aboutsummaryrefslogtreecommitdiff
path: root/go/types/objectpath/objectpath.go
blob: be8f5a867e652bca0cee804f2a35b780a6ebc168 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package objectpath defines a naming scheme for types.Objects
// (that is, named entities in Go programs) relative to their enclosing
// package.
//
// Type-checker objects are canonical, so they are usually identified by
// their address in memory (a pointer), but a pointer has meaning only
// within one address space. By contrast, objectpath names allow the
// identity of an object to be sent from one program to another,
// establishing a correspondence between types.Object variables that are
// distinct but logically equivalent.
//
// A single object may have multiple paths. In this example,
//
//	type A struct{ X int }
//	type B A
//
// the field X has two paths due to its membership of both A and B.
// The For(obj) function always returns one of these paths, arbitrarily
// but consistently.
package objectpath

import (
	"fmt"
	"go/types"
	"sort"
	"strconv"
	"strings"

	"golang.org/x/tools/internal/typeparams"

	_ "unsafe" // for go:linkname
)

// A Path is an opaque name that identifies a types.Object
// relative to its package. Conceptually, the name consists of a
// sequence of destructuring operations applied to the package scope
// to obtain the original object.
// The name does not include the package itself.
type Path string

// Encoding
//
// An object path is a textual and (with training) human-readable encoding
// of a sequence of destructuring operators, starting from a types.Package.
// The sequences represent a path through the package/object/type graph.
// We classify these operators by their type:
//
//	PO package->object	Package.Scope.Lookup
//	OT  object->type 	Object.Type
//	TT    type->type 	Type.{Elem,Key,Params,Results,Underlying} [EKPRU]
//	TO   type->object	Type.{At,Field,Method,Obj} [AFMO]
//
// All valid paths start with a package and end at an object
// and thus may be defined by the regular language:
//
//	objectpath = PO (OT TT* TO)*
//
// The concrete encoding follows directly:
//   - The only PO operator is Package.Scope.Lookup, which requires an identifier.
//   - The only OT operator is Object.Type,
//     which we encode as '.' because dot cannot appear in an identifier.
//   - The TT operators are encoded as [EKPRUTC];
//     one of these (TypeParam) requires an integer operand,
//     which is encoded as a string of decimal digits.
//   - The TO operators are encoded as [AFMO];
//     three of these (At,Field,Method) require an integer operand,
//     which is encoded as a string of decimal digits.
//     These indices are stable across different representations
//     of the same package, even source and export data.
//     The indices used are implementation specific and may not correspond to
//     the argument to the go/types function.
//
// In the example below,
//
//	package p
//
//	type T interface {
//		f() (a string, b struct{ X int })
//	}
//
// field X has the path "T.UM0.RA1.F0",
// representing the following sequence of operations:
//
//	p.Lookup("T")					T
//	.Type().Underlying().Method(0).			f
//	.Type().Results().At(1)				b
//	.Type().Field(0)					X
//
// The encoding is not maximally compact---every R or P is
// followed by an A, for example---but this simplifies the
// encoder and decoder.
const (
	// object->type operators
	opType = '.' // .Type()		  (Object)

	// type->type operators
	opElem       = 'E' // .Elem()		        (Pointer, Slice, Array, Chan, Map)
	opKey        = 'K' // .Key()		        (Map)
	opParams     = 'P' // .Params()		      (Signature)
	opResults    = 'R' // .Results()	      (Signature)
	opUnderlying = 'U' // .Underlying()	    (Named)
	opTypeParam  = 'T' // .TypeParams.At(i) (Named, Signature)
	opConstraint = 'C' // .Constraint()     (TypeParam)

	// type->object operators
	opAt     = 'A' // .At(i)		 (Tuple)
	opField  = 'F' // .Field(i)	 (Struct)
	opMethod = 'M' // .Method(i) (Named or Interface; not Struct: "promoted" names are ignored)
	opObj    = 'O' // .Obj()		 (Named, TypeParam)
)

// For returns the path to an object relative to its package,
// or an error if the object is not accessible from the package's Scope.
//
// The For function guarantees to return a path only for the following objects:
// - package-level types
// - exported package-level non-types
// - methods
// - parameter and result variables
// - struct fields
// These objects are sufficient to define the API of their package.
// The objects described by a package's export data are drawn from this set.
//
// For does not return a path for predeclared names, imported package
// names, local names, and unexported package-level names (except
// types).
//
// Example: given this definition,
//
//	package p
//
//	type T interface {
//		f() (a string, b struct{ X int })
//	}
//
// For(X) would return a path that denotes the following sequence of operations:
//
//	p.Scope().Lookup("T")				(TypeName T)
//	.Type().Underlying().Method(0).			(method Func f)
//	.Type().Results().At(1)				(field Var b)
//	.Type().Field(0)					(field Var X)
//
// where p is the package (*types.Package) to which X belongs.
func For(obj types.Object) (Path, error) {
	return newEncoderFor()(obj)
}

// An encoder amortizes the cost of encoding the paths of multiple objects.
// Nonexported pending approval of proposal 58668.
type encoder struct {
	scopeNamesMemo   map[*types.Scope][]string      // memoization of Scope.Names()
	namedMethodsMemo map[*types.Named][]*types.Func // memoization of namedMethods()
}

// Exposed to gopls via golang.org/x/tools/internal/typesinternal
// pending approval of proposal 58668.
//
//go:linkname newEncoderFor
func newEncoderFor() func(types.Object) (Path, error) { return new(encoder).For }

func (enc *encoder) For(obj types.Object) (Path, error) {
	pkg := obj.Pkg()

	// This table lists the cases of interest.
	//
	// Object				Action
	// ------                               ------
	// nil					reject
	// builtin				reject
	// pkgname				reject
	// label				reject
	// var
	//    package-level			accept
	//    func param/result			accept
	//    local				reject
	//    struct field			accept
	// const
	//    package-level			accept
	//    local				reject
	// func
	//    package-level			accept
	//    init functions			reject
	//    concrete method			accept
	//    interface method			accept
	// type
	//    package-level			accept
	//    local				reject
	//
	// The only accessible package-level objects are members of pkg itself.
	//
	// The cases are handled in four steps:
	//
	// 1. reject nil and builtin
	// 2. accept package-level objects
	// 3. reject obviously invalid objects
	// 4. search the API for the path to the param/result/field/method.

	// 1. reference to nil or builtin?
	if pkg == nil {
		return "", fmt.Errorf("predeclared %s has no path", obj)
	}
	scope := pkg.Scope()

	// 2. package-level object?
	if scope.Lookup(obj.Name()) == obj {
		// Only exported objects (and non-exported types) have a path.
		// Non-exported types may be referenced by other objects.
		if _, ok := obj.(*types.TypeName); !ok && !obj.Exported() {
			return "", fmt.Errorf("no path for non-exported %v", obj)
		}
		return Path(obj.Name()), nil
	}

	// 3. Not a package-level object.
	//    Reject obviously non-viable cases.
	switch obj := obj.(type) {
	case *types.TypeName:
		if _, ok := obj.Type().(*typeparams.TypeParam); !ok {
			// With the exception of type parameters, only package-level type names
			// have a path.
			return "", fmt.Errorf("no path for %v", obj)
		}
	case *types.Const, // Only package-level constants have a path.
		*types.Label,   // Labels are function-local.
		*types.PkgName: // PkgNames are file-local.
		return "", fmt.Errorf("no path for %v", obj)

	case *types.Var:
		// Could be:
		// - a field (obj.IsField())
		// - a func parameter or result
		// - a local var.
		// Sadly there is no way to distinguish
		// a param/result from a local
		// so we must proceed to the find.

	case *types.Func:
		// A func, if not package-level, must be a method.
		if recv := obj.Type().(*types.Signature).Recv(); recv == nil {
			return "", fmt.Errorf("func is not a method: %v", obj)
		}

		if path, ok := enc.concreteMethod(obj); ok {
			// Fast path for concrete methods that avoids looping over scope.
			return path, nil
		}

	default:
		panic(obj)
	}

	// 4. Search the API for the path to the var (field/param/result) or method.

	// First inspect package-level named types.
	// In the presence of path aliases, these give
	// the best paths because non-types may
	// refer to types, but not the reverse.
	empty := make([]byte, 0, 48) // initial space
	names := enc.scopeNames(scope)
	for _, name := range names {
		o := scope.Lookup(name)
		tname, ok := o.(*types.TypeName)
		if !ok {
			continue // handle non-types in second pass
		}

		path := append(empty, name...)
		path = append(path, opType)

		T := o.Type()

		if tname.IsAlias() {
			// type alias
			if r := find(obj, T, path, nil); r != nil {
				return Path(r), nil
			}
		} else {
			if named, _ := T.(*types.Named); named != nil {
				if r := findTypeParam(obj, typeparams.ForNamed(named), path, nil); r != nil {
					// generic named type
					return Path(r), nil
				}
			}
			// defined (named) type
			if r := find(obj, T.Underlying(), append(path, opUnderlying), nil); r != nil {
				return Path(r), nil
			}
		}
	}

	// Then inspect everything else:
	// non-types, and declared methods of defined types.
	for _, name := range names {
		o := scope.Lookup(name)
		path := append(empty, name...)
		if _, ok := o.(*types.TypeName); !ok {
			if o.Exported() {
				// exported non-type (const, var, func)
				if r := find(obj, o.Type(), append(path, opType), nil); r != nil {
					return Path(r), nil
				}
			}
			continue
		}

		// Inspect declared methods of defined types.
		if T, ok := o.Type().(*types.Named); ok {
			path = append(path, opType)
			// Note that method index here is always with respect
			// to canonical ordering of methods, regardless of how
			// they appear in the underlying type.
			for i, m := range enc.namedMethods(T) {
				path2 := appendOpArg(path, opMethod, i)
				if m == obj {
					return Path(path2), nil // found declared method
				}
				if r := find(obj, m.Type(), append(path2, opType), nil); r != nil {
					return Path(r), nil
				}
			}
		}
	}

	return "", fmt.Errorf("can't find path for %v in %s", obj, pkg.Path())
}

func appendOpArg(path []byte, op byte, arg int) []byte {
	path = append(path, op)
	path = strconv.AppendInt(path, int64(arg), 10)
	return path
}

// concreteMethod returns the path for meth, which must have a non-nil receiver.
// The second return value indicates success and may be false if the method is
// an interface method or if it is an instantiated method.
//
// This function is just an optimization that avoids the general scope walking
// approach. You are expected to fall back to the general approach if this
// function fails.
func (enc *encoder) concreteMethod(meth *types.Func) (Path, bool) {
	// Concrete methods can only be declared on package-scoped named types. For
	// that reason we can skip the expensive walk over the package scope: the
	// path will always be package -> named type -> method. We can trivially get
	// the type name from the receiver, and only have to look over the type's
	// methods to find the method index.
	//
	// Methods on generic types require special consideration, however. Consider
	// the following package:
	//
	// 	L1: type S[T any] struct{}
	// 	L2: func (recv S[A]) Foo() { recv.Bar() }
	// 	L3: func (recv S[B]) Bar() { }
	// 	L4: type Alias = S[int]
	// 	L5: func _[T any]() { var s S[int]; s.Foo() }
	//
	// The receivers of methods on generic types are instantiations. L2 and L3
	// instantiate S with the type-parameters A and B, which are scoped to the
	// respective methods. L4 and L5 each instantiate S with int. Each of these
	// instantiations has its own method set, full of methods (and thus objects)
	// with receivers whose types are the respective instantiations. In other
	// words, we have
	//
	// S[A].Foo, S[A].Bar
	// S[B].Foo, S[B].Bar
	// S[int].Foo, S[int].Bar
	//
	// We may thus be trying to produce object paths for any of these objects.
	//
	// S[A].Foo and S[B].Bar are the origin methods, and their paths are S.Foo
	// and S.Bar, which are the paths that this function naturally produces.
	//
	// S[A].Bar, S[B].Foo, and both methods on S[int] are instantiations that
	// don't correspond to the origin methods. For S[int], this is significant.
	// The most precise object path for S[int].Foo, for example, is Alias.Foo,
	// not S.Foo. Our function, however, would produce S.Foo, which would
	// resolve to a different object.
	//
	// For S[A].Bar and S[B].Foo it could be argued that S.Bar and S.Foo are
	// still the correct paths, since only the origin methods have meaningful
	// paths. But this is likely only true for trivial cases and has edge cases.
	// Since this function is only an optimization, we err on the side of giving
	// up, deferring to the slower but definitely correct algorithm. Most users
	// of objectpath will only be giving us origin methods, anyway, as referring
	// to instantiated methods is usually not useful.

	if typeparams.OriginMethod(meth) != meth {
		return "", false
	}

	recvT := meth.Type().(*types.Signature).Recv().Type()
	if ptr, ok := recvT.(*types.Pointer); ok {
		recvT = ptr.Elem()
	}

	named, ok := recvT.(*types.Named)
	if !ok {
		return "", false
	}

	if types.IsInterface(named) {
		// Named interfaces don't have to be package-scoped
		//
		// TODO(dominikh): opt: if scope.Lookup(name) == named, then we can apply this optimization to interface
		// methods, too, I think.
		return "", false
	}

	// Preallocate space for the name, opType, opMethod, and some digits.
	name := named.Obj().Name()
	path := make([]byte, 0, len(name)+8)
	path = append(path, name...)
	path = append(path, opType)
	for i, m := range enc.namedMethods(named) {
		if m == meth {
			path = appendOpArg(path, opMethod, i)
			return Path(path), true
		}
	}

	panic(fmt.Sprintf("couldn't find method %s on type %s", meth, named))
}

// find finds obj within type T, returning the path to it, or nil if not found.
//
// The seen map is used to short circuit cycles through type parameters. If
// nil, it will be allocated as necessary.
func find(obj types.Object, T types.Type, path []byte, seen map[*types.TypeName]bool) []byte {
	switch T := T.(type) {
	case *types.Basic, *types.Named:
		// Named types belonging to pkg were handled already,
		// so T must belong to another package. No path.
		return nil
	case *types.Pointer:
		return find(obj, T.Elem(), append(path, opElem), seen)
	case *types.Slice:
		return find(obj, T.Elem(), append(path, opElem), seen)
	case *types.Array:
		return find(obj, T.Elem(), append(path, opElem), seen)
	case *types.Chan:
		return find(obj, T.Elem(), append(path, opElem), seen)
	case *types.Map:
		if r := find(obj, T.Key(), append(path, opKey), seen); r != nil {
			return r
		}
		return find(obj, T.Elem(), append(path, opElem), seen)
	case *types.Signature:
		if r := findTypeParam(obj, typeparams.ForSignature(T), path, seen); r != nil {
			return r
		}
		if r := find(obj, T.Params(), append(path, opParams), seen); r != nil {
			return r
		}
		return find(obj, T.Results(), append(path, opResults), seen)
	case *types.Struct:
		for i := 0; i < T.NumFields(); i++ {
			fld := T.Field(i)
			path2 := appendOpArg(path, opField, i)
			if fld == obj {
				return path2 // found field var
			}
			if r := find(obj, fld.Type(), append(path2, opType), seen); r != nil {
				return r
			}
		}
		return nil
	case *types.Tuple:
		for i := 0; i < T.Len(); i++ {
			v := T.At(i)
			path2 := appendOpArg(path, opAt, i)
			if v == obj {
				return path2 // found param/result var
			}
			if r := find(obj, v.Type(), append(path2, opType), seen); r != nil {
				return r
			}
		}
		return nil
	case *types.Interface:
		for i := 0; i < T.NumMethods(); i++ {
			m := T.Method(i)
			path2 := appendOpArg(path, opMethod, i)
			if m == obj {
				return path2 // found interface method
			}
			if r := find(obj, m.Type(), append(path2, opType), seen); r != nil {
				return r
			}
		}
		return nil
	case *typeparams.TypeParam:
		name := T.Obj()
		if name == obj {
			return append(path, opObj)
		}
		if seen[name] {
			return nil
		}
		if seen == nil {
			seen = make(map[*types.TypeName]bool)
		}
		seen[name] = true
		if r := find(obj, T.Constraint(), append(path, opConstraint), seen); r != nil {
			return r
		}
		return nil
	}
	panic(T)
}

func findTypeParam(obj types.Object, list *typeparams.TypeParamList, path []byte, seen map[*types.TypeName]bool) []byte {
	for i := 0; i < list.Len(); i++ {
		tparam := list.At(i)
		path2 := appendOpArg(path, opTypeParam, i)
		if r := find(obj, tparam, path2, seen); r != nil {
			return r
		}
	}
	return nil
}

// Object returns the object denoted by path p within the package pkg.
func Object(pkg *types.Package, p Path) (types.Object, error) {
	if p == "" {
		return nil, fmt.Errorf("empty path")
	}

	pathstr := string(p)
	var pkgobj, suffix string
	if dot := strings.IndexByte(pathstr, opType); dot < 0 {
		pkgobj = pathstr
	} else {
		pkgobj = pathstr[:dot]
		suffix = pathstr[dot:] // suffix starts with "."
	}

	obj := pkg.Scope().Lookup(pkgobj)
	if obj == nil {
		return nil, fmt.Errorf("package %s does not contain %q", pkg.Path(), pkgobj)
	}

	// abstraction of *types.{Pointer,Slice,Array,Chan,Map}
	type hasElem interface {
		Elem() types.Type
	}
	// abstraction of *types.{Named,Signature}
	type hasTypeParams interface {
		TypeParams() *typeparams.TypeParamList
	}
	// abstraction of *types.{Named,TypeParam}
	type hasObj interface {
		Obj() *types.TypeName
	}

	// The loop state is the pair (t, obj),
	// exactly one of which is non-nil, initially obj.
	// All suffixes start with '.' (the only object->type operation),
	// followed by optional type->type operations,
	// then a type->object operation.
	// The cycle then repeats.
	var t types.Type
	for suffix != "" {
		code := suffix[0]
		suffix = suffix[1:]

		// Codes [AFM] have an integer operand.
		var index int
		switch code {
		case opAt, opField, opMethod, opTypeParam:
			rest := strings.TrimLeft(suffix, "0123456789")
			numerals := suffix[:len(suffix)-len(rest)]
			suffix = rest
			i, err := strconv.Atoi(numerals)
			if err != nil {
				return nil, fmt.Errorf("invalid path: bad numeric operand %q for code %q", numerals, code)
			}
			index = int(i)
		case opObj:
			// no operand
		default:
			// The suffix must end with a type->object operation.
			if suffix == "" {
				return nil, fmt.Errorf("invalid path: ends with %q, want [AFMO]", code)
			}
		}

		if code == opType {
			if t != nil {
				return nil, fmt.Errorf("invalid path: unexpected %q in type context", opType)
			}
			t = obj.Type()
			obj = nil
			continue
		}

		if t == nil {
			return nil, fmt.Errorf("invalid path: code %q in object context", code)
		}

		// Inv: t != nil, obj == nil

		switch code {
		case opElem:
			hasElem, ok := t.(hasElem) // Pointer, Slice, Array, Chan, Map
			if !ok {
				return nil, fmt.Errorf("cannot apply %q to %s (got %T, want pointer, slice, array, chan or map)", code, t, t)
			}
			t = hasElem.Elem()

		case opKey:
			mapType, ok := t.(*types.Map)
			if !ok {
				return nil, fmt.Errorf("cannot apply %q to %s (got %T, want map)", code, t, t)
			}
			t = mapType.Key()

		case opParams:
			sig, ok := t.(*types.Signature)
			if !ok {
				return nil, fmt.Errorf("cannot apply %q to %s (got %T, want signature)", code, t, t)
			}
			t = sig.Params()

		case opResults:
			sig, ok := t.(*types.Signature)
			if !ok {
				return nil, fmt.Errorf("cannot apply %q to %s (got %T, want signature)", code, t, t)
			}
			t = sig.Results()

		case opUnderlying:
			named, ok := t.(*types.Named)
			if !ok {
				return nil, fmt.Errorf("cannot apply %q to %s (got %T, want named)", code, t, t)
			}
			t = named.Underlying()

		case opTypeParam:
			hasTypeParams, ok := t.(hasTypeParams) // Named, Signature
			if !ok {
				return nil, fmt.Errorf("cannot apply %q to %s (got %T, want named or signature)", code, t, t)
			}
			tparams := hasTypeParams.TypeParams()
			if n := tparams.Len(); index >= n {
				return nil, fmt.Errorf("tuple index %d out of range [0-%d)", index, n)
			}
			t = tparams.At(index)

		case opConstraint:
			tparam, ok := t.(*typeparams.TypeParam)
			if !ok {
				return nil, fmt.Errorf("cannot apply %q to %s (got %T, want type parameter)", code, t, t)
			}
			t = tparam.Constraint()

		case opAt:
			tuple, ok := t.(*types.Tuple)
			if !ok {
				return nil, fmt.Errorf("cannot apply %q to %s (got %T, want tuple)", code, t, t)
			}
			if n := tuple.Len(); index >= n {
				return nil, fmt.Errorf("tuple index %d out of range [0-%d)", index, n)
			}
			obj = tuple.At(index)
			t = nil

		case opField:
			structType, ok := t.(*types.Struct)
			if !ok {
				return nil, fmt.Errorf("cannot apply %q to %s (got %T, want struct)", code, t, t)
			}
			if n := structType.NumFields(); index >= n {
				return nil, fmt.Errorf("field index %d out of range [0-%d)", index, n)
			}
			obj = structType.Field(index)
			t = nil

		case opMethod:
			switch t := t.(type) {
			case *types.Interface:
				if index >= t.NumMethods() {
					return nil, fmt.Errorf("method index %d out of range [0-%d)", index, t.NumMethods())
				}
				obj = t.Method(index) // Id-ordered

			case *types.Named:
				methods := namedMethods(t) // (unmemoized)
				if index >= len(methods) {
					return nil, fmt.Errorf("method index %d out of range [0-%d)", index, len(methods))
				}
				obj = methods[index] // Id-ordered

			default:
				return nil, fmt.Errorf("cannot apply %q to %s (got %T, want interface or named)", code, t, t)
			}
			t = nil

		case opObj:
			hasObj, ok := t.(hasObj)
			if !ok {
				return nil, fmt.Errorf("cannot apply %q to %s (got %T, want named or type param)", code, t, t)
			}
			obj = hasObj.Obj()
			t = nil

		default:
			return nil, fmt.Errorf("invalid path: unknown code %q", code)
		}
	}

	if obj.Pkg() != pkg {
		return nil, fmt.Errorf("path denotes %s, which belongs to a different package", obj)
	}

	return obj, nil // success
}

// namedMethods returns the methods of a Named type in ascending Id order.
func namedMethods(named *types.Named) []*types.Func {
	methods := make([]*types.Func, named.NumMethods())
	for i := range methods {
		methods[i] = named.Method(i)
	}
	sort.Slice(methods, func(i, j int) bool {
		return methods[i].Id() < methods[j].Id()
	})
	return methods
}

// scopeNames is a memoization of scope.Names. Callers must not modify the result.
func (enc *encoder) scopeNames(scope *types.Scope) []string {
	m := enc.scopeNamesMemo
	if m == nil {
		m = make(map[*types.Scope][]string)
		enc.scopeNamesMemo = m
	}
	names, ok := m[scope]
	if !ok {
		names = scope.Names() // allocates and sorts
		m[scope] = names
	}
	return names
}

// namedMethods is a memoization of the namedMethods function. Callers must not modify the result.
func (enc *encoder) namedMethods(named *types.Named) []*types.Func {
	m := enc.namedMethodsMemo
	if m == nil {
		m = make(map[*types.Named][]*types.Func)
		enc.namedMethodsMemo = m
	}
	methods, ok := m[named]
	if !ok {
		methods = namedMethods(named) // allocates and sorts
		m[named] = methods
	}
	return methods

}