aboutsummaryrefslogtreecommitdiff
path: root/test/basic_test.cc
blob: cba1b0f992525b21392f2d19972813fdda85cee8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

#include "benchmark/benchmark.h"

#define BASIC_BENCHMARK_TEST(x) BENCHMARK(x)->Arg(8)->Arg(512)->Arg(8192)

void BM_empty(benchmark::State& state) {
  for (auto _ : state) {
    auto iterations = state.iterations();
    benchmark::DoNotOptimize(iterations);
  }
}
BENCHMARK(BM_empty);
BENCHMARK(BM_empty)->ThreadPerCpu();

void BM_spin_empty(benchmark::State& state) {
  for (auto _ : state) {
    for (auto x = 0; x < state.range(0); ++x) {
      benchmark::DoNotOptimize(x);
    }
  }
}
BASIC_BENCHMARK_TEST(BM_spin_empty);
BASIC_BENCHMARK_TEST(BM_spin_empty)->ThreadPerCpu();

void BM_spin_pause_before(benchmark::State& state) {
  for (auto i = 0; i < state.range(0); ++i) {
    benchmark::DoNotOptimize(i);
  }
  for (auto _ : state) {
    for (auto i = 0; i < state.range(0); ++i) {
      benchmark::DoNotOptimize(i);
    }
  }
}
BASIC_BENCHMARK_TEST(BM_spin_pause_before);
BASIC_BENCHMARK_TEST(BM_spin_pause_before)->ThreadPerCpu();

void BM_spin_pause_during(benchmark::State& state) {
  for (auto _ : state) {
    state.PauseTiming();
    for (auto i = 0; i < state.range(0); ++i) {
      benchmark::DoNotOptimize(i);
    }
    state.ResumeTiming();
    for (auto i = 0; i < state.range(0); ++i) {
      benchmark::DoNotOptimize(i);
    }
  }
}
BASIC_BENCHMARK_TEST(BM_spin_pause_during);
BASIC_BENCHMARK_TEST(BM_spin_pause_during)->ThreadPerCpu();

void BM_pause_during(benchmark::State& state) {
  for (auto _ : state) {
    state.PauseTiming();
    state.ResumeTiming();
  }
}
BENCHMARK(BM_pause_during);
BENCHMARK(BM_pause_during)->ThreadPerCpu();
BENCHMARK(BM_pause_during)->UseRealTime();
BENCHMARK(BM_pause_during)->UseRealTime()->ThreadPerCpu();

void BM_spin_pause_after(benchmark::State& state) {
  for (auto _ : state) {
    for (auto i = 0; i < state.range(0); ++i) {
      benchmark::DoNotOptimize(i);
    }
  }
  for (auto i = 0; i < state.range(0); ++i) {
    benchmark::DoNotOptimize(i);
  }
}
BASIC_BENCHMARK_TEST(BM_spin_pause_after);
BASIC_BENCHMARK_TEST(BM_spin_pause_after)->ThreadPerCpu();

void BM_spin_pause_before_and_after(benchmark::State& state) {
  for (auto i = 0; i < state.range(0); ++i) {
    benchmark::DoNotOptimize(i);
  }
  for (auto _ : state) {
    for (auto i = 0; i < state.range(0); ++i) {
      benchmark::DoNotOptimize(i);
    }
  }
  for (auto i = 0; i < state.range(0); ++i) {
    benchmark::DoNotOptimize(i);
  }
}
BASIC_BENCHMARK_TEST(BM_spin_pause_before_and_after);
BASIC_BENCHMARK_TEST(BM_spin_pause_before_and_after)->ThreadPerCpu();

void BM_empty_stop_start(benchmark::State& state) {
  for (auto _ : state) {
  }
}
BENCHMARK(BM_empty_stop_start);
BENCHMARK(BM_empty_stop_start)->ThreadPerCpu();

void BM_KeepRunning(benchmark::State& state) {
  benchmark::IterationCount iter_count = 0;
  assert(iter_count == state.iterations());
  while (state.KeepRunning()) {
    ++iter_count;
  }
  assert(iter_count == state.iterations());
}
BENCHMARK(BM_KeepRunning);

void BM_KeepRunningBatch(benchmark::State& state) {
  // Choose a batch size >1000 to skip the typical runs with iteration
  // targets of 10, 100 and 1000.  If these are not actually skipped the
  // bug would be detectable as consecutive runs with the same iteration
  // count.  Below we assert that this does not happen.
  const benchmark::IterationCount batch_size = 1009;

  static benchmark::IterationCount prior_iter_count = 0;
  benchmark::IterationCount iter_count = 0;
  while (state.KeepRunningBatch(batch_size)) {
    iter_count += batch_size;
  }
  assert(state.iterations() == iter_count);

  // Verify that the iteration count always increases across runs (see
  // comment above).
  assert(iter_count == batch_size            // max_iterations == 1
         || iter_count > prior_iter_count);  // max_iterations > batch_size
  prior_iter_count = iter_count;
}
// Register with a fixed repetition count to establish the invariant that
// the iteration count should always change across runs.  This overrides
// the --benchmark_repetitions command line flag, which would otherwise
// cause this test to fail if set > 1.
BENCHMARK(BM_KeepRunningBatch)->Repetitions(1);

void BM_RangedFor(benchmark::State& state) {
  benchmark::IterationCount iter_count = 0;
  for (auto _ : state) {
    ++iter_count;
  }
  assert(iter_count == state.max_iterations);
}
BENCHMARK(BM_RangedFor);

#ifdef BENCHMARK_HAS_CXX11
template <typename T>
void BM_OneTemplateFunc(benchmark::State& state) {
  auto arg = state.range(0);
  T sum = 0;
  for (auto _ : state) {
    sum += static_cast<T>(arg);
  }
}
BENCHMARK(BM_OneTemplateFunc<int>)->Arg(1);
BENCHMARK(BM_OneTemplateFunc<double>)->Arg(1);

template <typename A, typename B>
void BM_TwoTemplateFunc(benchmark::State& state) {
  auto arg = state.range(0);
  A sum = 0;
  B prod = 1;
  for (auto _ : state) {
    sum += static_cast<A>(arg);
    prod *= static_cast<B>(arg);
  }
}
BENCHMARK(BM_TwoTemplateFunc<int, double>)->Arg(1);
BENCHMARK(BM_TwoTemplateFunc<double, int>)->Arg(1);

#endif  // BENCHMARK_HAS_CXX11

// Ensure that StateIterator provides all the necessary typedefs required to
// instantiate std::iterator_traits.
static_assert(
    std::is_same<typename std::iterator_traits<
                     benchmark::State::StateIterator>::value_type,
                 typename benchmark::State::StateIterator::value_type>::value,
    "");

BENCHMARK_MAIN();