aboutsummaryrefslogtreecommitdiff
path: root/go/ssa/func.go
blob: 57f5f718f733610e173d693856b16b27c52e6a0e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package ssa

// This file implements the Function type.

import (
	"bytes"
	"fmt"
	"go/ast"
	"go/token"
	"go/types"
	"io"
	"os"
	"strings"

	"golang.org/x/tools/internal/typeparams"
)

// Like ObjectOf, but panics instead of returning nil.
// Only valid during f's create and build phases.
func (f *Function) objectOf(id *ast.Ident) types.Object {
	if o := f.info.ObjectOf(id); o != nil {
		return o
	}
	panic(fmt.Sprintf("no types.Object for ast.Ident %s @ %s",
		id.Name, f.Prog.Fset.Position(id.Pos())))
}

// Like TypeOf, but panics instead of returning nil.
// Only valid during f's create and build phases.
func (f *Function) typeOf(e ast.Expr) types.Type {
	if T := f.info.TypeOf(e); T != nil {
		return f.typ(T)
	}
	panic(fmt.Sprintf("no type for %T @ %s", e, f.Prog.Fset.Position(e.Pos())))
}

// typ is the locally instantiated type of T. T==typ(T) if f is not an instantiation.
func (f *Function) typ(T types.Type) types.Type {
	return f.subst.typ(T)
}

// If id is an Instance, returns info.Instances[id].Type.
// Otherwise returns f.typeOf(id).
func (f *Function) instanceType(id *ast.Ident) types.Type {
	if t, ok := typeparams.GetInstances(f.info)[id]; ok {
		return t.Type
	}
	return f.typeOf(id)
}

// selection returns a *selection corresponding to f.info.Selections[selector]
// with potential updates for type substitution.
func (f *Function) selection(selector *ast.SelectorExpr) *selection {
	sel := f.info.Selections[selector]
	if sel == nil {
		return nil
	}

	switch sel.Kind() {
	case types.MethodExpr, types.MethodVal:
		if recv := f.typ(sel.Recv()); recv != sel.Recv() {
			// recv changed during type substitution.
			pkg := f.declaredPackage().Pkg
			obj, index, indirect := types.LookupFieldOrMethod(recv, true, pkg, sel.Obj().Name())

			// sig replaces sel.Type(). See (types.Selection).Typ() for details.
			sig := obj.Type().(*types.Signature)
			sig = changeRecv(sig, newVar(sig.Recv().Name(), recv))
			if sel.Kind() == types.MethodExpr {
				sig = recvAsFirstArg(sig)
			}
			return &selection{
				kind:     sel.Kind(),
				recv:     recv,
				typ:      sig,
				obj:      obj,
				index:    index,
				indirect: indirect,
			}
		}
	}
	return toSelection(sel)
}

// Destinations associated with unlabelled for/switch/select stmts.
// We push/pop one of these as we enter/leave each construct and for
// each BranchStmt we scan for the innermost target of the right type.
type targets struct {
	tail         *targets // rest of stack
	_break       *BasicBlock
	_continue    *BasicBlock
	_fallthrough *BasicBlock
}

// Destinations associated with a labelled block.
// We populate these as labels are encountered in forward gotos or
// labelled statements.
type lblock struct {
	_goto     *BasicBlock
	_break    *BasicBlock
	_continue *BasicBlock
}

// labelledBlock returns the branch target associated with the
// specified label, creating it if needed.
func (f *Function) labelledBlock(label *ast.Ident) *lblock {
	obj := f.objectOf(label)
	lb := f.lblocks[obj]
	if lb == nil {
		lb = &lblock{_goto: f.newBasicBlock(label.Name)}
		if f.lblocks == nil {
			f.lblocks = make(map[types.Object]*lblock)
		}
		f.lblocks[obj] = lb
	}
	return lb
}

// addParam adds a (non-escaping) parameter to f.Params of the
// specified name, type and source position.
func (f *Function) addParam(name string, typ types.Type, pos token.Pos) *Parameter {
	v := &Parameter{
		name:   name,
		typ:    typ,
		pos:    pos,
		parent: f,
	}
	f.Params = append(f.Params, v)
	return v
}

func (f *Function) addParamObj(obj types.Object) *Parameter {
	name := obj.Name()
	if name == "" {
		name = fmt.Sprintf("arg%d", len(f.Params))
	}
	param := f.addParam(name, f.typ(obj.Type()), obj.Pos())
	param.object = obj
	return param
}

// addSpilledParam declares a parameter that is pre-spilled to the
// stack; the function body will load/store the spilled location.
// Subsequent lifting will eliminate spills where possible.
func (f *Function) addSpilledParam(obj types.Object) {
	param := f.addParamObj(obj)
	spill := &Alloc{Comment: obj.Name()}
	spill.setType(types.NewPointer(param.Type()))
	spill.setPos(obj.Pos())
	f.objects[obj] = spill
	f.Locals = append(f.Locals, spill)
	f.emit(spill)
	f.emit(&Store{Addr: spill, Val: param})
}

// startBody initializes the function prior to generating SSA code for its body.
// Precondition: f.Type() already set.
func (f *Function) startBody() {
	f.currentBlock = f.newBasicBlock("entry")
	f.objects = make(map[types.Object]Value) // needed for some synthetics, e.g. init
}

// createSyntacticParams populates f.Params and generates code (spills
// and named result locals) for all the parameters declared in the
// syntax.  In addition it populates the f.objects mapping.
//
// Preconditions:
// f.startBody() was called. f.info != nil.
// Postcondition:
// len(f.Params) == len(f.Signature.Params) + (f.Signature.Recv() ? 1 : 0)
func (f *Function) createSyntacticParams(recv *ast.FieldList, functype *ast.FuncType) {
	// Receiver (at most one inner iteration).
	if recv != nil {
		for _, field := range recv.List {
			for _, n := range field.Names {
				f.addSpilledParam(f.info.Defs[n])
			}
			// Anonymous receiver?  No need to spill.
			if field.Names == nil {
				f.addParamObj(f.Signature.Recv())
			}
		}
	}

	// Parameters.
	if functype.Params != nil {
		n := len(f.Params) // 1 if has recv, 0 otherwise
		for _, field := range functype.Params.List {
			for _, n := range field.Names {
				f.addSpilledParam(f.info.Defs[n])
			}
			// Anonymous parameter?  No need to spill.
			if field.Names == nil {
				f.addParamObj(f.Signature.Params().At(len(f.Params) - n))
			}
		}
	}

	// Named results.
	if functype.Results != nil {
		for _, field := range functype.Results.List {
			// Implicit "var" decl of locals for named results.
			for _, n := range field.Names {
				f.namedResults = append(f.namedResults, f.addLocalForIdent(n))
			}
		}
	}
}

type setNumable interface {
	setNum(int)
}

// numberRegisters assigns numbers to all SSA registers
// (value-defining Instructions) in f, to aid debugging.
// (Non-Instruction Values are named at construction.)
func numberRegisters(f *Function) {
	v := 0
	for _, b := range f.Blocks {
		for _, instr := range b.Instrs {
			switch instr.(type) {
			case Value:
				instr.(setNumable).setNum(v)
				v++
			}
		}
	}
}

// buildReferrers populates the def/use information in all non-nil
// Value.Referrers slice.
// Precondition: all such slices are initially empty.
func buildReferrers(f *Function) {
	var rands []*Value
	for _, b := range f.Blocks {
		for _, instr := range b.Instrs {
			rands = instr.Operands(rands[:0]) // recycle storage
			for _, rand := range rands {
				if r := *rand; r != nil {
					if ref := r.Referrers(); ref != nil {
						*ref = append(*ref, instr)
					}
				}
			}
		}
	}
}

// mayNeedRuntimeTypes returns all of the types in the body of fn that might need runtime types.
//
// EXCLUSIVE_LOCKS_ACQUIRED(meth.Prog.methodsMu)
func mayNeedRuntimeTypes(fn *Function) []types.Type {
	// Collect all types that may need rtypes, i.e. those that flow into an interface.
	var ts []types.Type
	for _, bb := range fn.Blocks {
		for _, instr := range bb.Instrs {
			if mi, ok := instr.(*MakeInterface); ok {
				ts = append(ts, mi.X.Type())
			}
		}
	}

	// Types that contain a parameterized type are considered to not be runtime types.
	if fn.typeparams.Len() == 0 {
		return ts // No potentially parameterized types.
	}
	// Filter parameterized types, in place.
	fn.Prog.methodsMu.Lock()
	defer fn.Prog.methodsMu.Unlock()
	filtered := ts[:0]
	for _, t := range ts {
		if !fn.Prog.parameterized.isParameterized(t) {
			filtered = append(filtered, t)
		}
	}
	return filtered
}

// finishBody() finalizes the contents of the function after SSA code generation of its body.
//
// The function is not done being built until done() is called.
func (f *Function) finishBody() {
	f.objects = nil
	f.currentBlock = nil
	f.lblocks = nil

	// Don't pin the AST in memory (except in debug mode).
	if n := f.syntax; n != nil && !f.debugInfo() {
		f.syntax = extentNode{n.Pos(), n.End()}
	}

	// Remove from f.Locals any Allocs that escape to the heap.
	j := 0
	for _, l := range f.Locals {
		if !l.Heap {
			f.Locals[j] = l
			j++
		}
	}
	// Nil out f.Locals[j:] to aid GC.
	for i := j; i < len(f.Locals); i++ {
		f.Locals[i] = nil
	}
	f.Locals = f.Locals[:j]

	optimizeBlocks(f)

	buildReferrers(f)

	buildDomTree(f)

	if f.Prog.mode&NaiveForm == 0 {
		// For debugging pre-state of lifting pass:
		// numberRegisters(f)
		// f.WriteTo(os.Stderr)
		lift(f)
	}

	// clear remaining stateful variables
	f.namedResults = nil // (used by lifting)
	f.info = nil
	f.subst = nil

	numberRegisters(f) // uses f.namedRegisters
}

// After this, function is done with BUILD phase.
func (f *Function) done() {
	assert(f.parent == nil, "done called on an anonymous function")

	var visit func(*Function)
	visit = func(f *Function) {
		for _, anon := range f.AnonFuncs {
			visit(anon) // anon is done building before f.
		}

		f.built = true // function is done with BUILD phase

		if f.Prog.mode&PrintFunctions != 0 {
			printMu.Lock()
			f.WriteTo(os.Stdout)
			printMu.Unlock()
		}

		if f.Prog.mode&SanityCheckFunctions != 0 {
			mustSanityCheck(f, nil)
		}
	}
	visit(f)
}

// removeNilBlocks eliminates nils from f.Blocks and updates each
// BasicBlock.Index.  Use this after any pass that may delete blocks.
func (f *Function) removeNilBlocks() {
	j := 0
	for _, b := range f.Blocks {
		if b != nil {
			b.Index = j
			f.Blocks[j] = b
			j++
		}
	}
	// Nil out f.Blocks[j:] to aid GC.
	for i := j; i < len(f.Blocks); i++ {
		f.Blocks[i] = nil
	}
	f.Blocks = f.Blocks[:j]
}

// SetDebugMode sets the debug mode for package pkg.  If true, all its
// functions will include full debug info.  This greatly increases the
// size of the instruction stream, and causes Functions to depend upon
// the ASTs, potentially keeping them live in memory for longer.
func (pkg *Package) SetDebugMode(debug bool) {
	// TODO(adonovan): do we want ast.File granularity?
	pkg.debug = debug
}

// debugInfo reports whether debug info is wanted for this function.
func (f *Function) debugInfo() bool {
	return f.Pkg != nil && f.Pkg.debug
}

// addNamedLocal creates a local variable, adds it to function f and
// returns it.  Its name and type are taken from obj.  Subsequent
// calls to f.lookup(obj) will return the same local.
func (f *Function) addNamedLocal(obj types.Object) *Alloc {
	l := f.addLocal(obj.Type(), obj.Pos())
	l.Comment = obj.Name()
	f.objects[obj] = l
	return l
}

func (f *Function) addLocalForIdent(id *ast.Ident) *Alloc {
	return f.addNamedLocal(f.info.Defs[id])
}

// addLocal creates an anonymous local variable of type typ, adds it
// to function f and returns it.  pos is the optional source location.
func (f *Function) addLocal(typ types.Type, pos token.Pos) *Alloc {
	typ = f.typ(typ)
	v := &Alloc{}
	v.setType(types.NewPointer(typ))
	v.setPos(pos)
	f.Locals = append(f.Locals, v)
	f.emit(v)
	return v
}

// lookup returns the address of the named variable identified by obj
// that is local to function f or one of its enclosing functions.
// If escaping, the reference comes from a potentially escaping pointer
// expression and the referent must be heap-allocated.
func (f *Function) lookup(obj types.Object, escaping bool) Value {
	if v, ok := f.objects[obj]; ok {
		if alloc, ok := v.(*Alloc); ok && escaping {
			alloc.Heap = true
		}
		return v // function-local var (address)
	}

	// Definition must be in an enclosing function;
	// plumb it through intervening closures.
	if f.parent == nil {
		panic("no ssa.Value for " + obj.String())
	}
	outer := f.parent.lookup(obj, true) // escaping
	v := &FreeVar{
		name:   obj.Name(),
		typ:    outer.Type(),
		pos:    outer.Pos(),
		outer:  outer,
		parent: f,
	}
	f.objects[obj] = v
	f.FreeVars = append(f.FreeVars, v)
	return v
}

// emit emits the specified instruction to function f.
func (f *Function) emit(instr Instruction) Value {
	return f.currentBlock.emit(instr)
}

// RelString returns the full name of this function, qualified by
// package name, receiver type, etc.
//
// The specific formatting rules are not guaranteed and may change.
//
// Examples:
//
//	"math.IsNaN"                  // a package-level function
//	"(*bytes.Buffer).Bytes"       // a declared method or a wrapper
//	"(*bytes.Buffer).Bytes$thunk" // thunk (func wrapping method; receiver is param 0)
//	"(*bytes.Buffer).Bytes$bound" // bound (func wrapping method; receiver supplied by closure)
//	"main.main$1"                 // an anonymous function in main
//	"main.init#1"                 // a declared init function
//	"main.init"                   // the synthesized package initializer
//
// When these functions are referred to from within the same package
// (i.e. from == f.Pkg.Object), they are rendered without the package path.
// For example: "IsNaN", "(*Buffer).Bytes", etc.
//
// All non-synthetic functions have distinct package-qualified names.
// (But two methods may have the same name "(T).f" if one is a synthetic
// wrapper promoting a non-exported method "f" from another package; in
// that case, the strings are equal but the identifiers "f" are distinct.)
func (f *Function) RelString(from *types.Package) string {
	// Anonymous?
	if f.parent != nil {
		// An anonymous function's Name() looks like "parentName$1",
		// but its String() should include the type/package/etc.
		parent := f.parent.RelString(from)
		for i, anon := range f.parent.AnonFuncs {
			if anon == f {
				return fmt.Sprintf("%s$%d", parent, 1+i)
			}
		}

		return f.name // should never happen
	}

	// Method (declared or wrapper)?
	if recv := f.Signature.Recv(); recv != nil {
		return f.relMethod(from, recv.Type())
	}

	// Thunk?
	if f.method != nil {
		return f.relMethod(from, f.method.recv)
	}

	// Bound?
	if len(f.FreeVars) == 1 && strings.HasSuffix(f.name, "$bound") {
		return f.relMethod(from, f.FreeVars[0].Type())
	}

	// Package-level function?
	// Prefix with package name for cross-package references only.
	if p := f.relPkg(); p != nil && p != from {
		return fmt.Sprintf("%s.%s", p.Path(), f.name)
	}

	// Unknown.
	return f.name
}

func (f *Function) relMethod(from *types.Package, recv types.Type) string {
	return fmt.Sprintf("(%s).%s", relType(recv, from), f.name)
}

// writeSignature writes to buf the signature sig in declaration syntax.
func writeSignature(buf *bytes.Buffer, from *types.Package, name string, sig *types.Signature, params []*Parameter) {
	buf.WriteString("func ")
	if recv := sig.Recv(); recv != nil {
		buf.WriteString("(")
		if n := params[0].Name(); n != "" {
			buf.WriteString(n)
			buf.WriteString(" ")
		}
		types.WriteType(buf, params[0].Type(), types.RelativeTo(from))
		buf.WriteString(") ")
	}
	buf.WriteString(name)
	types.WriteSignature(buf, sig, types.RelativeTo(from))
}

// declaredPackage returns the package fn is declared in or nil if the
// function is not declared in a package.
func (fn *Function) declaredPackage() *Package {
	switch {
	case fn.Pkg != nil:
		return fn.Pkg // non-generic function
	case fn.topLevelOrigin != nil:
		return fn.topLevelOrigin.Pkg // instance of a named generic function
	case fn.parent != nil:
		return fn.parent.declaredPackage() // instance of an anonymous [generic] function
	default:
		return nil // function is not declared in a package, e.g. a wrapper.
	}
}

// relPkg returns types.Package fn is printed in relationship to.
func (fn *Function) relPkg() *types.Package {
	if p := fn.declaredPackage(); p != nil {
		return p.Pkg
	}
	return nil
}

var _ io.WriterTo = (*Function)(nil) // *Function implements io.Writer

func (f *Function) WriteTo(w io.Writer) (int64, error) {
	var buf bytes.Buffer
	WriteFunction(&buf, f)
	n, err := w.Write(buf.Bytes())
	return int64(n), err
}

// WriteFunction writes to buf a human-readable "disassembly" of f.
func WriteFunction(buf *bytes.Buffer, f *Function) {
	fmt.Fprintf(buf, "# Name: %s\n", f.String())
	if f.Pkg != nil {
		fmt.Fprintf(buf, "# Package: %s\n", f.Pkg.Pkg.Path())
	}
	if syn := f.Synthetic; syn != "" {
		fmt.Fprintln(buf, "# Synthetic:", syn)
	}
	if pos := f.Pos(); pos.IsValid() {
		fmt.Fprintf(buf, "# Location: %s\n", f.Prog.Fset.Position(pos))
	}

	if f.parent != nil {
		fmt.Fprintf(buf, "# Parent: %s\n", f.parent.Name())
	}

	if f.Recover != nil {
		fmt.Fprintf(buf, "# Recover: %s\n", f.Recover)
	}

	from := f.relPkg()

	if f.FreeVars != nil {
		buf.WriteString("# Free variables:\n")
		for i, fv := range f.FreeVars {
			fmt.Fprintf(buf, "# % 3d:\t%s %s\n", i, fv.Name(), relType(fv.Type(), from))
		}
	}

	if len(f.Locals) > 0 {
		buf.WriteString("# Locals:\n")
		for i, l := range f.Locals {
			fmt.Fprintf(buf, "# % 3d:\t%s %s\n", i, l.Name(), relType(deref(l.Type()), from))
		}
	}
	writeSignature(buf, from, f.Name(), f.Signature, f.Params)
	buf.WriteString(":\n")

	if f.Blocks == nil {
		buf.WriteString("\t(external)\n")
	}

	// NB. column calculations are confused by non-ASCII
	// characters and assume 8-space tabs.
	const punchcard = 80 // for old time's sake.
	const tabwidth = 8
	for _, b := range f.Blocks {
		if b == nil {
			// Corrupt CFG.
			fmt.Fprintf(buf, ".nil:\n")
			continue
		}
		n, _ := fmt.Fprintf(buf, "%d:", b.Index)
		bmsg := fmt.Sprintf("%s P:%d S:%d", b.Comment, len(b.Preds), len(b.Succs))
		fmt.Fprintf(buf, "%*s%s\n", punchcard-1-n-len(bmsg), "", bmsg)

		if false { // CFG debugging
			fmt.Fprintf(buf, "\t# CFG: %s --> %s --> %s\n", b.Preds, b, b.Succs)
		}
		for _, instr := range b.Instrs {
			buf.WriteString("\t")
			switch v := instr.(type) {
			case Value:
				l := punchcard - tabwidth
				// Left-align the instruction.
				if name := v.Name(); name != "" {
					n, _ := fmt.Fprintf(buf, "%s = ", name)
					l -= n
				}
				n, _ := buf.WriteString(instr.String())
				l -= n
				// Right-align the type if there's space.
				if t := v.Type(); t != nil {
					buf.WriteByte(' ')
					ts := relType(t, from)
					l -= len(ts) + len("  ") // (spaces before and after type)
					if l > 0 {
						fmt.Fprintf(buf, "%*s", l, "")
					}
					buf.WriteString(ts)
				}
			case nil:
				// Be robust against bad transforms.
				buf.WriteString("<deleted>")
			default:
				buf.WriteString(instr.String())
			}
			buf.WriteString("\n")
		}
	}
	fmt.Fprintf(buf, "\n")
}

// newBasicBlock adds to f a new basic block and returns it.  It does
// not automatically become the current block for subsequent calls to emit.
// comment is an optional string for more readable debugging output.
func (f *Function) newBasicBlock(comment string) *BasicBlock {
	b := &BasicBlock{
		Index:   len(f.Blocks),
		Comment: comment,
		parent:  f,
	}
	b.Succs = b.succs2[:0]
	f.Blocks = append(f.Blocks, b)
	return b
}

// NewFunction returns a new synthetic Function instance belonging to
// prog, with its name and signature fields set as specified.
//
// The caller is responsible for initializing the remaining fields of
// the function object, e.g. Pkg, Params, Blocks.
//
// It is practically impossible for clients to construct well-formed
// SSA functions/packages/programs directly, so we assume this is the
// job of the Builder alone.  NewFunction exists to provide clients a
// little flexibility.  For example, analysis tools may wish to
// construct fake Functions for the root of the callgraph, a fake
// "reflect" package, etc.
//
// TODO(adonovan): think harder about the API here.
func (prog *Program) NewFunction(name string, sig *types.Signature, provenance string) *Function {
	return &Function{Prog: prog, name: name, Signature: sig, Synthetic: provenance}
}

type extentNode [2]token.Pos

func (n extentNode) Pos() token.Pos { return n[0] }
func (n extentNode) End() token.Pos { return n[1] }

// Syntax returns an ast.Node whose Pos/End methods provide the
// lexical extent of the function if it was defined by Go source code
// (f.Synthetic==""), or nil otherwise.
//
// If f was built with debug information (see Package.SetDebugRef),
// the result is the *ast.FuncDecl or *ast.FuncLit that declared the
// function.  Otherwise, it is an opaque Node providing only position
// information; this avoids pinning the AST in memory.
func (f *Function) Syntax() ast.Node { return f.syntax }