aboutsummaryrefslogtreecommitdiff
path: root/go/callgraph/vta/propagation.go
blob: 5934ebc21675503d4b9891ffb70b60f0671659a5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package vta

import (
	"go/types"

	"golang.org/x/tools/go/callgraph/vta/internal/trie"
	"golang.org/x/tools/go/ssa"

	"golang.org/x/tools/go/types/typeutil"
)

// scc computes strongly connected components (SCCs) of `g` using the
// classical Tarjan's algorithm for SCCs. The result is a pair <m, id>
// where m is a map from nodes to unique id of their SCC in the range
// [0, id). The SCCs are sorted in reverse topological order: for SCCs
// with ids X and Y s.t. X < Y, Y comes before X in the topological order.
func scc(g vtaGraph) (map[node]int, int) {
	// standard data structures used by Tarjan's algorithm.
	var index uint64
	var stack []node
	indexMap := make(map[node]uint64)
	lowLink := make(map[node]uint64)
	onStack := make(map[node]bool)

	nodeToSccID := make(map[node]int)
	sccID := 0

	var doSCC func(node)
	doSCC = func(n node) {
		indexMap[n] = index
		lowLink[n] = index
		index = index + 1
		onStack[n] = true
		stack = append(stack, n)

		for s := range g[n] {
			if _, ok := indexMap[s]; !ok {
				// Analyze successor s that has not been visited yet.
				doSCC(s)
				lowLink[n] = min(lowLink[n], lowLink[s])
			} else if onStack[s] {
				// The successor is on the stack, meaning it has to be
				// in the current SCC.
				lowLink[n] = min(lowLink[n], indexMap[s])
			}
		}

		// if n is a root node, pop the stack and generate a new SCC.
		if lowLink[n] == indexMap[n] {
			for {
				w := stack[len(stack)-1]
				stack = stack[:len(stack)-1]
				onStack[w] = false
				nodeToSccID[w] = sccID
				if w == n {
					break
				}
			}
			sccID++
		}
	}

	index = 0
	for n := range g {
		if _, ok := indexMap[n]; !ok {
			doSCC(n)
		}
	}

	return nodeToSccID, sccID
}

func min(x, y uint64) uint64 {
	if x < y {
		return x
	}
	return y
}

// propType represents type information being propagated
// over the vta graph. f != nil only for function nodes
// and nodes reachable from function nodes. There, we also
// remember the actual *ssa.Function in order to more
// precisely model higher-order flow.
type propType struct {
	typ types.Type
	f   *ssa.Function
}

// propTypeMap is an auxiliary structure that serves
// the role of a map from nodes to a set of propTypes.
type propTypeMap struct {
	nodeToScc  map[node]int
	sccToTypes map[int]*trie.MutMap
}

// propTypes returns a list of propTypes associated with
// node `n`. If `n` is not in the map `ptm`, nil is returned.
func (ptm propTypeMap) propTypes(n node) []propType {
	id, ok := ptm.nodeToScc[n]
	if !ok {
		return nil
	}
	var pts []propType
	for _, elem := range trie.Elems(ptm.sccToTypes[id].M) {
		pts = append(pts, elem.(propType))
	}
	return pts
}

// propagate reduces the `graph` based on its SCCs and
// then propagates type information through the reduced
// graph. The result is a map from nodes to a set of types
// and functions, stemming from higher-order data flow,
// reaching the node. `canon` is used for type uniqueness.
func propagate(graph vtaGraph, canon *typeutil.Map) propTypeMap {
	nodeToScc, sccID := scc(graph)

	// We also need the reverse map, from ids to SCCs.
	sccs := make(map[int][]node, sccID)
	for n, id := range nodeToScc {
		sccs[id] = append(sccs[id], n)
	}

	// propTypeIds are used to create unique ids for
	// propType, to be used for trie-based type sets.
	propTypeIds := make(map[propType]uint64)
	// Id creation is based on == equality, which works
	// as types are canonicalized (see getPropType).
	propTypeId := func(p propType) uint64 {
		if id, ok := propTypeIds[p]; ok {
			return id
		}
		id := uint64(len(propTypeIds))
		propTypeIds[p] = id
		return id
	}
	builder := trie.NewBuilder()
	// Initialize sccToTypes to avoid repeated check
	// for initialization later.
	sccToTypes := make(map[int]*trie.MutMap, sccID)
	for i := 0; i <= sccID; i++ {
		sccToTypes[i] = nodeTypes(sccs[i], builder, propTypeId, canon)
	}

	for i := len(sccs) - 1; i >= 0; i-- {
		nextSccs := make(map[int]struct{})
		for _, node := range sccs[i] {
			for succ := range graph[node] {
				nextSccs[nodeToScc[succ]] = struct{}{}
			}
		}
		// Propagate types to all successor SCCs.
		for nextScc := range nextSccs {
			sccToTypes[nextScc].Merge(sccToTypes[i].M)
		}
	}
	return propTypeMap{nodeToScc: nodeToScc, sccToTypes: sccToTypes}
}

// nodeTypes returns a set of propTypes for `nodes`. These are the
// propTypes stemming from the type of each node in `nodes` plus.
func nodeTypes(nodes []node, builder *trie.Builder, propTypeId func(p propType) uint64, canon *typeutil.Map) *trie.MutMap {
	typeSet := builder.MutEmpty()
	for _, n := range nodes {
		if hasInitialTypes(n) {
			pt := getPropType(n, canon)
			typeSet.Update(propTypeId(pt), pt)
		}
	}
	return &typeSet
}

// getPropType creates a propType for `node` based on its type.
// propType.typ is always node.Type(). If node is function, then
// propType.val is the underlying function; nil otherwise.
func getPropType(node node, canon *typeutil.Map) propType {
	t := canonicalize(node.Type(), canon)
	if fn, ok := node.(function); ok {
		return propType{f: fn.f, typ: t}
	}
	return propType{f: nil, typ: t}
}