aboutsummaryrefslogtreecommitdiff
path: root/src/arm/linux/init.c
blob: 23d84399678f787e695f252f4ae6cf3a97f1e396 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
#include <stdint.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>

#include <cpuinfo.h>
#include <arm/linux/api.h>
#if defined(__ANDROID__)
	#include <arm/android/api.h>
#endif
#include <arm/api.h>
#include <arm/midr.h>
#include <linux/api.h>
#include <cpuinfo/internal-api.h>
#include <cpuinfo/log.h>


struct cpuinfo_arm_isa cpuinfo_isa = { 0 };

static struct cpuinfo_package package = { { 0 } };

static inline bool bitmask_all(uint32_t bitfield, uint32_t mask) {
	return (bitfield & mask) == mask;
}

static inline uint32_t min(uint32_t a, uint32_t b) {
	return a < b ? a : b;
}

static inline int cmp(uint32_t a, uint32_t b) {
	return (a > b) - (a < b);
}

static bool cluster_siblings_parser(
	uint32_t processor, uint32_t siblings_start, uint32_t siblings_end,
	struct cpuinfo_arm_linux_processor* processors)
{
	processors[processor].flags |= CPUINFO_LINUX_FLAG_PACKAGE_CLUSTER;
	uint32_t package_leader_id = processors[processor].package_leader_id;

	for (uint32_t sibling = siblings_start; sibling < siblings_end; sibling++) {
		if (!bitmask_all(processors[sibling].flags, CPUINFO_LINUX_FLAG_VALID)) {
			cpuinfo_log_info("invalid processor %"PRIu32" reported as a sibling for processor %"PRIu32,
				sibling, processor);
			continue;
		}

		const uint32_t sibling_package_leader_id = processors[sibling].package_leader_id;
		if (sibling_package_leader_id < package_leader_id) {
			package_leader_id = sibling_package_leader_id;
		}

		processors[sibling].package_leader_id = package_leader_id;
		processors[sibling].flags |= CPUINFO_LINUX_FLAG_PACKAGE_CLUSTER;
	}

	processors[processor].package_leader_id = package_leader_id;

	return true;
}

static int cmp_arm_linux_processor(const void* ptr_a, const void* ptr_b) {
	const struct cpuinfo_arm_linux_processor* processor_a = (const struct cpuinfo_arm_linux_processor*) ptr_a;
	const struct cpuinfo_arm_linux_processor* processor_b = (const struct cpuinfo_arm_linux_processor*) ptr_b;

	/* Move usable processors towards the start of the array */
	const bool usable_a = bitmask_all(processor_a->flags, CPUINFO_LINUX_FLAG_VALID);
	const bool usable_b = bitmask_all(processor_b->flags, CPUINFO_LINUX_FLAG_VALID);
	if (usable_a != usable_b) {
		return (int) usable_b - (int) usable_a;
	}

	/* Compare based on core type (e.g. Cortex-A57 < Cortex-A53) */
	const uint32_t midr_a = processor_a->midr;
	const uint32_t midr_b = processor_b->midr;
	if (midr_a != midr_b) {
		const uint32_t score_a = midr_score_core(midr_a);
		const uint32_t score_b = midr_score_core(midr_b);
		if (score_a != score_b) {
			return score_a > score_b ? -1 : 1;
		}
	}

	/* Compare based on core frequency (e.g. 2.0 GHz < 1.2 GHz) */
	const uint32_t frequency_a = processor_a->max_frequency;
	const uint32_t frequency_b = processor_b->max_frequency;
	if (frequency_a != frequency_b) {
		return frequency_a > frequency_b ? -1 : 1;
	}

	/* Compare based on cluster leader id (i.e. cluster 1 < cluster 0) */
	const uint32_t cluster_a = processor_a->package_leader_id;
	const uint32_t cluster_b = processor_b->package_leader_id;
	if (cluster_a != cluster_b) {
		return cluster_a > cluster_b ? -1 : 1;
	}

	/* Compare based on system processor id (i.e. processor 0 < processor 1) */
	const uint32_t id_a = processor_a->system_processor_id;
	const uint32_t id_b = processor_b->system_processor_id;
	return cmp(id_a, id_b);
}

void cpuinfo_arm_linux_init(void) {
	struct cpuinfo_arm_linux_processor* arm_linux_processors = NULL;
	struct cpuinfo_processor* processors = NULL;
	struct cpuinfo_core* cores = NULL;
	struct cpuinfo_cluster* clusters = NULL;
	struct cpuinfo_uarch_info* uarchs = NULL;
	struct cpuinfo_cache* l1i = NULL;
	struct cpuinfo_cache* l1d = NULL;
	struct cpuinfo_cache* l2 = NULL;
	struct cpuinfo_cache* l3 = NULL;
	const struct cpuinfo_processor** linux_cpu_to_processor_map = NULL;
	const struct cpuinfo_core** linux_cpu_to_core_map = NULL;
	uint32_t* linux_cpu_to_uarch_index_map = NULL;

	const uint32_t max_processors_count = cpuinfo_linux_get_max_processors_count();
	cpuinfo_log_debug("system maximum processors count: %"PRIu32, max_processors_count);

	const uint32_t max_possible_processors_count = 1 +
		cpuinfo_linux_get_max_possible_processor(max_processors_count);
	cpuinfo_log_debug("maximum possible processors count: %"PRIu32, max_possible_processors_count);
	const uint32_t max_present_processors_count = 1 +
		cpuinfo_linux_get_max_present_processor(max_processors_count);
	cpuinfo_log_debug("maximum present processors count: %"PRIu32, max_present_processors_count);

	uint32_t valid_processor_mask = 0;
	uint32_t arm_linux_processors_count = max_processors_count;
	if (max_present_processors_count != 0) {
		arm_linux_processors_count = min(arm_linux_processors_count, max_present_processors_count);
		valid_processor_mask = CPUINFO_LINUX_FLAG_PRESENT;
	}
	if (max_possible_processors_count != 0) {
		arm_linux_processors_count = min(arm_linux_processors_count, max_possible_processors_count);
		valid_processor_mask |= CPUINFO_LINUX_FLAG_POSSIBLE;
	}
	if ((max_present_processors_count | max_possible_processors_count) == 0) {
		cpuinfo_log_error("failed to parse both lists of possible and present processors");
		return;
	}

	arm_linux_processors = calloc(arm_linux_processors_count, sizeof(struct cpuinfo_arm_linux_processor));
	if (arm_linux_processors == NULL) {
		cpuinfo_log_error(
			"failed to allocate %zu bytes for descriptions of %"PRIu32" ARM logical processors",
			arm_linux_processors_count * sizeof(struct cpuinfo_arm_linux_processor),
			arm_linux_processors_count);
		return;
	}

	if (max_possible_processors_count) {
		cpuinfo_linux_detect_possible_processors(
			arm_linux_processors_count, &arm_linux_processors->flags,
			sizeof(struct cpuinfo_arm_linux_processor),
			CPUINFO_LINUX_FLAG_POSSIBLE);
	}

	if (max_present_processors_count) {
		cpuinfo_linux_detect_present_processors(
			arm_linux_processors_count, &arm_linux_processors->flags,
			sizeof(struct cpuinfo_arm_linux_processor),
			CPUINFO_LINUX_FLAG_PRESENT);
	}

#if defined(__ANDROID__)
	struct cpuinfo_android_properties android_properties;
	cpuinfo_arm_android_parse_properties(&android_properties);
#else
	char proc_cpuinfo_hardware[CPUINFO_HARDWARE_VALUE_MAX];
#endif
	char proc_cpuinfo_revision[CPUINFO_REVISION_VALUE_MAX];

	if (!cpuinfo_arm_linux_parse_proc_cpuinfo(
#if defined(__ANDROID__)
			android_properties.proc_cpuinfo_hardware,
#else
			proc_cpuinfo_hardware,
#endif
			proc_cpuinfo_revision,
			arm_linux_processors_count,
			arm_linux_processors)) {
		cpuinfo_log_error("failed to parse processor information from /proc/cpuinfo");
		return;
	}

	for (uint32_t i = 0; i < arm_linux_processors_count; i++) {
		if (bitmask_all(arm_linux_processors[i].flags, valid_processor_mask)) {
			arm_linux_processors[i].flags |= CPUINFO_LINUX_FLAG_VALID;
			cpuinfo_log_debug("parsed processor %"PRIu32" MIDR 0x%08"PRIx32,
				i, arm_linux_processors[i].midr);
		}
	}

	uint32_t valid_processors = 0, last_midr = 0;
	#if CPUINFO_ARCH_ARM
	uint32_t last_architecture_version = 0, last_architecture_flags = 0;
	#endif
	for (uint32_t i = 0; i < arm_linux_processors_count; i++) {
		arm_linux_processors[i].system_processor_id = i;
		if (bitmask_all(arm_linux_processors[i].flags, CPUINFO_LINUX_FLAG_VALID)) {
			valid_processors += 1;

			if (!(arm_linux_processors[i].flags & CPUINFO_ARM_LINUX_VALID_PROCESSOR)) {
				/*
				 * Processor is in possible and present lists, but not reported in /proc/cpuinfo.
				 * This is fairly common: high-index processors can be not reported if they are offline.
				 */
				cpuinfo_log_info("processor %"PRIu32" is not listed in /proc/cpuinfo", i);
			}

			if (bitmask_all(arm_linux_processors[i].flags, CPUINFO_ARM_LINUX_VALID_MIDR)) {
				last_midr = arm_linux_processors[i].midr;
			}
			#if CPUINFO_ARCH_ARM
				if (bitmask_all(arm_linux_processors[i].flags, CPUINFO_ARM_LINUX_VALID_ARCHITECTURE)) {
					last_architecture_version = arm_linux_processors[i].architecture_version;
					last_architecture_flags   = arm_linux_processors[i].architecture_flags;
				}
			#endif
		} else {
			/* Processor reported in /proc/cpuinfo, but not in possible and/or present lists: log and ignore */
			if (!(arm_linux_processors[i].flags & CPUINFO_ARM_LINUX_VALID_PROCESSOR)) {
				cpuinfo_log_warning("invalid processor %"PRIu32" reported in /proc/cpuinfo", i);
			}
		}
	}

#if defined(__ANDROID__)
	const struct cpuinfo_arm_chipset chipset =
		cpuinfo_arm_android_decode_chipset(&android_properties, valid_processors, 0);
#else
	const struct cpuinfo_arm_chipset chipset =
		cpuinfo_arm_linux_decode_chipset(proc_cpuinfo_hardware, proc_cpuinfo_revision, valid_processors, 0);
#endif

	#if CPUINFO_ARCH_ARM
		uint32_t isa_features = 0, isa_features2 = 0;
		#ifdef __ANDROID__
			/*
			 * On Android before API 20, libc.so does not provide getauxval function.
			 * Thus, we try to dynamically find it, or use two fallback mechanisms:
			 * 1. dlopen libc.so, and try to find getauxval
			 * 2. Parse /proc/self/auxv procfs file
			 * 3. Use features reported in /proc/cpuinfo
			 */
			if (!cpuinfo_arm_linux_hwcap_from_getauxval(&isa_features, &isa_features2)) {
				/* getauxval can't be used, fall back to parsing /proc/self/auxv */
				if (!cpuinfo_arm_linux_hwcap_from_procfs(&isa_features, &isa_features2)) {
					/*
					 * Reading /proc/self/auxv failed, probably due to file permissions.
					 * Use information from /proc/cpuinfo to detect ISA.
					 *
					 * If different processors report different ISA features, take the intersection.
					 */
					uint32_t processors_with_features = 0;
					for (uint32_t i = 0; i < arm_linux_processors_count; i++) {
						if (bitmask_all(arm_linux_processors[i].flags, CPUINFO_LINUX_FLAG_VALID | CPUINFO_ARM_LINUX_VALID_FEATURES)) {
							if (processors_with_features == 0) {
								isa_features = arm_linux_processors[i].features;
								isa_features2 = arm_linux_processors[i].features2;
							} else {
								isa_features &= arm_linux_processors[i].features;
								isa_features2 &= arm_linux_processors[i].features2;
							}
							processors_with_features += 1;
						}
					}
				}
			}
		#else
			/* On GNU/Linux getauxval is always available */
			cpuinfo_arm_linux_hwcap_from_getauxval(&isa_features, &isa_features2);
		#endif
		cpuinfo_arm_linux_decode_isa_from_proc_cpuinfo(
			isa_features, isa_features2,
			last_midr, last_architecture_version, last_architecture_flags,
			&chipset, &cpuinfo_isa);
	#elif CPUINFO_ARCH_ARM64
		uint32_t isa_features = 0, isa_features2 = 0;
		/* getauxval is always available on ARM64 Android */
		cpuinfo_arm_linux_hwcap_from_getauxval(&isa_features, &isa_features2);
		cpuinfo_arm64_linux_decode_isa_from_proc_cpuinfo(
			isa_features, isa_features2, last_midr, &chipset, &cpuinfo_isa);
	#endif

	/* Detect min/max frequency and package ID */
	for (uint32_t i = 0; i < arm_linux_processors_count; i++) {
		if (bitmask_all(arm_linux_processors[i].flags, CPUINFO_LINUX_FLAG_VALID)) {
			const uint32_t max_frequency = cpuinfo_linux_get_processor_max_frequency(i);
			if (max_frequency != 0) {
				arm_linux_processors[i].max_frequency = max_frequency;
				arm_linux_processors[i].flags |= CPUINFO_LINUX_FLAG_MAX_FREQUENCY;
			}

			const uint32_t min_frequency = cpuinfo_linux_get_processor_min_frequency(i);
			if (min_frequency != 0) {
				arm_linux_processors[i].min_frequency = min_frequency;
				arm_linux_processors[i].flags |= CPUINFO_LINUX_FLAG_MIN_FREQUENCY;
			}

			if (cpuinfo_linux_get_processor_package_id(i, &arm_linux_processors[i].package_id)) {
				arm_linux_processors[i].flags |= CPUINFO_LINUX_FLAG_PACKAGE_ID;
			}
		}
	}

	/* Initialize topology group IDs */
	for (uint32_t i = 0; i < arm_linux_processors_count; i++) {
		arm_linux_processors[i].package_leader_id = i;
	}

	/* Propagate topology group IDs among siblings */
	for (uint32_t i = 0; i < arm_linux_processors_count; i++) {
		if (!bitmask_all(arm_linux_processors[i].flags, CPUINFO_LINUX_FLAG_VALID)) {
			continue;
		}

		if (arm_linux_processors[i].flags & CPUINFO_LINUX_FLAG_PACKAGE_ID) {
			cpuinfo_linux_detect_core_siblings(
				arm_linux_processors_count, i,
				(cpuinfo_siblings_callback) cluster_siblings_parser,
				arm_linux_processors);
		}
	}

	/* Propagate all cluster IDs */
	uint32_t clustered_processors = 0;
	for (uint32_t i = 0; i < arm_linux_processors_count; i++) {
		if (bitmask_all(arm_linux_processors[i].flags, CPUINFO_LINUX_FLAG_VALID | CPUINFO_LINUX_FLAG_PACKAGE_CLUSTER)) {
			clustered_processors += 1;

			const uint32_t package_leader_id = arm_linux_processors[i].package_leader_id;
			if (package_leader_id < i) {
				arm_linux_processors[i].package_leader_id = arm_linux_processors[package_leader_id].package_leader_id;
			}

			cpuinfo_log_debug("processor %"PRIu32" clustered with processor %"PRIu32" as inferred from system siblings lists",
				i, arm_linux_processors[i].package_leader_id);
		}
	}

	if (clustered_processors != valid_processors) {
		/*
		 * Topology information about some or all logical processors may be unavailable, for the following reasons:
		 * - Linux kernel is too old, or configured without support for topology information in sysfs.
		 * - Core is offline, and Linux kernel is configured to not report topology for offline cores.
		 *
		 * In this case, we assign processors to clusters using two methods:
		 * - Try heuristic cluster configurations (e.g. 6-core SoC usually has 4+2 big.LITTLE configuration).
		 * - If heuristic failed, assign processors to core clusters in a sequential scan.
		 */
		if (!cpuinfo_arm_linux_detect_core_clusters_by_heuristic(valid_processors, arm_linux_processors_count, arm_linux_processors)) {
			cpuinfo_arm_linux_detect_core_clusters_by_sequential_scan(arm_linux_processors_count, arm_linux_processors);
		}
	}

	cpuinfo_arm_linux_count_cluster_processors(arm_linux_processors_count, arm_linux_processors);

	const uint32_t cluster_count = cpuinfo_arm_linux_detect_cluster_midr(
		&chipset,
		arm_linux_processors_count, valid_processors, arm_linux_processors);

	/* Initialize core vendor, uarch, MIDR, and frequency for every logical processor */
	for (uint32_t i = 0; i < arm_linux_processors_count; i++) {
		if (bitmask_all(arm_linux_processors[i].flags, CPUINFO_LINUX_FLAG_VALID)) {
			const uint32_t cluster_leader = arm_linux_processors[i].package_leader_id;
			if (cluster_leader == i) {
				/* Cluster leader: decode core vendor and uarch */
				cpuinfo_arm_decode_vendor_uarch(
				arm_linux_processors[cluster_leader].midr,
#if CPUINFO_ARCH_ARM
				!!(arm_linux_processors[cluster_leader].features & CPUINFO_ARM_LINUX_FEATURE_VFPV4),
#endif
				&arm_linux_processors[cluster_leader].vendor,
				&arm_linux_processors[cluster_leader].uarch);
			} else {
				/* Cluster non-leader: copy vendor, uarch, MIDR, and frequency from cluster leader */
				arm_linux_processors[i].flags |= arm_linux_processors[cluster_leader].flags &
					(CPUINFO_ARM_LINUX_VALID_MIDR | CPUINFO_LINUX_FLAG_MAX_FREQUENCY);
				arm_linux_processors[i].midr = arm_linux_processors[cluster_leader].midr;
				arm_linux_processors[i].vendor = arm_linux_processors[cluster_leader].vendor;
				arm_linux_processors[i].uarch = arm_linux_processors[cluster_leader].uarch;
				arm_linux_processors[i].max_frequency = arm_linux_processors[cluster_leader].max_frequency;
			}
		}
	}

	for (uint32_t i = 0; i < arm_linux_processors_count; i++) {
		if (bitmask_all(arm_linux_processors[i].flags, CPUINFO_LINUX_FLAG_VALID)) {
			cpuinfo_log_debug("post-analysis processor %"PRIu32": MIDR %08"PRIx32" frequency %"PRIu32,
				i, arm_linux_processors[i].midr, arm_linux_processors[i].max_frequency);
		}
	}

	qsort(arm_linux_processors, arm_linux_processors_count,
		sizeof(struct cpuinfo_arm_linux_processor), cmp_arm_linux_processor);

	for (uint32_t i = 0; i < arm_linux_processors_count; i++) {
		if (bitmask_all(arm_linux_processors[i].flags, CPUINFO_LINUX_FLAG_VALID)) {
			cpuinfo_log_debug("post-sort processor %"PRIu32": system id %"PRIu32" MIDR %08"PRIx32" frequency %"PRIu32,
				i, arm_linux_processors[i].system_processor_id, arm_linux_processors[i].midr, arm_linux_processors[i].max_frequency);
		}
	}

	uint32_t uarchs_count = 0;
	enum cpuinfo_uarch last_uarch;
	for (uint32_t i = 0; i < arm_linux_processors_count; i++) {
		if (bitmask_all(arm_linux_processors[i].flags, CPUINFO_LINUX_FLAG_VALID)) {
			if (uarchs_count == 0 || arm_linux_processors[i].uarch != last_uarch) {
				last_uarch = arm_linux_processors[i].uarch;
				uarchs_count += 1;
			}
			arm_linux_processors[i].uarch_index = uarchs_count - 1;
		}
	}

	/*
	 * Assumptions:
	 * - No SMP (i.e. each core supports only one hardware thread).
	 * - Level 1 instruction and data caches are private to the core clusters.
	 * - Level 2 and level 3 cache is shared between cores in the same cluster.
	 */
	cpuinfo_arm_chipset_to_string(&chipset, package.name);
	package.processor_count = valid_processors;
	package.core_count = valid_processors;
	package.cluster_count = cluster_count;

	processors = calloc(valid_processors, sizeof(struct cpuinfo_processor));
	if (processors == NULL) {
		cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" logical processors",
			valid_processors * sizeof(struct cpuinfo_processor), valid_processors);
		goto cleanup;
	}

	cores = calloc(valid_processors, sizeof(struct cpuinfo_core));
	if (cores == NULL) {
		cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" cores",
			valid_processors * sizeof(struct cpuinfo_core), valid_processors);
		goto cleanup;
	}

	clusters = calloc(cluster_count, sizeof(struct cpuinfo_cluster));
	if (clusters == NULL) {
		cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" core clusters",
			cluster_count * sizeof(struct cpuinfo_cluster), cluster_count);
		goto cleanup;
	}

	uarchs = calloc(uarchs_count, sizeof(struct cpuinfo_uarch_info));
	if (uarchs == NULL) {
		cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" microarchitectures",
			uarchs_count * sizeof(struct cpuinfo_uarch_info), uarchs_count);
		goto cleanup;
	}

	linux_cpu_to_processor_map = calloc(arm_linux_processors_count, sizeof(struct cpuinfo_processor*));
	if (linux_cpu_to_processor_map == NULL) {
		cpuinfo_log_error("failed to allocate %zu bytes for %"PRIu32" logical processor mapping entries",
			arm_linux_processors_count * sizeof(struct cpuinfo_processor*), arm_linux_processors_count);
		goto cleanup;
	}

	linux_cpu_to_core_map = calloc(arm_linux_processors_count, sizeof(struct cpuinfo_core*));
	if (linux_cpu_to_core_map == NULL) {
		cpuinfo_log_error("failed to allocate %zu bytes for %"PRIu32" core mapping entries",
			arm_linux_processors_count * sizeof(struct cpuinfo_core*), arm_linux_processors_count);
		goto cleanup;
	}

	if (uarchs_count > 1) {
		linux_cpu_to_uarch_index_map = calloc(arm_linux_processors_count, sizeof(uint32_t));
		if (linux_cpu_to_uarch_index_map == NULL) {
			cpuinfo_log_error("failed to allocate %zu bytes for %"PRIu32" uarch index mapping entries",
				arm_linux_processors_count * sizeof(uint32_t), arm_linux_processors_count);
			goto cleanup;
		}
	}

	l1i = calloc(valid_processors, sizeof(struct cpuinfo_cache));
	if (l1i == NULL) {
		cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" L1I caches",
			valid_processors * sizeof(struct cpuinfo_cache), valid_processors);
		goto cleanup;
	}

	l1d = calloc(valid_processors, sizeof(struct cpuinfo_cache));
	if (l1d == NULL) {
		cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" L1D caches",
			valid_processors * sizeof(struct cpuinfo_cache), valid_processors);
		goto cleanup;
	}

	uint32_t uarchs_index = 0;
	for (uint32_t i = 0; i < arm_linux_processors_count; i++) {
		if (bitmask_all(arm_linux_processors[i].flags, CPUINFO_LINUX_FLAG_VALID)) {
			if (uarchs_index == 0 || arm_linux_processors[i].uarch != last_uarch) {
				last_uarch = arm_linux_processors[i].uarch;
				uarchs[uarchs_index] = (struct cpuinfo_uarch_info) {
					.uarch = arm_linux_processors[i].uarch,
					.midr = arm_linux_processors[i].midr,
				};
				uarchs_index += 1;
			}
			uarchs[uarchs_index - 1].processor_count += 1;
			uarchs[uarchs_index - 1].core_count += 1;
		}
	}

	uint32_t l2_count = 0, l3_count = 0, big_l3_size = 0, cluster_id = UINT32_MAX;
	/* Indication whether L3 (if it exists) is shared between all cores */
	bool shared_l3 = true;
	/* Populate cache infromation structures in l1i, l1d */
	for (uint32_t i = 0; i < valid_processors; i++) {
		if (arm_linux_processors[i].package_leader_id == arm_linux_processors[i].system_processor_id) {
			cluster_id += 1;
			clusters[cluster_id] = (struct cpuinfo_cluster) {
				.processor_start = i,
				.processor_count = arm_linux_processors[i].package_processor_count,
				.core_start = i,
				.core_count = arm_linux_processors[i].package_processor_count,
				.cluster_id = cluster_id,
				.package = &package,
				.vendor = arm_linux_processors[i].vendor,
				.uarch = arm_linux_processors[i].uarch,
				.midr = arm_linux_processors[i].midr,
			};
		}

		processors[i].smt_id = 0;
		processors[i].core = cores + i;
		processors[i].cluster = clusters + cluster_id;
		processors[i].package = &package;
		processors[i].linux_id = (int) arm_linux_processors[i].system_processor_id;
		processors[i].cache.l1i = l1i + i;
		processors[i].cache.l1d = l1d + i;
		linux_cpu_to_processor_map[arm_linux_processors[i].system_processor_id] = &processors[i];

		cores[i].processor_start = i;
		cores[i].processor_count = 1;
		cores[i].core_id = i;
		cores[i].cluster = clusters + cluster_id;
		cores[i].package = &package;
		cores[i].vendor = arm_linux_processors[i].vendor;
		cores[i].uarch = arm_linux_processors[i].uarch;
		cores[i].midr = arm_linux_processors[i].midr;
		linux_cpu_to_core_map[arm_linux_processors[i].system_processor_id] = &cores[i];

		if (linux_cpu_to_uarch_index_map != NULL) {
			linux_cpu_to_uarch_index_map[arm_linux_processors[i].system_processor_id] =
				arm_linux_processors[i].uarch_index;
		}

		struct cpuinfo_cache temp_l2 = { 0 }, temp_l3 = { 0 };
		cpuinfo_arm_decode_cache(
			arm_linux_processors[i].uarch,
			arm_linux_processors[i].package_processor_count,
			arm_linux_processors[i].midr,
			&chipset,
			cluster_id,
			arm_linux_processors[i].architecture_version,
			&l1i[i], &l1d[i], &temp_l2, &temp_l3);
		l1i[i].processor_start = l1d[i].processor_start = i;
		l1i[i].processor_count = l1d[i].processor_count = 1;
		#if CPUINFO_ARCH_ARM
			/* L1I reported in /proc/cpuinfo overrides defaults */
			if (bitmask_all(arm_linux_processors[i].flags, CPUINFO_ARM_LINUX_VALID_ICACHE)) {
				l1i[i] = (struct cpuinfo_cache) {
					.size = arm_linux_processors[i].proc_cpuinfo_cache.i_size,
					.associativity = arm_linux_processors[i].proc_cpuinfo_cache.i_assoc,
					.sets = arm_linux_processors[i].proc_cpuinfo_cache.i_sets,
					.partitions = 1,
					.line_size = arm_linux_processors[i].proc_cpuinfo_cache.i_line_length
				};
			}
			/* L1D reported in /proc/cpuinfo overrides defaults */
			if (bitmask_all(arm_linux_processors[i].flags, CPUINFO_ARM_LINUX_VALID_DCACHE)) {
				l1d[i] = (struct cpuinfo_cache) {
					.size = arm_linux_processors[i].proc_cpuinfo_cache.d_size,
					.associativity = arm_linux_processors[i].proc_cpuinfo_cache.d_assoc,
					.sets = arm_linux_processors[i].proc_cpuinfo_cache.d_sets,
					.partitions = 1,
					.line_size = arm_linux_processors[i].proc_cpuinfo_cache.d_line_length
				};
			}
		#endif

		if (temp_l3.size != 0) {
			/*
			 * Assumptions:
			 * - L2 is private to each core
			 * - L3 is shared by cores in the same cluster
			 * - If cores in different clusters report the same L3, it is shared between all cores.
			 */
			l2_count += 1;
			if (arm_linux_processors[i].package_leader_id == arm_linux_processors[i].system_processor_id) {
				if (cluster_id == 0) {
					big_l3_size = temp_l3.size;
					l3_count = 1;
				} else if (temp_l3.size != big_l3_size) {
					/* If some cores have different L3 size, L3 is not shared between all cores */
					shared_l3 = false;
					l3_count += 1;
				}
			}
		} else {
			/* If some cores don't have L3 cache, L3 is not shared between all cores */
			shared_l3 = false;
			if (temp_l2.size != 0) {
				/* Assume L2 is shared by cores in the same cluster */
				if (arm_linux_processors[i].package_leader_id == arm_linux_processors[i].system_processor_id) {
					l2_count += 1;
				}
			}
		}
	}

	if (l2_count != 0) {
		l2 = calloc(l2_count, sizeof(struct cpuinfo_cache));
		if (l2 == NULL) {
			cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" L2 caches",
				l2_count * sizeof(struct cpuinfo_cache), l2_count);
			goto cleanup;
		}

		if (l3_count != 0) {
			l3 = calloc(l3_count, sizeof(struct cpuinfo_cache));
			if (l3 == NULL) {
				cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" L3 caches",
					l3_count * sizeof(struct cpuinfo_cache), l3_count);
				goto cleanup;
			}
		}
	}

	cluster_id = UINT32_MAX;
	uint32_t l2_index = UINT32_MAX, l3_index = UINT32_MAX;
	for (uint32_t i = 0; i < valid_processors; i++) {
		if (arm_linux_processors[i].package_leader_id == arm_linux_processors[i].system_processor_id) {
			cluster_id++;
		}

		struct cpuinfo_cache dummy_l1i, dummy_l1d, temp_l2 = { 0 }, temp_l3 = { 0 };
		cpuinfo_arm_decode_cache(
			arm_linux_processors[i].uarch,
			arm_linux_processors[i].package_processor_count,
			arm_linux_processors[i].midr,
			&chipset,
			cluster_id,
			arm_linux_processors[i].architecture_version,
			&dummy_l1i, &dummy_l1d, &temp_l2, &temp_l3);

		if (temp_l3.size != 0) {
			/*
			 * Assumptions:
			 * - L2 is private to each core
			 * - L3 is shared by cores in the same cluster
			 * - If cores in different clusters report the same L3, it is shared between all cores.
			 */
			l2_index += 1;
			l2[l2_index] = (struct cpuinfo_cache) {
				.size            = temp_l2.size,
				.associativity   = temp_l2.associativity,
				.sets            = temp_l2.sets,
				.partitions      = 1,
				.line_size       = temp_l2.line_size,
				.flags           = temp_l2.flags,
				.processor_start = i,
				.processor_count = 1,
			};
			processors[i].cache.l2 = l2 + l2_index;
			if (arm_linux_processors[i].package_leader_id == arm_linux_processors[i].system_processor_id) {
				l3_index += 1;
				if (l3_index < l3_count) {
					l3[l3_index] = (struct cpuinfo_cache) {
						.size            = temp_l3.size,
						.associativity   = temp_l3.associativity,
						.sets            = temp_l3.sets,
						.partitions      = 1,
						.line_size       = temp_l3.line_size,
						.flags           = temp_l3.flags,
						.processor_start = i,
						.processor_count =
							shared_l3 ? valid_processors : arm_linux_processors[i].package_processor_count,
					};
				}
			}
			if (shared_l3) {
				processors[i].cache.l3 = l3;
			} else if (l3_index < l3_count) {
				processors[i].cache.l3 = l3 + l3_index;
			}
		} else if (temp_l2.size != 0) {
			/* Assume L2 is shared by cores in the same cluster */
			if (arm_linux_processors[i].package_leader_id == arm_linux_processors[i].system_processor_id) {
				l2_index += 1;
				l2[l2_index] = (struct cpuinfo_cache) {
					.size            = temp_l2.size,
					.associativity   = temp_l2.associativity,
					.sets            = temp_l2.sets,
					.partitions      = 1,
					.line_size       = temp_l2.line_size,
					.flags           = temp_l2.flags,
					.processor_start = i,
					.processor_count = arm_linux_processors[i].package_processor_count,
				};
			}
			processors[i].cache.l2 = l2 + l2_index;
		}
	}

	/* Commit */
	cpuinfo_processors = processors;
	cpuinfo_cores = cores;
	cpuinfo_clusters = clusters;
	cpuinfo_packages = &package;
	cpuinfo_uarchs = uarchs;
	cpuinfo_cache[cpuinfo_cache_level_1i] = l1i;
	cpuinfo_cache[cpuinfo_cache_level_1d] = l1d;
	cpuinfo_cache[cpuinfo_cache_level_2]  = l2;
	cpuinfo_cache[cpuinfo_cache_level_3]  = l3;

	cpuinfo_processors_count = valid_processors;
	cpuinfo_cores_count = valid_processors;
	cpuinfo_clusters_count = cluster_count;
	cpuinfo_packages_count = 1;
	cpuinfo_uarchs_count = uarchs_count;
	cpuinfo_cache_count[cpuinfo_cache_level_1i] = valid_processors;
	cpuinfo_cache_count[cpuinfo_cache_level_1d] = valid_processors;
	cpuinfo_cache_count[cpuinfo_cache_level_2]  = l2_count;
	cpuinfo_cache_count[cpuinfo_cache_level_3]  = l3_count;
	cpuinfo_max_cache_size = cpuinfo_arm_compute_max_cache_size(&processors[0]);

	cpuinfo_linux_cpu_max = arm_linux_processors_count;
	cpuinfo_linux_cpu_to_processor_map = linux_cpu_to_processor_map;
	cpuinfo_linux_cpu_to_core_map = linux_cpu_to_core_map;
	cpuinfo_linux_cpu_to_uarch_index_map = linux_cpu_to_uarch_index_map;

	__sync_synchronize();

	cpuinfo_is_initialized = true;

	processors = NULL;
	cores = NULL;
	clusters = NULL;
	uarchs = NULL;
	l1i = l1d = l2 = l3 = NULL;
	linux_cpu_to_processor_map = NULL;
	linux_cpu_to_core_map = NULL;
	linux_cpu_to_uarch_index_map = NULL;

cleanup:
	free(arm_linux_processors);
	free(processors);
	free(cores);
	free(clusters);
	free(uarchs);
	free(l1i);
	free(l1d);
	free(l2);
	free(l3);
	free(linux_cpu_to_processor_map);
	free(linux_cpu_to_core_map);
	free(linux_cpu_to_uarch_index_map);
}