aboutsummaryrefslogtreecommitdiff
path: root/test/benchmark_test.cc
blob: 94590d5e4196820e459f5acc9eb4b8a31c791eea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
#include "benchmark/benchmark.h"

#include <assert.h>
#include <math.h>
#include <stdint.h>

#include <chrono>
#include <complex>
#include <cstdlib>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <mutex>
#include <set>
#include <sstream>
#include <string>
#include <thread>
#include <utility>
#include <vector>

#if defined(__GNUC__)
#define BENCHMARK_NOINLINE __attribute__((noinline))
#else
#define BENCHMARK_NOINLINE
#endif

namespace {

int BENCHMARK_NOINLINE Factorial(int n) {
  return (n == 1) ? 1 : n * Factorial(n - 1);
}

double CalculatePi(int depth) {
  double pi = 0.0;
  for (int i = 0; i < depth; ++i) {
    double numerator = static_cast<double>(((i % 2) * 2) - 1);
    double denominator = static_cast<double>((2 * i) - 1);
    pi += numerator / denominator;
  }
  return (pi - 1.0) * 4;
}

std::set<int64_t> ConstructRandomSet(int64_t size) {
  std::set<int64_t> s;
  for (int i = 0; i < size; ++i) s.insert(s.end(), i);
  return s;
}

std::mutex test_vector_mu;
std::vector<int>* test_vector = nullptr;

}  // end namespace

static void BM_Factorial(benchmark::State& state) {
  int fac_42 = 0;
  for (auto _ : state) fac_42 = Factorial(8);
  // Prevent compiler optimizations
  std::stringstream ss;
  ss << fac_42;
  state.SetLabel(ss.str());
}
BENCHMARK(BM_Factorial);
BENCHMARK(BM_Factorial)->UseRealTime();

static void BM_CalculatePiRange(benchmark::State& state) {
  double pi = 0.0;
  for (auto _ : state) pi = CalculatePi(static_cast<int>(state.range(0)));
  std::stringstream ss;
  ss << pi;
  state.SetLabel(ss.str());
}
BENCHMARK_RANGE(BM_CalculatePiRange, 1, 1024 * 1024);

static void BM_CalculatePi(benchmark::State& state) {
  static const int depth = 1024;
  for (auto _ : state) {
    double pi = CalculatePi(static_cast<int>(depth));
    benchmark::DoNotOptimize(pi);
  }
}
BENCHMARK(BM_CalculatePi)->Threads(8);
BENCHMARK(BM_CalculatePi)->ThreadRange(1, 32);
BENCHMARK(BM_CalculatePi)->ThreadPerCpu();

static void BM_SetInsert(benchmark::State& state) {
  std::set<int64_t> data;
  for (auto _ : state) {
    state.PauseTiming();
    data = ConstructRandomSet(state.range(0));
    state.ResumeTiming();
    for (int j = 0; j < state.range(1); ++j) data.insert(rand());
  }
  state.SetItemsProcessed(state.iterations() * state.range(1));
  state.SetBytesProcessed(state.iterations() * state.range(1) *
                          static_cast<int64_t>(sizeof(int)));
}

// Test many inserts at once to reduce the total iterations needed. Otherwise,
// the slower, non-timed part of each iteration will make the benchmark take
// forever.
BENCHMARK(BM_SetInsert)->Ranges({{1 << 10, 8 << 10}, {128, 512}});

template <typename Container,
          typename ValueType = typename Container::value_type>
static void BM_Sequential(benchmark::State& state) {
  ValueType v = 42;
  for (auto _ : state) {
    Container c;
    for (int64_t i = state.range(0); --i;) c.push_back(v);
  }
  const int64_t items_processed = state.iterations() * state.range(0);
  state.SetItemsProcessed(items_processed);
  state.SetBytesProcessed(items_processed * static_cast<int64_t>(sizeof(v)));
}
BENCHMARK_TEMPLATE2(BM_Sequential, std::vector<int>, int)
    ->Range(1 << 0, 1 << 10);
BENCHMARK_TEMPLATE(BM_Sequential, std::list<int>)->Range(1 << 0, 1 << 10);
// Test the variadic version of BENCHMARK_TEMPLATE in C++11 and beyond.
#ifdef BENCHMARK_HAS_CXX11
BENCHMARK_TEMPLATE(BM_Sequential, std::vector<int>, int)->Arg(512);
#endif

static void BM_StringCompare(benchmark::State& state) {
  size_t len = static_cast<size_t>(state.range(0));
  std::string s1(len, '-');
  std::string s2(len, '-');
  for (auto _ : state) {
    auto comp = s1.compare(s2);
    benchmark::DoNotOptimize(comp);
  }
}
BENCHMARK(BM_StringCompare)->Range(1, 1 << 20);

static void BM_SetupTeardown(benchmark::State& state) {
  if (state.thread_index() == 0) {
    // No need to lock test_vector_mu here as this is running single-threaded.
    test_vector = new std::vector<int>();
  }
  int i = 0;
  for (auto _ : state) {
    std::lock_guard<std::mutex> l(test_vector_mu);
    if (i % 2 == 0)
      test_vector->push_back(i);
    else
      test_vector->pop_back();
    ++i;
  }
  if (state.thread_index() == 0) {
    delete test_vector;
  }
}
BENCHMARK(BM_SetupTeardown)->ThreadPerCpu();

static void BM_LongTest(benchmark::State& state) {
  double tracker = 0.0;
  for (auto _ : state) {
    for (int i = 0; i < state.range(0); ++i)
      benchmark::DoNotOptimize(tracker += i);
  }
}
BENCHMARK(BM_LongTest)->Range(1 << 16, 1 << 28);

static void BM_ParallelMemset(benchmark::State& state) {
  int64_t size = state.range(0) / static_cast<int64_t>(sizeof(int));
  int thread_size = static_cast<int>(size) / state.threads();
  int from = thread_size * state.thread_index();
  int to = from + thread_size;

  if (state.thread_index() == 0) {
    test_vector = new std::vector<int>(static_cast<size_t>(size));
  }

  for (auto _ : state) {
    for (int i = from; i < to; i++) {
      // No need to lock test_vector_mu as ranges
      // do not overlap between threads.
      benchmark::DoNotOptimize(test_vector->at(static_cast<size_t>(i)) = 1);
    }
  }

  if (state.thread_index() == 0) {
    delete test_vector;
  }
}
BENCHMARK(BM_ParallelMemset)->Arg(10 << 20)->ThreadRange(1, 4);

static void BM_ManualTiming(benchmark::State& state) {
  int64_t slept_for = 0;
  int64_t microseconds = state.range(0);
  std::chrono::duration<double, std::micro> sleep_duration{
      static_cast<double>(microseconds)};

  for (auto _ : state) {
    auto start = std::chrono::high_resolution_clock::now();
    // Simulate some useful workload with a sleep
    std::this_thread::sleep_for(
        std::chrono::duration_cast<std::chrono::nanoseconds>(sleep_duration));
    auto end = std::chrono::high_resolution_clock::now();

    auto elapsed =
        std::chrono::duration_cast<std::chrono::duration<double>>(end - start);

    state.SetIterationTime(elapsed.count());
    slept_for += microseconds;
  }
  state.SetItemsProcessed(slept_for);
}
BENCHMARK(BM_ManualTiming)->Range(1, 1 << 14)->UseRealTime();
BENCHMARK(BM_ManualTiming)->Range(1, 1 << 14)->UseManualTime();

#ifdef BENCHMARK_HAS_CXX11

template <class... Args>
void BM_with_args(benchmark::State& state, Args&&...) {
  for (auto _ : state) {
  }
}
BENCHMARK_CAPTURE(BM_with_args, int_test, 42, 43, 44);
BENCHMARK_CAPTURE(BM_with_args, string_and_pair_test, std::string("abc"),
                  std::pair<int, double>(42, 3.8));

void BM_non_template_args(benchmark::State& state, int, double) {
  while (state.KeepRunning()) {
  }
}
BENCHMARK_CAPTURE(BM_non_template_args, basic_test, 0, 0);

#endif  // BENCHMARK_HAS_CXX11

static void BM_DenseThreadRanges(benchmark::State& st) {
  switch (st.range(0)) {
    case 1:
      assert(st.threads() == 1 || st.threads() == 2 || st.threads() == 3);
      break;
    case 2:
      assert(st.threads() == 1 || st.threads() == 3 || st.threads() == 4);
      break;
    case 3:
      assert(st.threads() == 5 || st.threads() == 8 || st.threads() == 11 ||
             st.threads() == 14);
      break;
    default:
      assert(false && "Invalid test case number");
  }
  while (st.KeepRunning()) {
  }
}
BENCHMARK(BM_DenseThreadRanges)->Arg(1)->DenseThreadRange(1, 3);
BENCHMARK(BM_DenseThreadRanges)->Arg(2)->DenseThreadRange(1, 4, 2);
BENCHMARK(BM_DenseThreadRanges)->Arg(3)->DenseThreadRange(5, 14, 3);

static void BM_BenchmarkName(benchmark::State& state) {
  for (auto _ : state) {
  }

  // Check that the benchmark name is passed correctly to `state`.
  assert("BM_BenchmarkName" == state.name());
}
BENCHMARK(BM_BenchmarkName);

// regression test for #1446
template <typename type>
static void BM_templated_test(benchmark::State& state) {
  for (auto _ : state) {
    type created_string;
    benchmark::DoNotOptimize(created_string);
  }
}

static auto BM_templated_test_double = BM_templated_test<std::complex<double>>;
BENCHMARK(BM_templated_test_double);

BENCHMARK_MAIN();