summaryrefslogtreecommitdiff
path: root/projects/SelfTest/UsageTests/Generators.tests.cpp
blob: 0e39bd5cbfce337ead5e17e7604e1ceb7297a069 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
#include "catch.hpp"

#include <cstring>


// Generators and sections can be nested freely
TEST_CASE("Generators -- simple", "[generators]") {
    auto i = GENERATE(1, 2, 3);
    SECTION("one") {
        auto j = GENERATE(values({ -3, -2, -1 }));
        REQUIRE(j < i);
    }

    SECTION("two") {
        // You can also explicitly set type for generators via Catch::Generators::as
        auto str = GENERATE(as<std::string>{}, "a", "bb", "ccc");
        REQUIRE(4u * i > str.size());
    }
}

// You can create a cartesian-product of generators by creating multiple ones
TEST_CASE("3x3x3 ints", "[generators]") {
    auto x = GENERATE(1, 2, 3);
    auto y = GENERATE(4, 5, 6);
    auto z = GENERATE(7, 8, 9);
    // These assertions will be run 27 times (3x3x3)
    CHECK(x < y);
    CHECK(y < z);
    REQUIRE(x < z);
}

// You can also create data tuples
TEST_CASE("tables", "[generators]") {
    // Note that this will not compile with libstdc++ older than libstdc++6
    // See https://stackoverflow.com/questions/12436586/tuple-vector-and-initializer-list
    // for possible workarounds
    //    auto data = GENERATE(table<char const*, int>({
    //        {"first", 5},
    //        {"second", 6},
    //        {"third", 5},
    //        {"etc...", 6}
    //    }));

    // Workaround for the libstdc++ bug mentioned above
    using tuple_type = std::tuple<char const*, int>;
    auto data = GENERATE(table<char const*, int>({
        tuple_type{"first", 5},
        tuple_type{"second", 6},
        tuple_type{"third", 5},
        tuple_type{"etc...", 6}
    }));

    REQUIRE(strlen(std::get<0>(data)) == static_cast<size_t>(std::get<1>(data)));
}


#ifdef __cpp_structured_bindings

// Structured bindings make the table utility much nicer to use
TEST_CASE( "strlen2", "[approvals][generators]" ) {
    auto [test_input, expected] = GENERATE( table<std::string, size_t>({
            {"one", 3},
            {"two", 3},
            {"three", 5},
            {"four", 4}
        }));

    REQUIRE( test_input.size() == expected );
}
#endif


// An alternate way of doing data tables without structured bindings
struct Data { std::string str; size_t len; };

TEST_CASE( "strlen3", "[generators]" ) {
    auto data = GENERATE( values<Data>({
            {"one", 3},
            {"two", 3},
            {"three", 5},
            {"four", 4}
        }));

    REQUIRE( data.str.size() == data.len );
}



#ifdef __cpp_structured_bindings

// Based on example from https://docs.cucumber.io/gherkin/reference/#scenario-outline
// (thanks to https://github.com/catchorg/Catch2/issues/850#issuecomment-399504851)

// Note that GIVEN, WHEN, and THEN now forward onto DYNAMIC_SECTION instead of SECTION.
// DYNAMIC_SECTION takes its name as a stringstream-style expression, so can be formatted using
// variables in scope - such as the generated variables here. This reads quite nicely in the
// test name output (the full scenario description).

static auto eatCucumbers( int start, int eat ) -> int { return start-eat; }

SCENARIO("Eating cucumbers", "[generators][approvals]") {

    auto [start, eat, left] = GENERATE( table<int,int,int> ({
            { 12, 5, 7 },
            { 20, 5, 15 }
        }));

    GIVEN( "there are " << start << " cucumbers" )
    WHEN( "I eat " << eat << " cucumbers" )
    THEN( "I should have " << left << " cucumbers" ) {
        REQUIRE( eatCucumbers( start, eat ) == left );
    }
}
#endif

// There are also some generic generator manipulators
TEST_CASE("Generators -- adapters", "[generators][generic]") {
    // TODO: This won't work yet, introduce GENERATE_VAR?
    //auto numbers = Catch::Generators::values({ 1, 2, 3, 4, 5, 6 });
    SECTION("Filtering by predicate") {
        SECTION("Basic usage") {
            // This filters out all odd (false) numbers, giving [2, 4, 6]
            auto i = GENERATE(filter([] (int val) { return val % 2 == 0; }, values({ 1, 2, 3, 4, 5, 6 })));
            REQUIRE(i % 2 == 0);
        }
        SECTION("Throws if there are no matching values") {
            using namespace Catch::Generators;
            REQUIRE_THROWS_AS(filter([] (int) {return false; }, value(1)), Catch::GeneratorException);
        }
    }
    SECTION("Shortening a range") {
        // This takes the first 3 elements from the values, giving back [1, 2, 3]
        auto i = GENERATE(take(3, values({ 1, 2, 3, 4, 5, 6 })));
        REQUIRE(i < 4);
    }
    SECTION("Transforming elements") {
        SECTION("Same type") {
            // This doubles values [1, 2, 3] into [2, 4, 6]
            auto i = GENERATE(map([] (int val) { return val * 2; }, values({ 1, 2, 3 })));
            REQUIRE(i % 2 == 0);
        }
        SECTION("Different type") {
            // This takes a generator that returns ints and maps them into strings
            auto i = GENERATE(map<std::string>([] (int val) { return std::to_string(val); }, values({ 1, 2, 3 })));
            REQUIRE(i.size() == 1);
        }
        SECTION("Different deduced type") {
            // This takes a generator that returns ints and maps them into strings
            auto i = GENERATE(map([] (int val) { return std::to_string(val); }, values({ 1, 2, 3 })));
            REQUIRE(i.size() == 1);
        }
    }
    SECTION("Repeating a generator") {
        // This will return values [1, 2, 3, 1, 2, 3]
        auto j = GENERATE(repeat(2, values({ 1, 2, 3 })));
        REQUIRE(j > 0);
    }
    SECTION("Chunking a generator into sized pieces") {
        SECTION("Number of elements in source is divisible by chunk size") {
            auto chunk2 = GENERATE(chunk(2, values({ 1, 1, 2, 2, 3, 3 })));
            REQUIRE(chunk2.size() == 2);
            REQUIRE(chunk2.front() == chunk2.back());
        }
        SECTION("Number of elements in source is not divisible by chunk size") {
            auto chunk2 = GENERATE(chunk(2, values({ 1, 1, 2, 2, 3 })));
            REQUIRE(chunk2.size() == 2);
            REQUIRE(chunk2.front() == chunk2.back());
            REQUIRE(chunk2.front() < 3);
        }
        SECTION("Chunk size of zero") {
            auto chunk2 = GENERATE(take(3, chunk(0, value(1))));
            REQUIRE(chunk2.size() == 0);
        }
        SECTION("Throws on too small generators") {
            using namespace Catch::Generators;
            REQUIRE_THROWS_AS(chunk(2, value(1)), Catch::GeneratorException);
        }
    }
}

// Note that because of the non-reproducibility of distributions,
// anything involving the random generators cannot be part of approvals
TEST_CASE("Random generator", "[generators][approvals]") {
    SECTION("Infer int from integral arguments") {
        auto val = GENERATE(take(4, random(0, 1)));
        STATIC_REQUIRE(std::is_same<decltype(val), int>::value);
        REQUIRE(0 <= val);
        REQUIRE(val <= 1);
    }
    SECTION("Infer double from double arguments") {
        auto val = GENERATE(take(4, random(0., 1.)));
        STATIC_REQUIRE(std::is_same<decltype(val), double>::value);
        REQUIRE(0. <= val);
        REQUIRE(val < 1);
    }
}


TEST_CASE("Nested generators and captured variables", "[generators]") {
    // Workaround for old libstdc++
    using record = std::tuple<int, int>;
    // Set up 3 ranges to generate numbers from
    auto extent = GENERATE(table<int, int>({
        record{3, 7},
        record{-5, -3},
        record{90, 100}
    }));

    auto from = std::get<0>(extent);
    auto to = std::get<1>(extent);

    auto values = GENERATE_COPY(range(from, to));
    REQUIRE(values > -6);
}

namespace {
    size_t call_count = 0;
    size_t test_count = 0;
    std::vector<int> make_data() {
        return { 1, 3, 5, 7, 9, 11 };
    }
    std::vector<int> make_data_counted() {
        ++call_count;
        return make_data();
    }
}

#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wexit-time-destructors"
#endif

TEST_CASE("Copy and then generate a range", "[generators]") {
    SECTION("from var and iterators") {
        static auto data = make_data();

        // It is important to notice that a generator is only initialized
        // **once** per run. What this means is that modifying data will not
        // modify the underlying generator.
        auto elem = GENERATE_REF(from_range(data.begin(), data.end()));
        REQUIRE(elem % 2 == 1);
    }
    SECTION("From a temporary container") {
        auto elem = GENERATE(from_range(make_data_counted()));
        ++test_count;
        REQUIRE(elem % 2 == 1);
    }
    SECTION("Final validation") {
        REQUIRE(call_count == 1);
        REQUIRE(make_data().size() == test_count);
    }
}

#if defined(__clang__)
#pragma clang diagnostic pop
#endif