index, @ParametricNullness T element) {
      forwardList.add(reversePosition(index), element);
    }

    @Override
    public void clear() {
      forwardList.clear();
    }

    @Override
    @ParametricNullness
    public T remove(int index) {
      return forwardList.remove(reverseIndex(index));
    }

    @Override
    protected void removeRange(int fromIndex, int toIndex) {
      subList(fromIndex, toIndex).clear();
    }

    @Override
    @ParametricNullness
    public T set(int index, @ParametricNullness T element) {
      return forwardList.set(reverseIndex(index), element);
    }

    @Override
    @ParametricNullness
    public T get(int index) {
      return forwardList.get(reverseIndex(index));
    }

    @Override
    public int size() {
      return forwardList.size();
    }

    @Override
    public List<T> subList(int fromIndex, int toIndex) {
      checkPositionIndexes(fromIndex, toIndex, size());
      return reverse(forwardList.subList(reversePosition(toIndex), reversePosition(fromIndex)));
    }

    @Override
    public Iterator<T> iterator() {
      return listIterator();
    }

    @Override
    public ListIterator<T> listIterator(int index) {
      int start = reversePosition(index);
      final ListIterator<T> forwardIterator = forwardList.listIterator(start);
      return new ListIterator<T>() {

        boolean canRemoveOrSet;

        @Override
        public void add(@ParametricNullness T e) {
          forwardIterator.add(e);
          forwardIterator.previous();
          canRemoveOrSet = false;
        }

        @Override
        public boolean hasNext() {
          return forwardIterator.hasPrevious();
        }

        @Override
        public boolean hasPrevious() {
          return forwardIterator.hasNext();
        }

        @Override
        @ParametricNullness
        public T next() {
          if (!hasNext()) {
            throw new NoSuchElementException();
          }
          canRemoveOrSet = true;
          return forwardIterator.previous();
        }

        @Override
        public int nextIndex() {
          return reversePosition(forwardIterator.nextIndex());
        }

        @Override
        @ParametricNullness
        public T previous() {
          if (!hasPrevious()) {
            throw new NoSuchElementException();
          }
          canRemoveOrSet = true;
          return forwardIterator.next();
        }

        @Override
        public int previousIndex() {
          return nextIndex() - 1;
        }

        @Override
        public void remove() {
          checkRemove(canRemoveOrSet);
          forwardIterator.remove();
          canRemoveOrSet = false;
        }

        @Override
        public void set(@ParametricNullness T e) {
          checkState(canRemoveOrSet);
          forwardIterator.set(e);
        }
      };
    }
  }

  private static class RandomAccessReverseList<T extends @Nullable Object> extends ReverseList<T>
      implements RandomAccess {
    RandomAccessReverseList(List<T> forwardList) {
      super(forwardList);
    }
  }

  /** An implementation of {@link List#hashCode()}. */
  static int hashCodeImpl(List<?> list) {
    // TODO(lowasser): worth optimizing for RandomAccess?
    int hashCode = 1;
    for (Object o : list) {
      hashCode = 31 * hashCode + (o == null ? 0 : o.hashCode());

      hashCode = ~~hashCode;
      // needed to deal with GWT integer overflow
    }
    return hashCode;
  }

  /** An implementation of {@link List#equals(Object)}. */
  static boolean equalsImpl(List<?> thisList, @CheckForNull Object other) {
    if (other == checkNotNull(thisList)) {
      return true;
    }
    if (!(other instanceof List)) {
      return false;
    }
    List<?> otherList = (List<?>) other;
    int size = thisList.size();
    if (size != otherList.size()) {
      return false;
    }
    if (thisList instanceof RandomAccess && otherList instanceof RandomAccess) {
      // avoid allocation and use the faster loop
      for (int i = 0; i < size; i++) {
        if (!Objects.equal(thisList.get(i), otherList.get(i))) {
          return false;
        }
      }
      return true;
    } else {
      return Iterators.elementsEqual(thisList.iterator(), otherList.iterator());
    }
  }

  /** An implementation of {@link List#addAll(int, Collection)}. */
  static <E extends @Nullable Object> boolean addAllImpl(
      List<E> list, int index, Iterable<? extends E> elements) {
    boolean changed = false;
    ListIterator<E> listIterator = list.listIterator(index);
    for (E e : elements) {
      listIterator.add(e);
      changed = true;
    }
    return changed;
  }

  /** An implementation of {@link List#indexOf(Object)}. */
  static int indexOfImpl(List<?> list, @CheckForNull Object element) {
    if (list instanceof RandomAccess) {
      return indexOfRandomAccess(list, element);
    } else {
      ListIterator<?> listIterator = list.listIterator();
      while (listIterator.hasNext()) {
        if (Objects.equal(element, listIterator.next())) {
          return listIterator.previousIndex();
        }
      }
      return -1;
    }
  }

  private static int indexOfRandomAccess(List<?> list, @CheckForNull Object element) {
    int size = list.size();
    if (element == null) {
      for (int i = 0; i < size; i++) {
        if (list.get(i) == null) {
          return i;
        }
      }
    } else {
      for (int i = 0; i < size; i++) {
        if (element.equals(list.get(i))) {
          return i;
        }
      }
    }
    return -1;
  }

  /** An implementation of {@link List#lastIndexOf(Object)}. */
  static int lastIndexOfImpl(List<?> list, @CheckForNull Object element) {
    if (list instanceof RandomAccess) {
      return lastIndexOfRandomAccess(list, element);
    } else {
      ListIterator<?> listIterator = list.listIterator(list.size());
      while (listIterator.hasPrevious()) {
        if (Objects.equal(element, listIterator.previous())) {
          return listIterator.nextIndex();
        }
      }
      return -1;
    }
  }

  private static int lastIndexOfRandomAccess(List<?> list, @CheckForNull Object element) {
    if (element == null) {
      for (int i = list.size() - 1; i >= 0; i--) {
        if (list.get(i) == null) {
          return i;
        }
      }
    } else {
      for (int i = list.size() - 1; i >= 0; i--) {
        if (element.equals(list.get(i))) {
          return i;
        }
      }
    }
    return -1;
  }

  /** Returns an implementation of {@link List#listIterator(int)}. */
  static <E extends @Nullable Object> ListIterator<E> listIteratorImpl(List<E> list, int index) {
    return new AbstractListWrapper<>(list).listIterator(index);
  }

  /** An implementation of {@link List#subList(int, int)}. */
  static <E extends @Nullable Object> List<E> subListImpl(
      final List<E> list, int fromIndex, int toIndex) {
    List<E> wrapper;
    if (list instanceof RandomAccess) {
      wrapper =
          new RandomAccessListWrapper<E>(list) {
            @Override
            public ListIterator<E> listIterator(int index) {
              return backingList.listIterator(index);
            }

            @J2ktIncompatible private static final long serialVersionUID = 0;
          };
    } else {
      wrapper =
          new AbstractListWrapper<E>(list) {
            @Override
            public ListIterator<E> listIterator(int index) {
              return backingList.listIterator(index);
            }

            @J2ktIncompatible private static final long serialVersionUID = 0;
          };
    }
    return wrapper.subList(fromIndex, toIndex);
  }

  private static class AbstractListWrapper<E extends @Nullable Object> extends AbstractList<E> {
    final List<E> backingList;

    AbstractListWrapper(List<E> backingList) {
      this.backingList = checkNotNull(backingList);
    }

    @Override
    public void add(int index, @ParametricNullness E element) {
      backingList.add(index, element);
    }

    @Override
    public boolean addAll(int index, Collection<? extends E> c) {
      return backingList.addAll(index, c);
    }

    @Override
    @ParametricNullness
    public E get(int index) {
      return backingList.get(index);
    }

    @Override
    @ParametricNullness
    public E remove(int index) {
      return backingList.remove(index);
    }

    @Override
    @ParametricNullness
    public E set(int index, @ParametricNullness E element) {
      return backingList.set(index, element);
    }

    @Override
    public boolean contains(@CheckForNull Object o) {
      return backingList.contains(o);
    }

    @Override
    public int size() {
      return backingList.size();
    }
  }

  private static class RandomAccessListWrapper<E extends @Nullable Object>
      extends AbstractListWrapper<E> implements RandomAccess {
    RandomAccessListWrapper(List<E> backingList) {
      super(backingList);
    }
  }

  /** Used to avoid http://bugs.sun.com/view_bug.do?bug_id=6558557 */
  static <T extends @Nullable Object> List<T> cast(Iterable<T> iterable) {
    return (List<T>) iterable;
  }
}