aboutsummaryrefslogtreecommitdiff
path: root/internal/impl/legacy_enum.go
blob: f7d7ffb51039e8e466defa40cf4eefce7a352c8a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package impl

import (
	"fmt"
	"reflect"
	"strings"
	"sync"

	"google.golang.org/protobuf/internal/filedesc"
	"google.golang.org/protobuf/internal/strs"
	"google.golang.org/protobuf/reflect/protoreflect"
	pref "google.golang.org/protobuf/reflect/protoreflect"
)

// legacyEnumName returns the name of enums used in legacy code.
// It is neither the protobuf full name nor the qualified Go name,
// but rather an odd hybrid of both.
func legacyEnumName(ed pref.EnumDescriptor) string {
	var protoPkg string
	enumName := string(ed.FullName())
	if fd := ed.ParentFile(); fd != nil {
		protoPkg = string(fd.Package())
		enumName = strings.TrimPrefix(enumName, protoPkg+".")
	}
	if protoPkg == "" {
		return strs.GoCamelCase(enumName)
	}
	return protoPkg + "." + strs.GoCamelCase(enumName)
}

// legacyWrapEnum wraps v as a protoreflect.Enum,
// where v must be a int32 kind and not implement the v2 API already.
func legacyWrapEnum(v reflect.Value) pref.Enum {
	et := legacyLoadEnumType(v.Type())
	return et.New(pref.EnumNumber(v.Int()))
}

var legacyEnumTypeCache sync.Map // map[reflect.Type]protoreflect.EnumType

// legacyLoadEnumType dynamically loads a protoreflect.EnumType for t,
// where t must be an int32 kind and not implement the v2 API already.
func legacyLoadEnumType(t reflect.Type) pref.EnumType {
	// Fast-path: check if a EnumType is cached for this concrete type.
	if et, ok := legacyEnumTypeCache.Load(t); ok {
		return et.(pref.EnumType)
	}

	// Slow-path: derive enum descriptor and initialize EnumType.
	var et pref.EnumType
	ed := LegacyLoadEnumDesc(t)
	et = &legacyEnumType{
		desc:   ed,
		goType: t,
	}
	if et, ok := legacyEnumTypeCache.LoadOrStore(t, et); ok {
		return et.(pref.EnumType)
	}
	return et
}

type legacyEnumType struct {
	desc   pref.EnumDescriptor
	goType reflect.Type
	m      sync.Map // map[protoreflect.EnumNumber]proto.Enum
}

func (t *legacyEnumType) New(n pref.EnumNumber) pref.Enum {
	if e, ok := t.m.Load(n); ok {
		return e.(pref.Enum)
	}
	e := &legacyEnumWrapper{num: n, pbTyp: t, goTyp: t.goType}
	t.m.Store(n, e)
	return e
}
func (t *legacyEnumType) Descriptor() pref.EnumDescriptor {
	return t.desc
}

type legacyEnumWrapper struct {
	num   pref.EnumNumber
	pbTyp pref.EnumType
	goTyp reflect.Type
}

func (e *legacyEnumWrapper) Descriptor() pref.EnumDescriptor {
	return e.pbTyp.Descriptor()
}
func (e *legacyEnumWrapper) Type() pref.EnumType {
	return e.pbTyp
}
func (e *legacyEnumWrapper) Number() pref.EnumNumber {
	return e.num
}
func (e *legacyEnumWrapper) ProtoReflect() pref.Enum {
	return e
}
func (e *legacyEnumWrapper) protoUnwrap() interface{} {
	v := reflect.New(e.goTyp).Elem()
	v.SetInt(int64(e.num))
	return v.Interface()
}

var (
	_ pref.Enum = (*legacyEnumWrapper)(nil)
	_ unwrapper = (*legacyEnumWrapper)(nil)
)

var legacyEnumDescCache sync.Map // map[reflect.Type]protoreflect.EnumDescriptor

// LegacyLoadEnumDesc returns an EnumDescriptor derived from the Go type,
// which must be an int32 kind and not implement the v2 API already.
//
// This is exported for testing purposes.
func LegacyLoadEnumDesc(t reflect.Type) pref.EnumDescriptor {
	// Fast-path: check if an EnumDescriptor is cached for this concrete type.
	if ed, ok := legacyEnumDescCache.Load(t); ok {
		return ed.(pref.EnumDescriptor)
	}

	// Slow-path: initialize EnumDescriptor from the raw descriptor.
	ev := reflect.Zero(t).Interface()
	if _, ok := ev.(pref.Enum); ok {
		panic(fmt.Sprintf("%v already implements proto.Enum", t))
	}
	edV1, ok := ev.(enumV1)
	if !ok {
		return aberrantLoadEnumDesc(t)
	}
	b, idxs := edV1.EnumDescriptor()

	var ed pref.EnumDescriptor
	if len(idxs) == 1 {
		ed = legacyLoadFileDesc(b).Enums().Get(idxs[0])
	} else {
		md := legacyLoadFileDesc(b).Messages().Get(idxs[0])
		for _, i := range idxs[1 : len(idxs)-1] {
			md = md.Messages().Get(i)
		}
		ed = md.Enums().Get(idxs[len(idxs)-1])
	}
	if ed, ok := legacyEnumDescCache.LoadOrStore(t, ed); ok {
		return ed.(protoreflect.EnumDescriptor)
	}
	return ed
}

var aberrantEnumDescCache sync.Map // map[reflect.Type]protoreflect.EnumDescriptor

// aberrantLoadEnumDesc returns an EnumDescriptor derived from the Go type,
// which must not implement protoreflect.Enum or enumV1.
//
// If the type does not implement enumV1, then there is no reliable
// way to derive the original protobuf type information.
// We are unable to use the global enum registry since it is
// unfortunately keyed by the protobuf full name, which we also do not know.
// Thus, this produces some bogus enum descriptor based on the Go type name.
func aberrantLoadEnumDesc(t reflect.Type) pref.EnumDescriptor {
	// Fast-path: check if an EnumDescriptor is cached for this concrete type.
	if ed, ok := aberrantEnumDescCache.Load(t); ok {
		return ed.(pref.EnumDescriptor)
	}

	// Slow-path: construct a bogus, but unique EnumDescriptor.
	ed := &filedesc.Enum{L2: new(filedesc.EnumL2)}
	ed.L0.FullName = AberrantDeriveFullName(t) // e.g., github_com.user.repo.MyEnum
	ed.L0.ParentFile = filedesc.SurrogateProto3
	ed.L2.Values.List = append(ed.L2.Values.List, filedesc.EnumValue{})

	// TODO: Use the presence of a UnmarshalJSON method to determine proto2?

	vd := &ed.L2.Values.List[0]
	vd.L0.FullName = ed.L0.FullName + "_UNKNOWN" // e.g., github_com.user.repo.MyEnum_UNKNOWN
	vd.L0.ParentFile = ed.L0.ParentFile
	vd.L0.Parent = ed

	// TODO: We could use the String method to obtain some enum value names by
	// starting at 0 and print the enum until it produces invalid identifiers.
	// An exhaustive query is clearly impractical, but can be best-effort.

	if ed, ok := aberrantEnumDescCache.LoadOrStore(t, ed); ok {
		return ed.(pref.EnumDescriptor)
	}
	return ed
}

// AberrantDeriveFullName derives a fully qualified protobuf name for the given Go type
// The provided name is not guaranteed to be stable nor universally unique.
// It should be sufficiently unique within a program.
//
// This is exported for testing purposes.
func AberrantDeriveFullName(t reflect.Type) pref.FullName {
	sanitize := func(r rune) rune {
		switch {
		case r == '/':
			return '.'
		case 'a' <= r && r <= 'z', 'A' <= r && r <= 'Z', '0' <= r && r <= '9':
			return r
		default:
			return '_'
		}
	}
	prefix := strings.Map(sanitize, t.PkgPath())
	suffix := strings.Map(sanitize, t.Name())
	if suffix == "" {
		suffix = fmt.Sprintf("UnknownX%X", reflect.ValueOf(t).Pointer())
	}

	ss := append(strings.Split(prefix, "."), suffix)
	for i, s := range ss {
		if s == "" || ('0' <= s[0] && s[0] <= '9') {
			ss[i] = "x" + s
		}
	}
	return pref.FullName(strings.Join(ss, "."))
}