aboutsummaryrefslogtreecommitdiff
path: root/go/pointer/api.go
blob: 2a13a67811637617b1201010e339f787c43cb912 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package pointer

import (
	"bytes"
	"fmt"
	"go/token"
	"io"

	"golang.org/x/tools/container/intsets"
	"golang.org/x/tools/go/callgraph"
	"golang.org/x/tools/go/ssa"
	"golang.org/x/tools/go/types/typeutil"
)

// A Config formulates a pointer analysis problem for Analyze. It is
// only usable for a single invocation of Analyze and must not be
// reused.
type Config struct {
	// Mains contains the set of 'main' packages to analyze
	// Clients must provide the analysis with at least one
	// package defining a main() function.
	//
	// Non-main packages in the ssa.Program that are not
	// dependencies of any main package may still affect the
	// analysis result, because they contribute runtime types and
	// thus methods.
	// TODO(adonovan): investigate whether this is desirable.
	Mains []*ssa.Package

	// Reflection determines whether to handle reflection
	// operators soundly, which is currently rather slow since it
	// causes constraint to be generated during solving
	// proportional to the number of constraint variables, which
	// has not yet been reduced by presolver optimisation.
	Reflection bool

	// BuildCallGraph determines whether to construct a callgraph.
	// If enabled, the graph will be available in Result.CallGraph.
	BuildCallGraph bool

	// The client populates Queries[v] or IndirectQueries[v]
	// for each ssa.Value v of interest, to request that the
	// points-to sets pts(v) or pts(*v) be computed.  If the
	// client needs both points-to sets, v may appear in both
	// maps.
	//
	// (IndirectQueries is typically used for Values corresponding
	// to source-level lvalues, e.g. an *ssa.Global.)
	//
	// The analysis populates the corresponding
	// Result.{Indirect,}Queries map when it creates the pointer
	// variable for v or *v.  Upon completion the client can
	// inspect that map for the results.
	//
	// TODO(adonovan): this API doesn't scale well for batch tools
	// that want to dump the entire solution.  Perhaps optionally
	// populate a map[*ssa.DebugRef]Pointer in the Result, one
	// entry per source expression.
	//
	Queries         map[ssa.Value]struct{}
	IndirectQueries map[ssa.Value]struct{}
	extendedQueries map[ssa.Value][]*extendedQuery

	// If Log is non-nil, log messages are written to it.
	// Logging is extremely verbose.
	Log io.Writer
}

type track uint32

const (
	trackChan  track = 1 << iota // track 'chan' references
	trackMap                     // track 'map' references
	trackPtr                     // track regular pointers
	trackSlice                   // track slice references

	trackAll = ^track(0)
)

// AddQuery adds v to Config.Queries.
// Precondition: CanPoint(v.Type()).
func (c *Config) AddQuery(v ssa.Value) {
	if !CanPoint(v.Type()) {
		panic(fmt.Sprintf("%s is not a pointer-like value: %s", v, v.Type()))
	}
	if c.Queries == nil {
		c.Queries = make(map[ssa.Value]struct{})
	}
	c.Queries[v] = struct{}{}
}

// AddQuery adds v to Config.IndirectQueries.
// Precondition: CanPoint(v.Type().Underlying().(*types.Pointer).Elem()).
func (c *Config) AddIndirectQuery(v ssa.Value) {
	if c.IndirectQueries == nil {
		c.IndirectQueries = make(map[ssa.Value]struct{})
	}
	if !CanPoint(mustDeref(v.Type())) {
		panic(fmt.Sprintf("%s is not the address of a pointer-like value: %s", v, v.Type()))
	}
	c.IndirectQueries[v] = struct{}{}
}

// AddExtendedQuery adds an extended, AST-based query on v to the
// analysis. The query, which must be a single Go expression, allows
// destructuring the value.
//
// The query must operate on a variable named 'x', which represents
// the value, and result in a pointer-like object. Only a subset of
// Go expressions are permitted in queries, namely channel receives,
// pointer dereferences, field selectors, array/slice/map/tuple
// indexing and grouping with parentheses. The specific indices when
// indexing arrays, slices and maps have no significance. Indices used
// on tuples must be numeric and within bounds.
//
// All field selectors must be explicit, even ones usually elided
// due to promotion of embedded fields.
//
// The query 'x' is identical to using AddQuery. The query '*x' is
// identical to using AddIndirectQuery.
//
// On success, AddExtendedQuery returns a Pointer to the queried
// value. This Pointer will be initialized during analysis. Using it
// before analysis has finished has undefined behavior.
//
// Example:
// 	// given v, which represents a function call to 'fn() (int, []*T)', and
// 	// 'type T struct { F *int }', the following query will access the field F.
// 	c.AddExtendedQuery(v, "x[1][0].F")
func (c *Config) AddExtendedQuery(v ssa.Value, query string) (*Pointer, error) {
	ops, _, err := parseExtendedQuery(v.Type(), query)
	if err != nil {
		return nil, fmt.Errorf("invalid query %q: %s", query, err)
	}
	if c.extendedQueries == nil {
		c.extendedQueries = make(map[ssa.Value][]*extendedQuery)
	}

	ptr := &Pointer{}
	c.extendedQueries[v] = append(c.extendedQueries[v], &extendedQuery{ops: ops, ptr: ptr})
	return ptr, nil
}

func (c *Config) prog() *ssa.Program {
	for _, main := range c.Mains {
		return main.Prog
	}
	panic("empty scope")
}

type Warning struct {
	Pos     token.Pos
	Message string
}

// A Result contains the results of a pointer analysis.
//
// See Config for how to request the various Result components.
//
type Result struct {
	CallGraph       *callgraph.Graph      // discovered call graph
	Queries         map[ssa.Value]Pointer // pts(v) for each v in Config.Queries.
	IndirectQueries map[ssa.Value]Pointer // pts(*v) for each v in Config.IndirectQueries.
	Warnings        []Warning             // warnings of unsoundness
}

// A Pointer is an equivalence class of pointer-like values.
//
// A Pointer doesn't have a unique type because pointers of distinct
// types may alias the same object.
//
type Pointer struct {
	a *analysis
	n nodeid
}

// A PointsToSet is a set of labels (locations or allocations).
type PointsToSet struct {
	a   *analysis // may be nil if pts is nil
	pts *nodeset
}

func (s PointsToSet) String() string {
	var buf bytes.Buffer
	buf.WriteByte('[')
	if s.pts != nil {
		var space [50]int
		for i, l := range s.pts.AppendTo(space[:0]) {
			if i > 0 {
				buf.WriteString(", ")
			}
			buf.WriteString(s.a.labelFor(nodeid(l)).String())
		}
	}
	buf.WriteByte(']')
	return buf.String()
}

// PointsTo returns the set of labels that this points-to set
// contains.
func (s PointsToSet) Labels() []*Label {
	var labels []*Label
	if s.pts != nil {
		var space [50]int
		for _, l := range s.pts.AppendTo(space[:0]) {
			labels = append(labels, s.a.labelFor(nodeid(l)))
		}
	}
	return labels
}

// If this PointsToSet came from a Pointer of interface kind
// or a reflect.Value, DynamicTypes returns the set of dynamic
// types that it may contain.  (For an interface, they will
// always be concrete types.)
//
// The result is a mapping whose keys are the dynamic types to which
// it may point.  For each pointer-like key type, the corresponding
// map value is the PointsToSet for pointers of that type.
//
// The result is empty unless CanHaveDynamicTypes(T).
//
func (s PointsToSet) DynamicTypes() *typeutil.Map {
	var tmap typeutil.Map
	tmap.SetHasher(s.a.hasher)
	if s.pts != nil {
		var space [50]int
		for _, x := range s.pts.AppendTo(space[:0]) {
			ifaceObjID := nodeid(x)
			if !s.a.isTaggedObject(ifaceObjID) {
				continue // !CanHaveDynamicTypes(tDyn)
			}
			tDyn, v, indirect := s.a.taggedValue(ifaceObjID)
			if indirect {
				panic("indirect tagged object") // implement later
			}
			pts, ok := tmap.At(tDyn).(PointsToSet)
			if !ok {
				pts = PointsToSet{s.a, new(nodeset)}
				tmap.Set(tDyn, pts)
			}
			pts.pts.addAll(&s.a.nodes[v].solve.pts)
		}
	}
	return &tmap
}

// Intersects reports whether this points-to set and the
// argument points-to set contain common members.
func (s PointsToSet) Intersects(y PointsToSet) bool {
	if s.pts == nil || y.pts == nil {
		return false
	}
	// This takes Θ(|x|+|y|) time.
	var z intsets.Sparse
	z.Intersection(&s.pts.Sparse, &y.pts.Sparse)
	return !z.IsEmpty()
}

func (p Pointer) String() string {
	return fmt.Sprintf("n%d", p.n)
}

// PointsTo returns the points-to set of this pointer.
func (p Pointer) PointsTo() PointsToSet {
	if p.n == 0 {
		return PointsToSet{}
	}
	return PointsToSet{p.a, &p.a.nodes[p.n].solve.pts}
}

// MayAlias reports whether the receiver pointer may alias
// the argument pointer.
func (p Pointer) MayAlias(q Pointer) bool {
	return p.PointsTo().Intersects(q.PointsTo())
}

// DynamicTypes returns p.PointsTo().DynamicTypes().
func (p Pointer) DynamicTypes() *typeutil.Map {
	return p.PointsTo().DynamicTypes()
}