aboutsummaryrefslogtreecommitdiff
path: root/src/rolling_hash_test.cc
blob: 685f7dd3b7bae90167c1062dc00b4240fbc4a477 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
// Copyright 2007 Google Inc.
// Authors: Jeff Dean, Lincoln Smith
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <config.h>
#include "rolling_hash.h"
#include <stdint.h>  // uint32_t
#include <stdlib.h>  // rand, srand
#include <vector>
#include "testing.h"

namespace open_vcdiff {
namespace {

static const uint32_t kBase = RollingHashUtil::kBase;

class RollingHashSimpleTest : public testing::Test {
 protected:
  RollingHashSimpleTest() { }
  virtual ~RollingHashSimpleTest() { }

  void TestModBase(uint32_t operand) {
    EXPECT_EQ(operand % kBase, RollingHashUtil::ModBase(operand));
    EXPECT_EQ(static_cast<uint32_t>((-static_cast<int32_t>(operand)) % kBase),
              RollingHashUtil::FindModBaseInverse(operand));
    EXPECT_EQ(0U, RollingHashUtil::ModBase(
        operand + RollingHashUtil::FindModBaseInverse(operand)));
  }

  void TestHashFirstTwoBytes(char first_value, char second_value) {
    char buf[2];
    buf[0] = first_value;
    buf[1] = second_value;
    EXPECT_EQ(RollingHashUtil::HashFirstTwoBytes(buf),
              RollingHashUtil::HashStep(RollingHashUtil::HashStep(0,
                                                                  first_value),
                                        second_value));
    EXPECT_EQ(RollingHashUtil::HashFirstTwoBytes(buf),
              RollingHashUtil::HashStep(static_cast<unsigned char>(first_value),
                                        second_value));
  }
};

#ifdef GTEST_HAS_DEATH_TEST
typedef RollingHashSimpleTest RollingHashDeathTest;
#endif  // GTEST_HAS_DEATH_TEST

TEST_F(RollingHashSimpleTest, KBaseIsAPowerOfTwo) {
  EXPECT_EQ(0U, kBase & (kBase - 1));
}

TEST_F(RollingHashSimpleTest, TestModBaseForValues) {
  TestModBase(0);
  TestModBase(10);
  TestModBase(static_cast<uint32_t>(-10));
  TestModBase(kBase - 1);
  TestModBase(kBase);
  TestModBase(kBase + 1);
  TestModBase(0x7FFFFFFF);
  TestModBase(0x80000000);
  TestModBase(0xFFFFFFFE);
  TestModBase(0xFFFFFFFF);
}

TEST_F(RollingHashSimpleTest, VerifyHashFirstTwoBytes) {
  TestHashFirstTwoBytes(0x00, 0x00);
  TestHashFirstTwoBytes(0x00, 0xFF);
  TestHashFirstTwoBytes(0xFF, 0x00);
  TestHashFirstTwoBytes(0xFF, 0xFF);
  TestHashFirstTwoBytes(0x00, 0x80);
  TestHashFirstTwoBytes(0x7F, 0xFF);
  TestHashFirstTwoBytes(0x7F, 0x80);
  TestHashFirstTwoBytes(0x01, 0x8F);
}

#ifdef GTEST_HAS_DEATH_TEST
TEST_F(RollingHashDeathTest, InstantiateRollingHashWithoutCallingInit) {
  EXPECT_DEBUG_DEATH(RollingHash<16> bad_hash, "Init");
}
#endif  // GTEST_HAS_DEATH_TEST

class RollingHashTest : public testing::Test {
 public:
  static const int kUpdateHashBlocks = 1000;
  static const int kLargestBlockSize = 128;

  static void MakeRandomBuffer(char* buffer, int buffer_size) {
    for (int i = 0; i < buffer_size; ++i) {
      buffer[i] = PortableRandomInRange<unsigned char>(0xFF);
    }
  }

  template<int kBlockSize> static void BM_DefaultHash(int iterations,
                                                      const char *buffer) {
    RollingHash<kBlockSize> hasher;
    static uint32_t result_array[kUpdateHashBlocks];
    for (int iter = 0; iter < iterations; ++iter) {
      for (int i = 0; i < kUpdateHashBlocks; ++i) {
        result_array[i] = hasher.Hash(&buffer[i]);
      }
    }
  }

  template<int kBlockSize> static void BM_UpdateHash(int iterations,
                                                     const char *buffer) {
    RollingHash<kBlockSize> hasher;
    static uint32_t result_array[kUpdateHashBlocks];
    for (int iter = 0; iter < iterations; ++iter) {
      uint32_t running_hash = hasher.Hash(buffer);
      for (int i = 0; i < kUpdateHashBlocks; ++i) {
        running_hash = hasher.UpdateHash(running_hash,
                                         buffer[i],
                                         buffer[i + kBlockSize]);
        result_array[i] = running_hash;
      }
    }
  }

 protected:
  static const int kUpdateHashTestIterations = 400;
  static const int kTimingTestSize = 1 << 14;  // 16K iterations

  RollingHashTest() { }
  virtual ~RollingHashTest() { }

  template<int kBlockSize> void UpdateHashMatchesHashForBlockSize() {
    RollingHash<kBlockSize>::Init();
    RollingHash<kBlockSize> hasher;
    for (int x = 0; x < kUpdateHashTestIterations; ++x) {
      int random_buffer_size =
          PortableRandomInRange(kUpdateHashBlocks - 1) + kBlockSize;
      MakeRandomBuffer(buffer_, random_buffer_size);
      uint32_t running_hash = hasher.Hash(buffer_);
      for (int i = kBlockSize; i < random_buffer_size; ++i) {
        // UpdateHash() calculates the hash value incrementally.
        running_hash = hasher.UpdateHash(running_hash,
                                         buffer_[i - kBlockSize],
                                         buffer_[i]);
        // Hash() calculates the hash value from scratch.  Verify that both
        // methods return the same hash value.
        EXPECT_EQ(running_hash, hasher.Hash(&buffer_[i + 1 - kBlockSize]));
      }
    }
  }

  template<int kBlockSize> double DefaultHashTimingTest() {
    // Execution time is expected to be O(kBlockSize) per hash operation,
    // so scale the number of iterations accordingly
    const int kTimingTestIterations = kTimingTestSize / kBlockSize;
    CycleTimer timer;
    timer.Start();
    BM_DefaultHash<kBlockSize>(kTimingTestIterations, buffer_);
    timer.Stop();
    return static_cast<double>(timer.GetInUsec())
        / (kTimingTestIterations * kUpdateHashBlocks);
  }

  template<int kBlockSize> double RollingTimingTest() {
    // Execution time is expected to be O(1) per hash operation,
    // so leave the number of iterations constant
    const int kTimingTestIterations = kTimingTestSize;
    CycleTimer timer;
    timer.Start();
    BM_UpdateHash<kBlockSize>(kTimingTestIterations, buffer_);
    timer.Stop();
    return static_cast<double>(timer.GetInUsec())
        / (kTimingTestIterations * kUpdateHashBlocks);
  }

  double FindPercentage(double original, double modified) {
    if (original < 0.0001) {
      return 0.0;
    } else {
      return ((modified - original) / original) * 100.0;
    }
  }

  template<int kBlockSize> void RunTimingTestForBlockSize() {
    RollingHash<kBlockSize>::Init();
    MakeRandomBuffer(buffer_, sizeof(buffer_));
    const double time_for_default_hash = DefaultHashTimingTest<kBlockSize>();
    const double time_for_rolling_hash = RollingTimingTest<kBlockSize>();
    printf("%d\t%f\t%f (%f%%)\n",
           kBlockSize,
           time_for_default_hash,
           time_for_rolling_hash,
           FindPercentage(time_for_default_hash, time_for_rolling_hash));
    CHECK_GT(time_for_default_hash, 0.0);
    CHECK_GT(time_for_rolling_hash, 0.0);
    if (kBlockSize > 16) {
      EXPECT_GT(time_for_default_hash, time_for_rolling_hash);
    }
  }

  char buffer_[kUpdateHashBlocks + kLargestBlockSize];
};

TEST_F(RollingHashTest, UpdateHashMatchesHashFromScratch) {
  srand(1);  // test should be deterministic, including calls to rand()
  UpdateHashMatchesHashForBlockSize<4>();
  UpdateHashMatchesHashForBlockSize<8>();
  UpdateHashMatchesHashForBlockSize<16>();
  UpdateHashMatchesHashForBlockSize<32>();
  UpdateHashMatchesHashForBlockSize<64>();
  UpdateHashMatchesHashForBlockSize<128>();
}

TEST_F(RollingHashTest, TimingTests) {
  srand(1);  // test should be deterministic, including calls to rand()
  printf("BlkSize\tHash (us)\tUpdateHash (us)\n");
  RunTimingTestForBlockSize<4>();
  RunTimingTestForBlockSize<8>();
  RunTimingTestForBlockSize<16>();
  RunTimingTestForBlockSize<32>();
  RunTimingTestForBlockSize<64>();
  RunTimingTestForBlockSize<128>();
}

}  // anonymous namespace
}  // namespace open_vcdiff