aboutsummaryrefslogtreecommitdiff
path: root/examples/circle_fit.cc
blob: 0763806e5eb8a8191004cc2981289cc1b73021f3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: keir@google.com (Keir Mierle)
//
// This fits circles to a collection of points, where the error is related to
// the distance of a point from the circle. This uses auto-differentiation to
// take the derivatives.
//
// The input format is simple text. Feed on standard in:
//
//   x_initial y_initial r_initial
//   x1 y1
//   x2 y2
//   y3 y3
//   ...
//
// And the result after solving will be printed to stdout:
//
//   x y r
//
// There are closed form solutions [1] to this problem which you may want to
// consider instead of using this one. If you already have a decent guess, Ceres
// can squeeze down the last bit of error.
//
//   [1] http://www.mathworks.com/matlabcentral/fileexchange/5557-circle-fit/content/circfit.m

#include <cstdio>
#include <vector>

#include "ceres/ceres.h"
#include "gflags/gflags.h"
#include "glog/logging.h"

using ceres::AutoDiffCostFunction;
using ceres::CauchyLoss;
using ceres::CostFunction;
using ceres::LossFunction;
using ceres::Problem;
using ceres::Solve;
using ceres::Solver;

DEFINE_double(robust_threshold, 0.0, "Robust loss parameter. Set to 0 for "
              "normal squared error (no robustification).");

// The cost for a single sample. The returned residual is related to the
// distance of the point from the circle (passed in as x, y, m parameters).
//
// Note that the radius is parameterized as r = m^2 to constrain the radius to
// positive values.
class DistanceFromCircleCost {
 public:
  DistanceFromCircleCost(double xx, double yy) : xx_(xx), yy_(yy) {}
  template <typename T> bool operator()(const T* const x,
                                        const T* const y,
                                        const T* const m,  // r = m^2
                                        T* residual) const {
    // Since the radius is parameterized as m^2, unpack m to get r.
    T r = *m * *m;

    // Get the position of the sample in the circle's coordinate system.
    T xp = xx_ - *x;
    T yp = yy_ - *y;

    // It is tempting to use the following cost:
    //
    //   residual[0] = r - sqrt(xp*xp + yp*yp);
    //
    // which is the distance of the sample from the circle. This works
    // reasonably well, but the sqrt() adds strong nonlinearities to the cost
    // function. Instead, a different cost is used, which while not strictly a
    // distance in the metric sense (it has units distance^2) it produces more
    // robust fits when there are outliers. This is because the cost surface is
    // more convex.
    residual[0] = r*r - xp*xp - yp*yp;
    return true;
  }

 private:
  // The measured x,y coordinate that should be on the circle.
  double xx_, yy_;
};

int main(int argc, char** argv) {
  google::ParseCommandLineFlags(&argc, &argv, true);
  google::InitGoogleLogging(argv[0]);

  double x, y, r;
  if (scanf("%lg %lg %lg", &x, &y, &r) != 3) {
    fprintf(stderr, "Couldn't read first line.\n");
    return 1;
  }
  fprintf(stderr, "Got x, y, r %lg, %lg, %lg\n", x, y, r);

  // Save initial values for comparison.
  double initial_x = x;
  double initial_y = y;
  double initial_r = r;

  // Parameterize r as m^2 so that it can't be negative.
  double m = sqrt(r);

  Problem problem;

  // Configure the loss function.
  LossFunction* loss = NULL;
  if (FLAGS_robust_threshold) {
    loss = new CauchyLoss(FLAGS_robust_threshold);
  }

  // Add the residuals.
  double xx, yy;
  int num_points = 0;
  while (scanf("%lf %lf\n", &xx, &yy) == 2) {
    CostFunction *cost =
        new AutoDiffCostFunction<DistanceFromCircleCost, 1, 1, 1, 1>(
            new DistanceFromCircleCost(xx, yy));
    problem.AddResidualBlock(cost, loss, &x, &y, &m);
    num_points++;
  }

  std::cout << "Got " << num_points << " points.\n";

  // Build and solve the problem.
  Solver::Options options;
  options.max_num_iterations = 500;
  options.linear_solver_type = ceres::DENSE_QR;
  Solver::Summary summary;
  Solve(options, &problem, &summary);

  // Recover r from m.
  r = m * m;

  std::cout << summary.BriefReport() << "\n";
  std::cout << "x : " << initial_x << " -> " << x << "\n";
  std::cout << "y : " << initial_y << " -> " << y << "\n";
  std::cout << "r : " << initial_r << " -> " << r << "\n";
  return 0;
}