aboutsummaryrefslogtreecommitdiff
path: root/src/tests/sampler_test.cc
blob: c55d5dceafaa6a9ed699ceb68da8be2f11ad14a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
// Copyright (c) 2008, Google Inc.
// All rights reserved.
// 
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// 
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
// 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// ---
// All Rights Reserved.
//
// Author: Daniel Ford
//
// Checks basic properties of the sampler

#include "config_for_unittests.h"
#include <stdlib.h>        // defines posix_memalign
#include <stdio.h>         // for the printf at the end
#if defined HAVE_STDINT_H
#include <stdint.h>             // to get uintptr_t
#elif defined HAVE_INTTYPES_H
#include <inttypes.h>           // another place uintptr_t might be defined
#endif
#include <sys/types.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <string>
#include <cmath>
#include "base/logging.h"
#include "base/commandlineflags.h"
#include "sampler.h"       // The Sampler class being tested

using std::sort;
using std::min;
using std::max;
using std::vector;
using std::abs;

vector<void (*)()> g_testlist;  // the tests to run

#define TEST(a, b)                                      \
  struct Test_##a##_##b {                               \
    Test_##a##_##b() { g_testlist.push_back(&Run); }    \
    static void Run();                                  \
  };                                                    \
  static Test_##a##_##b g_test_##a##_##b;               \
  void Test_##a##_##b::Run()


static int RUN_ALL_TESTS() {
  vector<void (*)()>::const_iterator it;
  for (it = g_testlist.begin(); it != g_testlist.end(); ++it) {
    (*it)();   // The test will error-exit if there's a problem.
  }
  fprintf(stderr, "\nPassed %d tests\n\nPASS\n", (int)g_testlist.size());
  return 0;
}

#undef LOG   // defined in base/logging.h
// Ideally, we'd put the newline at the end, but this hack puts the
// newline at the end of the previous log message, which is good enough :-)
#define LOG(level)  std::cerr << "\n"

static std::string StringPrintf(const char* format, ...) {
  char buf[256];   // should be big enough for all logging
  va_list ap;
  va_start(ap, format);
  perftools_vsnprintf(buf, sizeof(buf), format, ap);
  va_end(ap);
  return buf;
}

namespace {
template<typename T> class scoped_array {
 public:
  scoped_array(T* p) : p_(p) { }
  ~scoped_array() { delete[] p_; }
  const T* get() const { return p_; }
  T* get() { return p_; }
  T& operator[](int i) { return p_[i]; }
 private:
  T* p_;
};
}

// Note that these tests are stochastic.
// This mean that the chance of correct code passing the test is,
// in the case of 5 standard deviations:
// kSigmas=5:    ~99.99994267%
// in the case of 4 standard deviations:
// kSigmas=4:    ~99.993666%
static const double kSigmas = 4;
static const size_t kSamplingInterval = 512*1024;

// Tests that GetSamplePeriod returns the expected value
// which is 1<<19
TEST(Sampler, TestGetSamplePeriod) {
  tcmalloc::Sampler sampler;
  sampler.Init(1);
  uint64_t sample_period;
  sample_period = sampler.GetSamplePeriod();
  CHECK_GT(sample_period, 0);
}

// Tests of the quality of the random numbers generated
// This uses the Anderson Darling test for uniformity.
// See "Evaluating the Anderson-Darling Distribution" by Marsaglia
// for details.

// Short cut version of ADinf(z), z>0 (from Marsaglia)
// This returns the p-value for Anderson Darling statistic in
// the limit as n-> infinity. For finite n, apply the error fix below.
double AndersonDarlingInf(double z) {
  if (z < 2) {
    return exp(-1.2337141 / z) / sqrt(z) * (2.00012 + (0.247105 -
                (0.0649821 - (0.0347962 - (0.011672 - 0.00168691
                * z) * z) * z) * z) * z);
  }
  return exp( - exp(1.0776 - (2.30695 - (0.43424 - (0.082433 -
                    (0.008056 - 0.0003146 * z) * z) * z) * z) * z));
}

// Corrects the approximation error in AndersonDarlingInf for small values of n
// Add this to AndersonDarlingInf to get a better approximation
// (from Marsaglia)
double AndersonDarlingErrFix(int n, double x) {
  if (x > 0.8) {
    return (-130.2137 + (745.2337 - (1705.091 - (1950.646 -
            (1116.360 - 255.7844 * x) * x) * x) * x) * x) / n;
  }
  double cutoff = 0.01265 + 0.1757 / n;
  double t;
  if (x < cutoff) {
    t = x / cutoff;
    t = sqrt(t) * (1 - t) * (49 * t - 102);
    return t * (0.0037 / (n * n) + 0.00078 / n + 0.00006) / n;
  } else {
    t = (x - cutoff) / (0.8 - cutoff);
    t = -0.00022633 + (6.54034 - (14.6538 - (14.458 - (8.259 - 1.91864
          * t) * t) * t) * t) * t;
    return t * (0.04213 + 0.01365 / n) / n;
  }
}

// Returns the AndersonDarling p-value given n and the value of the statistic
double AndersonDarlingPValue(int n, double z) {
  double ad = AndersonDarlingInf(z);
  double errfix = AndersonDarlingErrFix(n, ad);
  return ad + errfix;
}

double AndersonDarlingStatistic(int n, double* random_sample) {
  double ad_sum = 0;
  for (int i = 0; i < n; i++) {
    ad_sum += (2*i + 1) * log(random_sample[i] * (1 - random_sample[n-1-i]));
  }
  double ad_statistic = - n - 1/static_cast<double>(n) * ad_sum;
  return ad_statistic;
}

// Tests if the array of doubles is uniformly distributed.
// Returns the p-value of the Anderson Darling Statistic
// for the given set of sorted random doubles
// See "Evaluating the Anderson-Darling Distribution" by
// Marsaglia and Marsaglia for details.
double AndersonDarlingTest(int n, double* random_sample) {
  double ad_statistic = AndersonDarlingStatistic(n, random_sample);
  LOG(INFO) << StringPrintf("AD stat = %f, n=%d\n", ad_statistic, n);
  double p = AndersonDarlingPValue(n, ad_statistic);
  return p;
}

// Test the AD Test. The value of the statistic should go to zero as n->infty
// Not run as part of regular tests
void ADTestTest(int n) {
  scoped_array<double> random_sample(new double[n]);
  for (int i = 0; i < n; i++) {
    random_sample[i] = (i+0.01)/n;
  }
  sort(random_sample.get(), random_sample.get() + n);
  double ad_stat = AndersonDarlingStatistic(n, random_sample.get());
  LOG(INFO) << StringPrintf("Testing the AD test. n=%d, ad_stat = %f",
                            n, ad_stat);
}

// Print the CDF of the distribution of the Anderson-Darling Statistic
// Used for checking the Anderson-Darling Test
// Not run as part of regular tests
void ADCDF() {
  for (int i = 1; i < 40; i++) {
    double x = i/10.0;
    LOG(INFO) << "x= " << x << "  adpv= "
              << AndersonDarlingPValue(100, x) << ", "
              << AndersonDarlingPValue(1000, x);
  }
}

// Testing that NextRandom generates uniform
// random numbers.
// Applies the Anderson-Darling test for uniformity
void TestNextRandom(int n) {
  tcmalloc::Sampler sampler;
  sampler.Init(1);
  uint64_t x = 1;
  // This assumes that the prng returns 48 bit numbers
  uint64_t max_prng_value = static_cast<uint64_t>(1)<<48;
  // Initialize
  for (int i = 1; i <= 20; i++) {  // 20 mimics sampler.Init()
    x = sampler.NextRandom(x);
  }
  scoped_array<uint64_t> int_random_sample(new uint64_t[n]);
  // Collect samples
  for (int i = 0; i < n; i++) {
    int_random_sample[i] = x;
    x = sampler.NextRandom(x);
  }
  // First sort them...
  sort(int_random_sample.get(), int_random_sample.get() + n);
  scoped_array<double> random_sample(new double[n]);
  // Convert them to uniform randoms (in the range [0,1])
  for (int i = 0; i < n; i++) {
    random_sample[i] = static_cast<double>(int_random_sample[i])/max_prng_value;
  }
  // Now compute the Anderson-Darling statistic
  double ad_pvalue = AndersonDarlingTest(n, random_sample.get());
  LOG(INFO) << StringPrintf("pvalue for AndersonDarlingTest "
                            "with n= %d is p= %f\n", n, ad_pvalue);
  CHECK_GT(min(ad_pvalue, 1 - ad_pvalue), 0.0001);
  //           << StringPrintf("prng is not uniform, %d\n", n);
}


TEST(Sampler, TestNextRandom_MultipleValues) {
  TestNextRandom(10);  // Check short-range correlation
  TestNextRandom(100);
  TestNextRandom(1000);
  TestNextRandom(10000);  // Make sure there's no systematic error
}

// Tests that PickNextSamplePeriod generates
// geometrically distributed random numbers.
// First converts to uniforms then applied the
// Anderson-Darling test for uniformity.
void TestPickNextSample(int n) {
  tcmalloc::Sampler sampler;
  sampler.Init(1);
  scoped_array<uint64_t> int_random_sample(new uint64_t[n]);
  int sample_period = sampler.GetSamplePeriod();
  int ones_count = 0;
  for (int i = 0; i < n; i++) {
    int_random_sample[i] = sampler.PickNextSamplingPoint();
    CHECK_GE(int_random_sample[i], 1);
    if (int_random_sample[i] == 1) {
      ones_count += 1;
    }
    CHECK_LT(ones_count, 4); // << " out of " << i << " samples.";
  }
  // First sort them...
  sort(int_random_sample.get(), int_random_sample.get() + n);
  scoped_array<double> random_sample(new double[n]);
  // Convert them to uniform random numbers
  // by applying the geometric CDF
  for (int i = 0; i < n; i++) {
    random_sample[i] = 1 - exp(-static_cast<double>(int_random_sample[i])
                           / sample_period);
  }
  // Now compute the Anderson-Darling statistic
  double geom_ad_pvalue = AndersonDarlingTest(n, random_sample.get());
  LOG(INFO) << StringPrintf("pvalue for geometric AndersonDarlingTest "
                             "with n= %d is p= %f\n", n, geom_ad_pvalue);
  CHECK_GT(min(geom_ad_pvalue, 1 - geom_ad_pvalue), 0.0001);
      //          << "PickNextSamplingPoint does not produce good "
      //             "geometric/exponential random numbers\n";
}

TEST(Sampler, TestPickNextSample_MultipleValues) {
  TestPickNextSample(10);  // Make sure the first few are good (enough)
  TestPickNextSample(100);
  TestPickNextSample(1000);
  TestPickNextSample(10000);  // Make sure there's no systematic error
}


// This is superceeded by the Anderson-Darling Test
// and it not run now.
// Tests how fast nearby values are spread out with  LRand64
// The purpose of this code is to determine how many
// steps to apply to the seed during initialization
void TestLRand64Spread() {
  tcmalloc::Sampler sampler;
  sampler.Init(1);
  uint64_t current_value;
  printf("Testing LRand64 Spread\n");
  for (int i = 1; i < 10; i++) {
    printf("%d ", i);
    current_value = i;
    for (int j = 1; j < 100; j++) {
      current_value = sampler.NextRandom(current_value);
    }
    LOG(INFO) << current_value;
  }
}


// Test for Fastlog2 code
// We care about the percentage error because we're using this
// for choosing step sizes, so "close" is relative to the size of
// the step we would get if we used the built-in log function
TEST(Sampler, FastLog2) {
  tcmalloc::Sampler sampler;
  sampler.Init(1);
  double max_ratio_error = 0;
  for (double d = -1021.9; d < 1; d+= 0.13124235) {
    double e = pow(2.0, d);
    double truelog = log(e) / log(2.0);  // log_2(e)
    double fastlog = sampler.FastLog2(e);
    max_ratio_error = max(max_ratio_error,
                          max(truelog/fastlog-1, fastlog/truelog-1));
    CHECK_LE(max_ratio_error, 0.01);
        //        << StringPrintf("d = %f, e=%f, truelog = %f, fastlog= %f\n",
        //                        d, e, truelog, fastlog);
  }
  LOG(INFO) << StringPrintf("Fastlog2: max_ratio_error = %f\n",
                            max_ratio_error);
}

// Futher tests

bool CheckMean(size_t mean, int num_samples) {
  tcmalloc::Sampler sampler;
  sampler.Init(1);
  size_t total = 0;
  for (int i = 0; i < num_samples; i++) {
    total += sampler.PickNextSamplingPoint();
  }
  double empirical_mean = total / static_cast<double>(num_samples);
  double expected_sd = mean / pow(num_samples * 1.0, 0.5);
  return(fabs(mean-empirical_mean) < expected_sd * kSigmas);
}

// Prints a sequence so you can look at the distribution
void OutputSequence(int sequence_length) {
  tcmalloc::Sampler sampler;
  sampler.Init(1);
  size_t next_step;
  for (int i = 0; i< sequence_length; i++) {
    next_step = sampler.PickNextSamplingPoint();
    LOG(INFO) << next_step;
  }
}


double StandardDeviationsErrorInSample(
              int total_samples, int picked_samples,
              int alloc_size, int sampling_interval) {
  double p = 1 - exp(-(static_cast<double>(alloc_size) / sampling_interval));
  double expected_samples = total_samples * p;
  double sd = pow(p*(1-p)*total_samples, 0.5);
  return((picked_samples - expected_samples) / sd);
}

TEST(Sampler, LargeAndSmallAllocs_CombinedTest) {
  tcmalloc::Sampler sampler;
  sampler.Init(1);
  int counter_big = 0;
  int counter_small = 0;
  int size_big = 129*8*1024+1;
  int size_small = 1024*8;
  int num_iters = 128*4*8;
  // Allocate in mixed chunks
  for (int i = 0; i < num_iters; i++) {
    if (sampler.SampleAllocation(size_big)) {
      counter_big += 1;
    }
    for (int i = 0; i < 129; i++) {
      if (sampler.SampleAllocation(size_small)) {
        counter_small += 1;
      }
    }
  }
  // Now test that there are the right number of each
  double large_allocs_sds =
     StandardDeviationsErrorInSample(num_iters, counter_big,
                                     size_big, kSamplingInterval);
  double small_allocs_sds =
     StandardDeviationsErrorInSample(num_iters*129, counter_small,
                                     size_small, kSamplingInterval);
  LOG(INFO) << StringPrintf("large_allocs_sds = %f\n", large_allocs_sds);
  LOG(INFO) << StringPrintf("small_allocs_sds = %f\n", small_allocs_sds);
  CHECK_LE(fabs(large_allocs_sds), kSigmas);
  CHECK_LE(fabs(small_allocs_sds), kSigmas);
}

// Tests whether the mean is about right over 1000 samples
TEST(Sampler, IsMeanRight) {
  CHECK(CheckMean(kSamplingInterval, 1000));
}

// This flag is for the OldSampler class to use
const int64 FLAGS_mock_tcmalloc_sample_parameter = 1<<19;

// A cut down and slightly refactored version of the old Sampler
class OldSampler {
 public:
  void Init(uint32_t seed);
  void Cleanup() {}

  // Record allocation of "k" bytes.  Return true iff allocation
  // should be sampled
  bool SampleAllocation(size_t k);

  // Generate a geometric with mean 1M (or FLAG value)
  void PickNextSample(size_t k);

  // Initialize the statics for the Sample class
  static void InitStatics() {
    sample_period = 1048583;
  }
  size_t bytes_until_sample_;

 private:
  uint32_t rnd_;                   // Cheap random number generator
  static uint64_t sample_period;
  // Should be a prime just above a power of 2:
  // 2, 5, 11, 17, 37, 67, 131, 257,
  // 521, 1031, 2053, 4099, 8209, 16411,
  // 32771, 65537, 131101, 262147, 524309, 1048583,
  // 2097169, 4194319, 8388617, 16777259, 33554467
};

// Statics for OldSampler
uint64_t OldSampler::sample_period;

void OldSampler::Init(uint32_t seed) {
  // Initialize PRNG -- run it for a bit to get to good values
  if (seed != 0) {
    rnd_ = seed;
  } else {
    rnd_ = 12345;
  }
  bytes_until_sample_ = 0;
  for (int i = 0; i < 100; i++) {
    PickNextSample(sample_period * 2);
  }
};

// A cut-down version of the old PickNextSampleRoutine
void OldSampler::PickNextSample(size_t k) {
  // Make next "random" number
  // x^32+x^22+x^2+x^1+1 is a primitive polynomial for random numbers
  static const uint32_t kPoly = (1 << 22) | (1 << 2) | (1 << 1) | (1 << 0);
  uint32_t r = rnd_;
  rnd_ = (r << 1) ^ ((static_cast<int32_t>(r) >> 31) & kPoly);

  // Next point is "rnd_ % (sample_period)".  I.e., average
  // increment is "sample_period/2".
  const int flag_value = FLAGS_mock_tcmalloc_sample_parameter;
  static int last_flag_value = -1;

  if (flag_value != last_flag_value) {
    // There should be a spinlock here, but this code is
    // for benchmarking only.
    sample_period = 1048583;
    last_flag_value = flag_value;
  }

  bytes_until_sample_ += rnd_ % sample_period;

  if (k > (static_cast<size_t>(-1) >> 2)) {
    // If the user has asked for a huge allocation then it is possible
    // for the code below to loop infinitely.  Just return (note that
    // this throws off the sampling accuracy somewhat, but a user who
    // is allocating more than 1G of memory at a time can live with a
    // minor inaccuracy in profiling of small allocations, and also
    // would rather not wait for the loop below to terminate).
    return;
  }

  while (bytes_until_sample_ < k) {
    // Increase bytes_until_sample_ by enough average sampling periods
    // (sample_period >> 1) to allow us to sample past the current
    // allocation.
    bytes_until_sample_ += (sample_period >> 1);
  }

  bytes_until_sample_ -= k;
}

inline bool OldSampler::SampleAllocation(size_t k) {
  if (bytes_until_sample_ < k) {
    PickNextSample(k);
    return true;
  } else {
    bytes_until_sample_ -= k;
    return false;
  }
}

// This checks that the stated maximum value for the
// tcmalloc_sample_parameter flag never overflows bytes_until_sample_
TEST(Sampler, bytes_until_sample_Overflow_Underflow) {
  tcmalloc::Sampler sampler;
  sampler.Init(1);
  uint64_t one = 1;
  // sample_parameter = 0;  // To test the edge case
  uint64_t sample_parameter_array[4] = {0, 1, one<<19, one<<58};
  for (int i = 0; i < 4; i++) {
    uint64_t sample_parameter = sample_parameter_array[i];
    LOG(INFO) << "sample_parameter = " << sample_parameter;
    double sample_scaling = - log(2.0) * sample_parameter;
    // Take the top 26 bits as the random number
    // (This plus the 1<<26 sampling bound give a max step possible of
    // 1209424308 bytes.)
    const uint64_t prng_mod_power = 48;  // Number of bits in prng

    // First, check the largest_prng value
    uint64_t largest_prng_value = (static_cast<uint64_t>(1)<<48) - 1;
    double q = (largest_prng_value >> (prng_mod_power - 26)) + 1.0;
    LOG(INFO) << StringPrintf("q = %f\n", q);
    LOG(INFO) << StringPrintf("FastLog2(q) = %f\n", sampler.FastLog2(q));
    LOG(INFO) << StringPrintf("log2(q) = %f\n", log(q)/log(2.0));
    // Replace min(sampler.FastLog2(q) - 26, 0.0) with
    // (sampler.FastLog2(q) - 26.000705) when using that optimization
    uint64_t smallest_sample_step
        = static_cast<uint64_t>(min(sampler.FastLog2(q) - 26, 0.0)
                                * sample_scaling + 1);
    LOG(INFO) << "Smallest sample step is " << smallest_sample_step;
    uint64_t cutoff = static_cast<uint64_t>(10)
                      * (sample_parameter/(one<<24) + 1);
    LOG(INFO) << "Acceptable value is < " << cutoff;
    // This checks that the answer is "small" and positive
    CHECK_LE(smallest_sample_step, cutoff);

    // Next, check with the smallest prng value
    uint64_t smallest_prng_value = 0;
    q = (smallest_prng_value >> (prng_mod_power - 26)) + 1.0;
    LOG(INFO) << StringPrintf("q = %f\n", q);
    // Replace min(sampler.FastLog2(q) - 26, 0.0) with
    // (sampler.FastLog2(q) - 26.000705) when using that optimization
    uint64_t largest_sample_step
        = static_cast<uint64_t>(min(sampler.FastLog2(q) - 26, 0.0)
                                * sample_scaling + 1);
    LOG(INFO) << "Largest sample step is " << largest_sample_step;
    CHECK_LE(largest_sample_step, one<<63);
    CHECK_GE(largest_sample_step, smallest_sample_step);
  }
}


// Test that NextRand is in the right range.  Unfortunately, this is a
// stochastic test which could miss problems.
TEST(Sampler, NextRand_range) {
  tcmalloc::Sampler sampler;
  sampler.Init(1);
  uint64_t one = 1;
  // The next number should be (one << 48) - 1
  uint64_t max_value = (one << 48) - 1;
  uint64_t x = (one << 55);
  int n = 22;  // 27;
  LOG(INFO) << "Running sampler.NextRandom 1<<" << n << " times";
  for (int i = 1; i <= (1<<n); i++) {  // 20 mimics sampler.Init()
    x = sampler.NextRandom(x);
    CHECK_LE(x, max_value);
  }
}

// Tests certain arithmetic operations to make sure they compute what we
// expect them too (for testing across different platforms)
TEST(Sampler, arithmetic_1) {
  tcmalloc::Sampler sampler;
  sampler.Init(1);
  uint64_t rnd;  // our 48 bit random number, which we don't trust
  const uint64_t prng_mod_power = 48;
  uint64_t one = 1;
  rnd = one;
  uint64_t max_value = (one << 48) - 1;
  for (int i = 1; i <= (1>>27); i++) {  // 20 mimics sampler.Init()
    rnd = sampler.NextRandom(rnd);
    CHECK_LE(rnd, max_value);
    double q = (rnd >> (prng_mod_power - 26)) + 1.0;
    CHECK_GE(q, 0); // << rnd << "  " << prng_mod_power;
  }
  // Test some potentially out of bounds value for rnd
  for (int i = 1; i <= 66; i++) {
    rnd = one << i;
    double q = (rnd >> (prng_mod_power - 26)) + 1.0;
    LOG(INFO) << "rnd = " << rnd << " i=" << i << " q=" << q;
    CHECK_GE(q, 0);
    //        << " rnd=" << rnd << "  i=" << i << " prng_mod_power" << prng_mod_power;
  }
}

void test_arithmetic(uint64_t rnd) {
  const uint64_t prng_mod_power = 48;  // Number of bits in prng
  uint64_t shifted_rnd = rnd >> (prng_mod_power - 26);
  CHECK_GE(shifted_rnd, 0);
  CHECK_LT(shifted_rnd, (1<<26));
  LOG(INFO) << shifted_rnd;
  LOG(INFO) << static_cast<double>(shifted_rnd);
  CHECK_GE(static_cast<double>(static_cast<uint32_t>(shifted_rnd)), 0);
      //      << " rnd=" << rnd << "  srnd=" << shifted_rnd;
  CHECK_GE(static_cast<double>(shifted_rnd), 0);
      //      << " rnd=" << rnd << "  srnd=" << shifted_rnd;
  double q = static_cast<double>(shifted_rnd) + 1.0;
  CHECK_GT(q, 0);
}

// Tests certain arithmetic operations to make sure they compute what we
// expect them too (for testing across different platforms)
// know bad values under with -c dbg --cpu piii for _some_ binaries:
// rnd=227453640600554
// shifted_rnd=54229173
// (hard to reproduce)
TEST(Sampler, arithmetic_2) {
  uint64_t rnd = 227453640600554LL;
  test_arithmetic(rnd);
}


// It's not really a test, but it's good to know
TEST(Sample, size_of_class) {
  tcmalloc::Sampler sampler;
  sampler.Init(1);
  LOG(INFO) << "Size of Sampler class is: " << sizeof(tcmalloc::Sampler);
  LOG(INFO) << "Size of Sampler object is: " << sizeof(sampler);
}

// Make sure sampling is enabled, or the tests won't work right.
DECLARE_int64(tcmalloc_sample_parameter);

int main(int argc, char **argv) {
  if (FLAGS_tcmalloc_sample_parameter == 0)
    FLAGS_tcmalloc_sample_parameter = 524288;
  return RUN_ALL_TESTS();
}