aboutsummaryrefslogtreecommitdiff
path: root/go/callgraph/vta/propagation_test.go
blob: f4a754f9663daca7162ea484df847779d30c3130 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package vta

import (
	"go/token"
	"go/types"
	"reflect"
	"sort"
	"strings"
	"testing"
	"unsafe"

	"golang.org/x/tools/go/ssa"

	"golang.org/x/tools/go/types/typeutil"
)

// val is a test data structure for creating ssa.Value
// outside of the ssa package. Needed for manual creation
// of vta graph nodes in testing.
type val struct {
	name string
	typ  types.Type
}

func (v val) String() string {
	return v.name
}

func (v val) Name() string {
	return v.name
}

func (v val) Type() types.Type {
	return v.typ
}

func (v val) Parent() *ssa.Function {
	return nil
}

func (v val) Referrers() *[]ssa.Instruction {
	return nil
}

func (v val) Pos() token.Pos {
	return token.NoPos
}

// newLocal creates a new local node with ssa.Value
// named `name` and type `t`.
func newLocal(name string, t types.Type) local {
	return local{val: val{name: name, typ: t}}
}

// newNamedType creates a bogus type named `name`.
func newNamedType(name string) *types.Named {
	return types.NewNamed(types.NewTypeName(token.NoPos, nil, name, nil), types.Universe.Lookup("int").Type(), nil)
}

// sccString is a utility for stringifying `nodeToScc`. Every
// scc is represented as a string where string representation
// of scc nodes are sorted and concatenated using `;`.
func sccString(nodeToScc map[node]int) []string {
	sccs := make(map[int][]node)
	for n, id := range nodeToScc {
		sccs[id] = append(sccs[id], n)
	}

	var sccsStr []string
	for _, scc := range sccs {
		var nodesStr []string
		for _, node := range scc {
			nodesStr = append(nodesStr, node.String())
		}
		sort.Strings(nodesStr)
		sccsStr = append(sccsStr, strings.Join(nodesStr, ";"))
	}
	return sccsStr
}

// nodeToTypeString is testing utility for stringifying results
// of type propagation: propTypeMap `pMap` is converted to a map
// from node strings to a string consisting of type stringifications
// concatenated with `;`. We stringify reachable type information
// that also has an accompanying function by the function name.
func nodeToTypeString(pMap propTypeMap) map[string]string {
	// Convert propType to a string. If propType has
	// an attached function, return the function name.
	// Otherwise, return the type name.
	propTypeString := func(p propType) string {
		if p.f != nil {
			return p.f.Name()
		}
		return p.typ.String()
	}

	nodeToTypeStr := make(map[string]string)
	for node := range pMap.nodeToScc {
		var propStrings []string
		for _, prop := range pMap.propTypes(node) {
			propStrings = append(propStrings, propTypeString(prop))
		}
		sort.Strings(propStrings)
		nodeToTypeStr[node.String()] = strings.Join(propStrings, ";")
	}

	return nodeToTypeStr
}

// sccEqual compares two sets of SCC stringifications.
func sccEqual(sccs1 []string, sccs2 []string) bool {
	if len(sccs1) != len(sccs2) {
		return false
	}
	sort.Strings(sccs1)
	sort.Strings(sccs2)
	return reflect.DeepEqual(sccs1, sccs2)
}

// isRevTopSorted checks if sccs of `g` are sorted in reverse
// topological order:
//
//	for every edge x -> y in g, nodeToScc[x] > nodeToScc[y]
func isRevTopSorted(g vtaGraph, nodeToScc map[node]int) bool {
	for n, succs := range g {
		for s := range succs {
			if nodeToScc[n] < nodeToScc[s] {
				return false
			}
		}
	}
	return true
}

// setName sets name of the function `f` to `name`
// using reflection since setting the name otherwise
// is only possible within the ssa package.
func setName(f *ssa.Function, name string) {
	fi := reflect.ValueOf(f).Elem().FieldByName("name")
	fi = reflect.NewAt(fi.Type(), unsafe.Pointer(fi.UnsafeAddr())).Elem()
	fi.SetString(name)
}

// testSuite produces a named set of graphs as follows, where
// parentheses contain node types and F nodes stand for function
// nodes whose content is function named F:
//
//	 no-cycles:
//		t0 (A) -> t1 (B) -> t2 (C)
//
//	 trivial-cycle:
//	     <--------    <--------
//	     |       |    |       |
//	     t0 (A) ->    t1 (B) ->
//
//	 circle-cycle:
//		t0 (A) -> t1 (A) -> t2 (B)
//	     |                   |
//	     <--------------------
//
//	 fully-connected:
//		t0 (A) <-> t1 (B)
//	          \    /
//	           t2(C)
//
//	 subsumed-scc:
//		t0 (A) -> t1 (B) -> t2(B) -> t3 (A)
//	     |          |         |        |
//	     |          <---------         |
//	     <-----------------------------
//
//	 more-realistic:
//	     <--------
//	     |        |
//	     t0 (A) -->
//	                           ---------->
//	                          |           |
//	     t1 (A) -> t2 (B) -> F1 -> F2 -> F3 -> F4
//	      |        |          |           |
//	       <-------           <------------
func testSuite() map[string]vtaGraph {
	a := newNamedType("A")
	b := newNamedType("B")
	c := newNamedType("C")
	sig := types.NewSignature(nil, types.NewTuple(), types.NewTuple(), false)

	f1 := &ssa.Function{Signature: sig}
	setName(f1, "F1")
	f2 := &ssa.Function{Signature: sig}
	setName(f2, "F2")
	f3 := &ssa.Function{Signature: sig}
	setName(f3, "F3")
	f4 := &ssa.Function{Signature: sig}
	setName(f4, "F4")

	graphs := make(map[string]vtaGraph)
	graphs["no-cycles"] = map[node]map[node]bool{
		newLocal("t0", a): {newLocal("t1", b): true},
		newLocal("t1", b): {newLocal("t2", c): true},
	}

	graphs["trivial-cycle"] = map[node]map[node]bool{
		newLocal("t0", a): {newLocal("t0", a): true},
		newLocal("t1", b): {newLocal("t1", b): true},
	}

	graphs["circle-cycle"] = map[node]map[node]bool{
		newLocal("t0", a): {newLocal("t1", a): true},
		newLocal("t1", a): {newLocal("t2", b): true},
		newLocal("t2", b): {newLocal("t0", a): true},
	}

	graphs["fully-connected"] = map[node]map[node]bool{
		newLocal("t0", a): {newLocal("t1", b): true, newLocal("t2", c): true},
		newLocal("t1", b): {newLocal("t0", a): true, newLocal("t2", c): true},
		newLocal("t2", c): {newLocal("t0", a): true, newLocal("t1", b): true},
	}

	graphs["subsumed-scc"] = map[node]map[node]bool{
		newLocal("t0", a): {newLocal("t1", b): true},
		newLocal("t1", b): {newLocal("t2", b): true},
		newLocal("t2", b): {newLocal("t1", b): true, newLocal("t3", a): true},
		newLocal("t3", a): {newLocal("t0", a): true},
	}

	graphs["more-realistic"] = map[node]map[node]bool{
		newLocal("t0", a): {newLocal("t0", a): true},
		newLocal("t1", a): {newLocal("t2", b): true},
		newLocal("t2", b): {newLocal("t1", a): true, function{f1}: true},
		function{f1}:      {function{f2}: true, function{f3}: true},
		function{f2}:      {function{f3}: true},
		function{f3}:      {function{f1}: true, function{f4}: true},
	}

	return graphs
}

func TestSCC(t *testing.T) {
	suite := testSuite()
	for _, test := range []struct {
		name  string
		graph vtaGraph
		want  []string
	}{
		// No cycles results in three separate SCCs: {t0}	{t1}	{t2}
		{name: "no-cycles", graph: suite["no-cycles"], want: []string{"Local(t0)", "Local(t1)", "Local(t2)"}},
		// The two trivial self-loop cycles results in: {t0}	{t1}
		{name: "trivial-cycle", graph: suite["trivial-cycle"], want: []string{"Local(t0)", "Local(t1)"}},
		// The circle cycle produce a single SCC: {t0, t1, t2}
		{name: "circle-cycle", graph: suite["circle-cycle"], want: []string{"Local(t0);Local(t1);Local(t2)"}},
		// Similar holds for fully connected SCC: {t0, t1, t2}
		{name: "fully-connected", graph: suite["fully-connected"], want: []string{"Local(t0);Local(t1);Local(t2)"}},
		// Subsumed SCC also has a single SCC: {t0, t1, t2, t3}
		{name: "subsumed-scc", graph: suite["subsumed-scc"], want: []string{"Local(t0);Local(t1);Local(t2);Local(t3)"}},
		// The more realistic example has the following SCCs: {t0}	{t1, t2}	{F1, F2, F3}	{F4}
		{name: "more-realistic", graph: suite["more-realistic"], want: []string{"Local(t0)", "Local(t1);Local(t2)", "Function(F1);Function(F2);Function(F3)", "Function(F4)"}},
	} {
		sccs, _ := scc(test.graph)
		if got := sccString(sccs); !sccEqual(test.want, got) {
			t.Errorf("want %v for graph %v; got %v", test.want, test.name, got)
		}
		if !isRevTopSorted(test.graph, sccs) {
			t.Errorf("%v not topologically sorted", test.name)
		}
	}
}

func TestPropagation(t *testing.T) {
	suite := testSuite()
	var canon typeutil.Map
	for _, test := range []struct {
		name  string
		graph vtaGraph
		want  map[string]string
	}{
		// No cycles graph pushes type information forward.
		{name: "no-cycles", graph: suite["no-cycles"],
			want: map[string]string{
				"Local(t0)": "A",
				"Local(t1)": "A;B",
				"Local(t2)": "A;B;C",
			},
		},
		// No interesting type flow in trivial cycle graph.
		{name: "trivial-cycle", graph: suite["trivial-cycle"],
			want: map[string]string{
				"Local(t0)": "A",
				"Local(t1)": "B",
			},
		},
		// Circle cycle makes type A and B get propagated everywhere.
		{name: "circle-cycle", graph: suite["circle-cycle"],
			want: map[string]string{
				"Local(t0)": "A;B",
				"Local(t1)": "A;B",
				"Local(t2)": "A;B",
			},
		},
		// Similarly for fully connected graph.
		{name: "fully-connected", graph: suite["fully-connected"],
			want: map[string]string{
				"Local(t0)": "A;B;C",
				"Local(t1)": "A;B;C",
				"Local(t2)": "A;B;C",
			},
		},
		// The outer loop of subsumed-scc pushes A an B through the graph.
		{name: "subsumed-scc", graph: suite["subsumed-scc"],
			want: map[string]string{
				"Local(t0)": "A;B",
				"Local(t1)": "A;B",
				"Local(t2)": "A;B",
				"Local(t3)": "A;B",
			},
		},
		// More realistic graph has a more fine grained flow.
		{name: "more-realistic", graph: suite["more-realistic"],
			want: map[string]string{
				"Local(t0)":    "A",
				"Local(t1)":    "A;B",
				"Local(t2)":    "A;B",
				"Function(F1)": "A;B;F1;F2;F3",
				"Function(F2)": "A;B;F1;F2;F3",
				"Function(F3)": "A;B;F1;F2;F3",
				"Function(F4)": "A;B;F1;F2;F3;F4",
			},
		},
	} {
		if got := nodeToTypeString(propagate(test.graph, &canon)); !reflect.DeepEqual(got, test.want) {
			t.Errorf("want %v for graph %v; got %v", test.want, test.name, got)
		}
	}
}