summaryrefslogtreecommitdiff
path: root/Source/OpenEXR/Imath/ImathMatrixAlgo.h
blob: 0234f23c0292e04ed016c7469615c6ed6e28a7fc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
// Digital Ltd. LLC
// 
// All rights reserved.
// 
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// *       Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// *       Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// *       Neither the name of Industrial Light & Magic nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission. 
// 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
///////////////////////////////////////////////////////////////////////////


#ifndef INCLUDED_IMATHMATRIXALGO_H
#define INCLUDED_IMATHMATRIXALGO_H

//-------------------------------------------------------------------------
//
//      This file contains algorithms applied to or in conjunction with
//	transformation matrices (Imath::Matrix33 and Imath::Matrix44).
//	The assumption made is that these functions are called much less
//	often than the basic point functions or these functions require
//	more support classes.
//
//	This file also defines a few predefined constant matrices.
//
//-------------------------------------------------------------------------

#include "ImathMatrix.h"
#include "ImathQuat.h"
#include "ImathEuler.h"
#include "ImathExc.h"
#include "ImathVec.h"
#include <math.h>


#ifdef OPENEXR_DLL
    #ifdef IMATH_EXPORTS
        #define IMATH_EXPORT_CONST extern __declspec(dllexport)
    #else
	#define IMATH_EXPORT_CONST extern __declspec(dllimport)
    #endif
#else
    #define IMATH_EXPORT_CONST extern const
#endif


namespace Imath {

//------------------
// Identity matrices
//------------------

IMATH_EXPORT_CONST M33f identity33f;
IMATH_EXPORT_CONST M44f identity44f;
IMATH_EXPORT_CONST M33d identity33d;
IMATH_EXPORT_CONST M44d identity44d;

//----------------------------------------------------------------------
// Extract scale, shear, rotation, and translation values from a matrix:
// 
// Notes:
//
// This implementation follows the technique described in the paper by
// Spencer W. Thomas in the Graphics Gems II article: "Decomposing a 
// Matrix into Simple Transformations", p. 320.
//
// - Some of the functions below have an optional exc parameter
//   that determines the functions' behavior when the matrix'
//   scaling is very close to zero:
//
//   If exc is true, the functions throw an Imath::ZeroScale exception.
//
//   If exc is false:
//
//      extractScaling (m, s)            returns false, s is invalid
//	sansScaling (m)		         returns m
//	removeScaling (m)	         returns false, m is unchanged
//      sansScalingAndShear (m)          returns m
//      removeScalingAndShear (m)        returns false, m is unchanged
//      extractAndRemoveScalingAndShear (m, s, h)  
//                                       returns false, m is unchanged, 
//                                                      (sh) are invalid
//      checkForZeroScaleInRow ()        returns false
//	extractSHRT (m, s, h, r, t)      returns false, (shrt) are invalid
//
// - Functions extractEuler(), extractEulerXYZ() and extractEulerZYX() 
//   assume that the matrix does not include shear or non-uniform scaling, 
//   but they do not examine the matrix to verify this assumption.  
//   Matrices with shear or non-uniform scaling are likely to produce 
//   meaningless results.  Therefore, you should use the 
//   removeScalingAndShear() routine, if necessary, prior to calling
//   extractEuler...() .
//
// - All functions assume that the matrix does not include perspective
//   transformation(s), but they do not examine the matrix to verify 
//   this assumption.  Matrices with perspective transformations are 
//   likely to produce meaningless results.
//
//----------------------------------------------------------------------


//
// Declarations for 4x4 matrix.
//

template <class T>  bool        extractScaling 
                                            (const Matrix44<T> &mat,
					     Vec3<T> &scl,
					     bool exc = true);
  
template <class T>  Matrix44<T> sansScaling (const Matrix44<T> &mat, 
					     bool exc = true);

template <class T>  bool        removeScaling 
                                            (Matrix44<T> &mat, 
					     bool exc = true);

template <class T>  bool        extractScalingAndShear 
                                            (const Matrix44<T> &mat,
					     Vec3<T> &scl,
					     Vec3<T> &shr,
					     bool exc = true);
  
template <class T>  Matrix44<T> sansScalingAndShear 
                                            (const Matrix44<T> &mat, 
					     bool exc = true);

template <class T>  bool        removeScalingAndShear 
                                            (Matrix44<T> &mat,
					     bool exc = true);

template <class T>  bool        extractAndRemoveScalingAndShear
                                            (Matrix44<T> &mat,
					     Vec3<T>     &scl,
					     Vec3<T>     &shr,
					     bool exc = true);

template <class T>  void	extractEulerXYZ 
                                            (const Matrix44<T> &mat,
					     Vec3<T> &rot);

template <class T>  void	extractEulerZYX 
                                            (const Matrix44<T> &mat,
					     Vec3<T> &rot);

template <class T>  Quat<T>	extractQuat (const Matrix44<T> &mat);

template <class T>  bool	extractSHRT 
                                    (const Matrix44<T> &mat,
				     Vec3<T> &s,
				     Vec3<T> &h,
				     Vec3<T> &r,
				     Vec3<T> &t,
				     bool exc /*= true*/,
				     typename Euler<T>::Order rOrder);

template <class T>  bool	extractSHRT 
                                    (const Matrix44<T> &mat,
				     Vec3<T> &s,
				     Vec3<T> &h,
				     Vec3<T> &r,
				     Vec3<T> &t,
				     bool exc = true);

template <class T>  bool	extractSHRT 
                                    (const Matrix44<T> &mat,
				     Vec3<T> &s,
				     Vec3<T> &h,
				     Euler<T> &r,
				     Vec3<T> &t,
				     bool exc = true);

//
// Internal utility function.
//

template <class T>  bool	checkForZeroScaleInRow
                                            (const T       &scl, 
					     const Vec3<T> &row,
					     bool exc = true);

//
// Returns a matrix that rotates "fromDirection" vector to "toDirection"
// vector.
//

template <class T> Matrix44<T>	rotationMatrix (const Vec3<T> &fromDirection,
						const Vec3<T> &toDirection);



//
// Returns a matrix that rotates the "fromDir" vector 
// so that it points towards "toDir".  You may also 
// specify that you want the up vector to be pointing 
// in a certain direction "upDir".
//

template <class T> Matrix44<T>	rotationMatrixWithUpDir 
                                            (const Vec3<T> &fromDir,
					     const Vec3<T> &toDir,
					     const Vec3<T> &upDir);


//
// Returns a matrix that rotates the z-axis so that it 
// points towards "targetDir".  You must also specify 
// that you want the up vector to be pointing in a 
// certain direction "upDir".
//
// Notes: The following degenerate cases are handled:
//        (a) when the directions given by "toDir" and "upDir" 
//            are parallel or opposite;
//            (the direction vectors must have a non-zero cross product)
//        (b) when any of the given direction vectors have zero length
//

template <class T> Matrix44<T>	alignZAxisWithTargetDir 
                                            (Vec3<T> targetDir, 
					     Vec3<T> upDir);


//----------------------------------------------------------------------


// 
// Declarations for 3x3 matrix.
//

 
template <class T>  bool        extractScaling 
                                            (const Matrix33<T> &mat,
					     Vec2<T> &scl,
					     bool exc = true);
  
template <class T>  Matrix33<T> sansScaling (const Matrix33<T> &mat, 
					     bool exc = true);

template <class T>  bool        removeScaling 
                                            (Matrix33<T> &mat, 
					     bool exc = true);

template <class T>  bool        extractScalingAndShear 
                                            (const Matrix33<T> &mat,
					     Vec2<T> &scl,
					     T &h,
					     bool exc = true);
  
template <class T>  Matrix33<T> sansScalingAndShear 
                                            (const Matrix33<T> &mat, 
					     bool exc = true);

template <class T>  bool        removeScalingAndShear 
                                            (Matrix33<T> &mat,
					     bool exc = true);

template <class T>  bool        extractAndRemoveScalingAndShear
                                            (Matrix33<T> &mat,
					     Vec2<T>     &scl,
					     T           &shr,
					     bool exc = true);

template <class T>  void	extractEuler
                                            (const Matrix33<T> &mat,
					     T       &rot);

template <class T>  bool	extractSHRT (const Matrix33<T> &mat,
					     Vec2<T> &s,
					     T       &h,
					     T       &r,
					     Vec2<T> &t,
					     bool exc = true);

template <class T>  bool	checkForZeroScaleInRow
                                            (const T       &scl, 
					     const Vec2<T> &row,
					     bool exc = true);




//-----------------------------------------------------------------------------
// Implementation for 4x4 Matrix
//------------------------------


template <class T>
bool
extractScaling (const Matrix44<T> &mat, Vec3<T> &scl, bool exc)
{
    Vec3<T> shr;
    Matrix44<T> M (mat);

    if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
	return false;
    
    return true;
}


template <class T>
Matrix44<T>
sansScaling (const Matrix44<T> &mat, bool exc)
{
    Vec3<T> scl;
    Vec3<T> shr;
    Vec3<T> rot;
    Vec3<T> tran;

    if (! extractSHRT (mat, scl, shr, rot, tran, exc))
	return mat;

    Matrix44<T> M;
    
    M.translate (tran);
    M.rotate (rot);
    M.shear (shr);

    return M;
}


template <class T>
bool
removeScaling (Matrix44<T> &mat, bool exc)
{
    Vec3<T> scl;
    Vec3<T> shr;
    Vec3<T> rot;
    Vec3<T> tran;

    if (! extractSHRT (mat, scl, shr, rot, tran, exc))
	return false;

    mat.makeIdentity ();
    mat.translate (tran);
    mat.rotate (rot);
    mat.shear (shr);

    return true;
}


template <class T>
bool
extractScalingAndShear (const Matrix44<T> &mat, 
			Vec3<T> &scl, Vec3<T> &shr, bool exc)
{
    Matrix44<T> M (mat);

    if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
	return false;
    
    return true;
}


template <class T>
Matrix44<T>
sansScalingAndShear (const Matrix44<T> &mat, bool exc)
{
    Vec3<T> scl;
    Vec3<T> shr;
    Matrix44<T> M (mat);

    if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
	return mat;
    
    return M;
}


template <class T>
bool
removeScalingAndShear (Matrix44<T> &mat, bool exc)
{
    Vec3<T> scl;
    Vec3<T> shr;

    if (! extractAndRemoveScalingAndShear (mat, scl, shr, exc))
	return false;
    
    return true;
}


template <class T>
bool
extractAndRemoveScalingAndShear (Matrix44<T> &mat, 
				 Vec3<T> &scl, Vec3<T> &shr, bool exc)
{
    //
    // This implementation follows the technique described in the paper by
    // Spencer W. Thomas in the Graphics Gems II article: "Decomposing a 
    // Matrix into Simple Transformations", p. 320.
    //

    Vec3<T> row[3];

    row[0] = Vec3<T> (mat[0][0], mat[0][1], mat[0][2]);
    row[1] = Vec3<T> (mat[1][0], mat[1][1], mat[1][2]);
    row[2] = Vec3<T> (mat[2][0], mat[2][1], mat[2][2]);
    
    T maxVal = 0;
    for (int i=0; i < 3; i++)
	for (int j=0; j < 3; j++)
	    if (Imath::abs (row[i][j]) > maxVal)
		maxVal = Imath::abs (row[i][j]);

    //
    // We normalize the 3x3 matrix here.
    // It was noticed that this can improve numerical stability significantly,
    // especially when many of the upper 3x3 matrix's coefficients are very
    // close to zero; we correct for this step at the end by multiplying the 
    // scaling factors by maxVal at the end (shear and rotation are not 
    // affected by the normalization).

    if (maxVal != 0)
    {
	for (int i=0; i < 3; i++)
	    if (! checkForZeroScaleInRow (maxVal, row[i], exc))
		return false;
	    else
		row[i] /= maxVal;
    }

    // Compute X scale factor. 
    scl.x = row[0].length ();
    if (! checkForZeroScaleInRow (scl.x, row[0], exc))
	return false;

    // Normalize first row.
    row[0] /= scl.x;

    // An XY shear factor will shear the X coord. as the Y coord. changes.
    // There are 6 combinations (XY, XZ, YZ, YX, ZX, ZY), although we only
    // extract the first 3 because we can effect the last 3 by shearing in
    // XY, XZ, YZ combined rotations and scales.
    //
    // shear matrix <   1,  YX,  ZX,  0,
    //                 XY,   1,  ZY,  0,
    //                 XZ,  YZ,   1,  0,
    //                  0,   0,   0,  1 >

    // Compute XY shear factor and make 2nd row orthogonal to 1st.
    shr[0]  = row[0].dot (row[1]);
    row[1] -= shr[0] * row[0];

    // Now, compute Y scale.
    scl.y = row[1].length ();
    if (! checkForZeroScaleInRow (scl.y, row[1], exc))
	return false;

    // Normalize 2nd row and correct the XY shear factor for Y scaling.
    row[1] /= scl.y; 
    shr[0] /= scl.y;

    // Compute XZ and YZ shears, orthogonalize 3rd row.
    shr[1]  = row[0].dot (row[2]);
    row[2] -= shr[1] * row[0];
    shr[2]  = row[1].dot (row[2]);
    row[2] -= shr[2] * row[1];

    // Next, get Z scale.
    scl.z = row[2].length ();
    if (! checkForZeroScaleInRow (scl.z, row[2], exc))
	return false;

    // Normalize 3rd row and correct the XZ and YZ shear factors for Z scaling.
    row[2] /= scl.z;
    shr[1] /= scl.z;
    shr[2] /= scl.z;

    // At this point, the upper 3x3 matrix in mat is orthonormal.
    // Check for a coordinate system flip. If the determinant
    // is less than zero, then negate the matrix and the scaling factors.
    if (row[0].dot (row[1].cross (row[2])) < 0)
	for (int  i=0; i < 3; i++)
	{
	    scl[i] *= -1;
	    row[i] *= -1;
	}

    // Copy over the orthonormal rows into the returned matrix.
    // The upper 3x3 matrix in mat is now a rotation matrix.
    for (int i=0; i < 3; i++)
    {
	mat[i][0] = row[i][0]; 
	mat[i][1] = row[i][1]; 
	mat[i][2] = row[i][2];
    }

    // Correct the scaling factors for the normalization step that we 
    // performed above; shear and rotation are not affected by the 
    // normalization.
    scl *= maxVal;

    return true;
}


template <class T>
void
extractEulerXYZ (const Matrix44<T> &mat, Vec3<T> &rot)
{
    //
    // Normalize the local x, y and z axes to remove scaling.
    //

    Vec3<T> i (mat[0][0], mat[0][1], mat[0][2]);
    Vec3<T> j (mat[1][0], mat[1][1], mat[1][2]);
    Vec3<T> k (mat[2][0], mat[2][1], mat[2][2]);

    i.normalize();
    j.normalize();
    k.normalize();

    Matrix44<T> M (i[0], i[1], i[2], 0, 
		   j[0], j[1], j[2], 0, 
		   k[0], k[1], k[2], 0, 
		   0,    0,    0,    1);

    //
    // Extract the first angle, rot.x.
    // 

    rot.x = Math<T>::atan2 (M[1][2], M[2][2]);

    //
    // Remove the rot.x rotation from M, so that the remaining
    // rotation, N, is only around two axes, and gimbal lock
    // cannot occur.
    //

    Matrix44<T> N;
    N.rotate (Vec3<T> (-rot.x, 0, 0));
    N = N * M;

    //
    // Extract the other two angles, rot.y and rot.z, from N.
    //

    T cy = Math<T>::sqrt (N[0][0]*N[0][0] + N[0][1]*N[0][1]);
    rot.y = Math<T>::atan2 (-N[0][2], cy);
    rot.z = Math<T>::atan2 (-N[1][0], N[1][1]);
}


template <class T>
void
extractEulerZYX (const Matrix44<T> &mat, Vec3<T> &rot)
{
    //
    // Normalize the local x, y and z axes to remove scaling.
    //

    Vec3<T> i (mat[0][0], mat[0][1], mat[0][2]);
    Vec3<T> j (mat[1][0], mat[1][1], mat[1][2]);
    Vec3<T> k (mat[2][0], mat[2][1], mat[2][2]);

    i.normalize();
    j.normalize();
    k.normalize();

    Matrix44<T> M (i[0], i[1], i[2], 0, 
		   j[0], j[1], j[2], 0, 
		   k[0], k[1], k[2], 0, 
		   0,    0,    0,    1);

    //
    // Extract the first angle, rot.x.
    // 

    rot.x = -Math<T>::atan2 (M[1][0], M[0][0]);

    //
    // Remove the x rotation from M, so that the remaining
    // rotation, N, is only around two axes, and gimbal lock
    // cannot occur.
    //

    Matrix44<T> N;
    N.rotate (Vec3<T> (0, 0, -rot.x));
    N = N * M;

    //
    // Extract the other two angles, rot.y and rot.z, from N.
    //

    T cy = Math<T>::sqrt (N[2][2]*N[2][2] + N[2][1]*N[2][1]);
    rot.y = -Math<T>::atan2 (-N[2][0], cy);
    rot.z = -Math<T>::atan2 (-N[1][2], N[1][1]);
}


template <class T>
Quat<T>
extractQuat (const Matrix44<T> &mat)
{
  Matrix44<T> rot;

  T        tr, s;
  T         q[4];
  int    i, j, k;
  Quat<T>   quat;

  int nxt[3] = {1, 2, 0};
  tr = mat[0][0] + mat[1][1] + mat[2][2];

  // check the diagonal
  if (tr > 0.0) {
     s = Math<T>::sqrt (tr + 1.0);
     quat.r = s / 2.0;
     s = 0.5 / s;

     quat.v.x = (mat[1][2] - mat[2][1]) * s;
     quat.v.y = (mat[2][0] - mat[0][2]) * s;
     quat.v.z = (mat[0][1] - mat[1][0]) * s;
  } 
  else {      
     // diagonal is negative
     i = 0;
     if (mat[1][1] > mat[0][0]) 
        i=1;
     if (mat[2][2] > mat[i][i]) 
        i=2;
    
     j = nxt[i];
     k = nxt[j];
     s = Math<T>::sqrt ((mat[i][i] - (mat[j][j] + mat[k][k])) + 1.0);
      
     q[i] = s * 0.5;
     if (s != 0.0) 
        s = 0.5 / s;

     q[3] = (mat[j][k] - mat[k][j]) * s;
     q[j] = (mat[i][j] + mat[j][i]) * s;
     q[k] = (mat[i][k] + mat[k][i]) * s;

     quat.v.x = q[0];
     quat.v.y = q[1];
     quat.v.z = q[2];
     quat.r = q[3];
 }

  return quat;
}

template <class T>
bool 
extractSHRT (const Matrix44<T> &mat,
	     Vec3<T> &s,
	     Vec3<T> &h,
	     Vec3<T> &r,
	     Vec3<T> &t,
	     bool exc /* = true */ ,
	     typename Euler<T>::Order rOrder /* = Euler<T>::XYZ */ )
{
    Matrix44<T> rot;

    rot = mat;
    if (! extractAndRemoveScalingAndShear (rot, s, h, exc))
	return false;

    extractEulerXYZ (rot, r);

    t.x = mat[3][0];
    t.y = mat[3][1];
    t.z = mat[3][2];

    if (rOrder != Euler<T>::XYZ)
    {
	Imath::Euler<T> eXYZ (r, Imath::Euler<T>::XYZ);
	Imath::Euler<T> e (eXYZ, rOrder);
	r = e.toXYZVector ();
    }

    return true;
}

template <class T>
bool 
extractSHRT (const Matrix44<T> &mat,
	     Vec3<T> &s,
	     Vec3<T> &h,
	     Vec3<T> &r,
	     Vec3<T> &t,
	     bool exc)
{
    return extractSHRT(mat, s, h, r, t, exc, Imath::Euler<T>::XYZ);
}

template <class T>
bool 
extractSHRT (const Matrix44<T> &mat,
	     Vec3<T> &s,
	     Vec3<T> &h,
	     Euler<T> &r,
	     Vec3<T> &t,
	     bool exc /* = true */)
{
    return extractSHRT (mat, s, h, r, t, exc, r.order ());
}


template <class T> 
bool		
checkForZeroScaleInRow (const T& scl, 
			const Vec3<T> &row,
			bool exc /* = true */ )
{
    for (int i = 0; i < 3; i++)
    {
	if ((abs (scl) < 1 && abs (row[i]) >= limits<T>::max() * abs (scl)))
	{
	    if (exc)
		throw Imath::ZeroScaleExc ("Cannot remove zero scaling "
					   "from matrix.");
	    else
		return false;
	}
    }

    return true;
}


template <class T>
Matrix44<T>
rotationMatrix (const Vec3<T> &from, const Vec3<T> &to)
{
    Quat<T> q;
    q.setRotation(from, to);
    return q.toMatrix44();
}


template <class T>
Matrix44<T>	
rotationMatrixWithUpDir (const Vec3<T> &fromDir,
			 const Vec3<T> &toDir,
			 const Vec3<T> &upDir)
{
    //
    // The goal is to obtain a rotation matrix that takes 
    // "fromDir" to "toDir".  We do this in two steps and 
    // compose the resulting rotation matrices; 
    //    (a) rotate "fromDir" into the z-axis
    //    (b) rotate the z-axis into "toDir"
    //

    // The from direction must be non-zero; but we allow zero to and up dirs.
    if (fromDir.length () == 0)
	return Matrix44<T> ();

    else
    {
	Matrix44<T> zAxis2FromDir  = alignZAxisWithTargetDir 
	                                 (fromDir, Vec3<T> (0, 1, 0));

	Matrix44<T> fromDir2zAxis  = zAxis2FromDir.transposed ();
	
	Matrix44<T> zAxis2ToDir    = alignZAxisWithTargetDir (toDir, upDir);

	return fromDir2zAxis * zAxis2ToDir;
    }
}


template <class T>
Matrix44<T>
alignZAxisWithTargetDir (Vec3<T> targetDir, Vec3<T> upDir)
{
    //
    // Ensure that the target direction is non-zero.
    //

    if ( targetDir.length () == 0 )
	targetDir = Vec3<T> (0, 0, 1);

    //
    // Ensure that the up direction is non-zero.
    //

    if ( upDir.length () == 0 )
	upDir = Vec3<T> (0, 1, 0);

    //
    // Check for degeneracies.  If the upDir and targetDir are parallel 
    // or opposite, then compute a new, arbitrary up direction that is
    // not parallel or opposite to the targetDir.
    //

    if (upDir.cross (targetDir).length () == 0)
    {
	upDir = targetDir.cross (Vec3<T> (1, 0, 0));
	if (upDir.length() == 0)
	    upDir = targetDir.cross(Vec3<T> (0, 0, 1));
    }

    //
    // Compute the x-, y-, and z-axis vectors of the new coordinate system.
    //

    Vec3<T> targetPerpDir = upDir.cross (targetDir);    
    Vec3<T> targetUpDir   = targetDir.cross (targetPerpDir);
    
    //
    // Rotate the x-axis into targetPerpDir (row 0),
    // rotate the y-axis into targetUpDir   (row 1),
    // rotate the z-axis into targetDir     (row 2).
    //
    
    Vec3<T> row[3];
    row[0] = targetPerpDir.normalized ();
    row[1] = targetUpDir  .normalized ();
    row[2] = targetDir    .normalized ();
    
    Matrix44<T> mat ( row[0][0],  row[0][1],  row[0][2],  0,
		      row[1][0],  row[1][1],  row[1][2],  0,
		      row[2][0],  row[2][1],  row[2][2],  0,
		      0,          0,          0,          1 );
    
    return mat;
}



//-----------------------------------------------------------------------------
// Implementation for 3x3 Matrix
//------------------------------


template <class T>
bool
extractScaling (const Matrix33<T> &mat, Vec2<T> &scl, bool exc)
{
    T shr;
    Matrix33<T> M (mat);

    if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
	return false;

    return true;
}


template <class T>
Matrix33<T>
sansScaling (const Matrix33<T> &mat, bool exc)
{
    Vec2<T> scl;
    T shr;
    T rot;
    Vec2<T> tran;

    if (! extractSHRT (mat, scl, shr, rot, tran, exc))
	return mat;

    Matrix33<T> M;
    
    M.translate (tran);
    M.rotate (rot);
    M.shear (shr);

    return M;
}


template <class T>
bool
removeScaling (Matrix33<T> &mat, bool exc)
{
    Vec2<T> scl;
    T shr;
    T rot;
    Vec2<T> tran;

    if (! extractSHRT (mat, scl, shr, rot, tran, exc))
	return false;

    mat.makeIdentity ();
    mat.translate (tran);
    mat.rotate (rot);
    mat.shear (shr);

    return true;
}


template <class T>
bool
extractScalingAndShear (const Matrix33<T> &mat, Vec2<T> &scl, T &shr, bool exc)
{
    Matrix33<T> M (mat);

    if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
	return false;

    return true;
}


template <class T>
Matrix33<T>
sansScalingAndShear (const Matrix33<T> &mat, bool exc)
{
    Vec2<T> scl;
    T shr;
    Matrix33<T> M (mat);

    if (! extractAndRemoveScalingAndShear (M, scl, shr, exc))
	return mat;
    
    return M;
}


template <class T>
bool
removeScalingAndShear (Matrix33<T> &mat, bool exc)
{
    Vec2<T> scl;
    T shr;

    if (! extractAndRemoveScalingAndShear (mat, scl, shr, exc))
	return false;
    
    return true;
}

template <class T>
bool
extractAndRemoveScalingAndShear (Matrix33<T> &mat, 
				 Vec2<T> &scl, T &shr, bool exc)
{
    Vec2<T> row[2];

    row[0] = Vec2<T> (mat[0][0], mat[0][1]);
    row[1] = Vec2<T> (mat[1][0], mat[1][1]);
    
    T maxVal = 0;
    for (int i=0; i < 2; i++)
	for (int j=0; j < 2; j++)
	    if (Imath::abs (row[i][j]) > maxVal)
		maxVal = Imath::abs (row[i][j]);

    //
    // We normalize the 2x2 matrix here.
    // It was noticed that this can improve numerical stability significantly,
    // especially when many of the upper 2x2 matrix's coefficients are very
    // close to zero; we correct for this step at the end by multiplying the 
    // scaling factors by maxVal at the end (shear and rotation are not 
    // affected by the normalization).

    if (maxVal != 0)
    {
	for (int i=0; i < 2; i++)
	    if (! checkForZeroScaleInRow (maxVal, row[i], exc))
		return false;
	    else
		row[i] /= maxVal;
    }

    // Compute X scale factor. 
    scl.x = row[0].length ();
    if (! checkForZeroScaleInRow (scl.x, row[0], exc))
	return false;

    // Normalize first row.
    row[0] /= scl.x;

    // An XY shear factor will shear the X coord. as the Y coord. changes.
    // There are 2 combinations (XY, YX), although we only extract the XY 
    // shear factor because we can effect the an YX shear factor by 
    // shearing in XY combined with rotations and scales.
    //
    // shear matrix <   1,  YX,  0,
    //                 XY,   1,  0,
    //                  0,   0,  1 >

    // Compute XY shear factor and make 2nd row orthogonal to 1st.
    shr     = row[0].dot (row[1]);
    row[1] -= shr * row[0];

    // Now, compute Y scale.
    scl.y = row[1].length ();
    if (! checkForZeroScaleInRow (scl.y, row[1], exc))
	return false;

    // Normalize 2nd row and correct the XY shear factor for Y scaling.
    row[1] /= scl.y; 
    shr    /= scl.y;

    // At this point, the upper 2x2 matrix in mat is orthonormal.
    // Check for a coordinate system flip. If the determinant
    // is -1, then flip the rotation matrix and adjust the scale(Y) 
    // and shear(XY) factors to compensate.
    if (row[0][0] * row[1][1] - row[0][1] * row[1][0] < 0)
    {
	row[1][0] *= -1;
	row[1][1] *= -1;
	scl[1] *= -1;
	shr *= -1;
    }

    // Copy over the orthonormal rows into the returned matrix.
    // The upper 2x2 matrix in mat is now a rotation matrix.
    for (int i=0; i < 2; i++)
    {
	mat[i][0] = row[i][0]; 
	mat[i][1] = row[i][1]; 
    }

    scl *= maxVal;

    return true;
}


template <class T>
void
extractEuler (const Matrix33<T> &mat, T &rot)
{
    //
    // Normalize the local x and y axes to remove scaling.
    //

    Vec2<T> i (mat[0][0], mat[0][1]);
    Vec2<T> j (mat[1][0], mat[1][1]);

    i.normalize();
    j.normalize();

    //
    // Extract the angle, rot.
    // 

    rot = - Math<T>::atan2 (j[0], i[0]);
}


template <class T>
bool 
extractSHRT (const Matrix33<T> &mat,
	     Vec2<T> &s,
	     T       &h,
	     T       &r,
	     Vec2<T> &t,
	     bool    exc)
{
    Matrix33<T> rot;

    rot = mat;
    if (! extractAndRemoveScalingAndShear (rot, s, h, exc))
	return false;

    extractEuler (rot, r);

    t.x = mat[2][0];
    t.y = mat[2][1];

    return true;
}


template <class T> 
bool		
checkForZeroScaleInRow (const T& scl, 
			const Vec2<T> &row,
			bool exc /* = true */ )
{
    for (int i = 0; i < 2; i++)
    {
	if ((abs (scl) < 1 && abs (row[i]) >= limits<T>::max() * abs (scl)))
	{
	    if (exc)
		throw Imath::ZeroScaleExc ("Cannot remove zero scaling "
					   "from matrix.");
	    else
		return false;
	}
    }

    return true;
}


} // namespace Imath

#endif