summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/stat/correlation/KendallsCorrelation.java
blob: d38cf7129637f51792fa36fbbcf1695d8665c651 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.stat.correlation;

import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.linear.BlockRealMatrix;
import org.apache.commons.math3.linear.MatrixUtils;
import org.apache.commons.math3.linear.RealMatrix;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.Pair;

import java.util.Arrays;
import java.util.Comparator;

/**
 * Implementation of Kendall's Tau-b rank correlation</a>.
 * <p>
 * A pair of observations (x<sub>1</sub>, y<sub>1</sub>) and
 * (x<sub>2</sub>, y<sub>2</sub>) are considered <i>concordant</i> if
 * x<sub>1</sub> &lt; x<sub>2</sub> and y<sub>1</sub> &lt; y<sub>2</sub>
 * or x<sub>2</sub> &lt; x<sub>1</sub> and y<sub>2</sub> &lt; y<sub>1</sub>.
 * The pair is <i>discordant</i> if x<sub>1</sub> &lt; x<sub>2</sub> and
 * y<sub>2</sub> &lt; y<sub>1</sub> or x<sub>2</sub> &lt; x<sub>1</sub> and
 * y<sub>1</sub> &lt; y<sub>2</sub>.  If either x<sub>1</sub> = x<sub>2</sub>
 * or y<sub>1</sub> = y<sub>2</sub>, the pair is neither concordant nor
 * discordant.
 * <p>
 * Kendall's Tau-b is defined as:
 * <pre>
 * tau<sub>b</sub> = (n<sub>c</sub> - n<sub>d</sub>) / sqrt((n<sub>0</sub> - n<sub>1</sub>) * (n<sub>0</sub> - n<sub>2</sub>))
 * </pre>
 * <p>
 * where:
 * <ul>
 *     <li>n<sub>0</sub> = n * (n - 1) / 2</li>
 *     <li>n<sub>c</sub> = Number of concordant pairs</li>
 *     <li>n<sub>d</sub> = Number of discordant pairs</li>
 *     <li>n<sub>1</sub> = sum of t<sub>i</sub> * (t<sub>i</sub> - 1) / 2 for all i</li>
 *     <li>n<sub>2</sub> = sum of u<sub>j</sub> * (u<sub>j</sub> - 1) / 2 for all j</li>
 *     <li>t<sub>i</sub> = Number of tied values in the i<sup>th</sup> group of ties in x</li>
 *     <li>u<sub>j</sub> = Number of tied values in the j<sup>th</sup> group of ties in y</li>
 * </ul>
 * <p>
 * This implementation uses the O(n log n) algorithm described in
 * William R. Knight's 1966 paper "A Computer Method for Calculating
 * Kendall's Tau with Ungrouped Data" in the Journal of the American
 * Statistical Association.
 *
 * @see <a href="http://en.wikipedia.org/wiki/Kendall_tau_rank_correlation_coefficient">
 * Kendall tau rank correlation coefficient (Wikipedia)</a>
 * @see <a href="http://www.jstor.org/stable/2282833">A Computer
 * Method for Calculating Kendall's Tau with Ungrouped Data</a>
 *
 * @since 3.3
 */
public class KendallsCorrelation {

    /** correlation matrix */
    private final RealMatrix correlationMatrix;

    /**
     * Create a KendallsCorrelation instance without data.
     */
    public KendallsCorrelation() {
        correlationMatrix = null;
    }

    /**
     * Create a KendallsCorrelation from a rectangular array
     * whose columns represent values of variables to be correlated.
     *
     * @param data rectangular array with columns representing variables
     * @throws IllegalArgumentException if the input data array is not
     * rectangular with at least two rows and two columns.
     */
    public KendallsCorrelation(double[][] data) {
        this(MatrixUtils.createRealMatrix(data));
    }

    /**
     * Create a KendallsCorrelation from a RealMatrix whose columns
     * represent variables to be correlated.
     *
     * @param matrix matrix with columns representing variables to correlate
     */
    public KendallsCorrelation(RealMatrix matrix) {
        correlationMatrix = computeCorrelationMatrix(matrix);
    }

    /**
     * Returns the correlation matrix.
     *
     * @return correlation matrix
     */
    public RealMatrix getCorrelationMatrix() {
        return correlationMatrix;
    }

    /**
     * Computes the Kendall's Tau rank correlation matrix for the columns of
     * the input matrix.
     *
     * @param matrix matrix with columns representing variables to correlate
     * @return correlation matrix
     */
    public RealMatrix computeCorrelationMatrix(final RealMatrix matrix) {
        int nVars = matrix.getColumnDimension();
        RealMatrix outMatrix = new BlockRealMatrix(nVars, nVars);
        for (int i = 0; i < nVars; i++) {
            for (int j = 0; j < i; j++) {
                double corr = correlation(matrix.getColumn(i), matrix.getColumn(j));
                outMatrix.setEntry(i, j, corr);
                outMatrix.setEntry(j, i, corr);
            }
            outMatrix.setEntry(i, i, 1d);
        }
        return outMatrix;
    }

    /**
     * Computes the Kendall's Tau rank correlation matrix for the columns of
     * the input rectangular array.  The columns of the array represent values
     * of variables to be correlated.
     *
     * @param matrix matrix with columns representing variables to correlate
     * @return correlation matrix
     */
    public RealMatrix computeCorrelationMatrix(final double[][] matrix) {
       return computeCorrelationMatrix(new BlockRealMatrix(matrix));
    }

    /**
     * Computes the Kendall's Tau rank correlation coefficient between the two arrays.
     *
     * @param xArray first data array
     * @param yArray second data array
     * @return Returns Kendall's Tau rank correlation coefficient for the two arrays
     * @throws DimensionMismatchException if the arrays lengths do not match
     */
    public double correlation(final double[] xArray, final double[] yArray)
            throws DimensionMismatchException {

        if (xArray.length != yArray.length) {
            throw new DimensionMismatchException(xArray.length, yArray.length);
        }

        final int n = xArray.length;
        final long numPairs = sum(n - 1);

        @SuppressWarnings("unchecked")
        Pair<Double, Double>[] pairs = new Pair[n];
        for (int i = 0; i < n; i++) {
            pairs[i] = new Pair<Double, Double>(xArray[i], yArray[i]);
        }

        Arrays.sort(pairs, new Comparator<Pair<Double, Double>>() {
            /** {@inheritDoc} */
            public int compare(Pair<Double, Double> pair1, Pair<Double, Double> pair2) {
                int compareFirst = pair1.getFirst().compareTo(pair2.getFirst());
                return compareFirst != 0 ? compareFirst : pair1.getSecond().compareTo(pair2.getSecond());
            }
        });

        long tiedXPairs = 0;
        long tiedXYPairs = 0;
        long consecutiveXTies = 1;
        long consecutiveXYTies = 1;
        Pair<Double, Double> prev = pairs[0];
        for (int i = 1; i < n; i++) {
            final Pair<Double, Double> curr = pairs[i];
            if (curr.getFirst().equals(prev.getFirst())) {
                consecutiveXTies++;
                if (curr.getSecond().equals(prev.getSecond())) {
                    consecutiveXYTies++;
                } else {
                    tiedXYPairs += sum(consecutiveXYTies - 1);
                    consecutiveXYTies = 1;
                }
            } else {
                tiedXPairs += sum(consecutiveXTies - 1);
                consecutiveXTies = 1;
                tiedXYPairs += sum(consecutiveXYTies - 1);
                consecutiveXYTies = 1;
            }
            prev = curr;
        }
        tiedXPairs += sum(consecutiveXTies - 1);
        tiedXYPairs += sum(consecutiveXYTies - 1);

        long swaps = 0;
        @SuppressWarnings("unchecked")
        Pair<Double, Double>[] pairsDestination = new Pair[n];
        for (int segmentSize = 1; segmentSize < n; segmentSize <<= 1) {
            for (int offset = 0; offset < n; offset += 2 * segmentSize) {
                int i = offset;
                final int iEnd = FastMath.min(i + segmentSize, n);
                int j = iEnd;
                final int jEnd = FastMath.min(j + segmentSize, n);

                int copyLocation = offset;
                while (i < iEnd || j < jEnd) {
                    if (i < iEnd) {
                        if (j < jEnd) {
                            if (pairs[i].getSecond().compareTo(pairs[j].getSecond()) <= 0) {
                                pairsDestination[copyLocation] = pairs[i];
                                i++;
                            } else {
                                pairsDestination[copyLocation] = pairs[j];
                                j++;
                                swaps += iEnd - i;
                            }
                        } else {
                            pairsDestination[copyLocation] = pairs[i];
                            i++;
                        }
                    } else {
                        pairsDestination[copyLocation] = pairs[j];
                        j++;
                    }
                    copyLocation++;
                }
            }
            final Pair<Double, Double>[] pairsTemp = pairs;
            pairs = pairsDestination;
            pairsDestination = pairsTemp;
        }

        long tiedYPairs = 0;
        long consecutiveYTies = 1;
        prev = pairs[0];
        for (int i = 1; i < n; i++) {
            final Pair<Double, Double> curr = pairs[i];
            if (curr.getSecond().equals(prev.getSecond())) {
                consecutiveYTies++;
            } else {
                tiedYPairs += sum(consecutiveYTies - 1);
                consecutiveYTies = 1;
            }
            prev = curr;
        }
        tiedYPairs += sum(consecutiveYTies - 1);

        final long concordantMinusDiscordant = numPairs - tiedXPairs - tiedYPairs + tiedXYPairs - 2 * swaps;
        final double nonTiedPairsMultiplied = (numPairs - tiedXPairs) * (double) (numPairs - tiedYPairs);
        return concordantMinusDiscordant / FastMath.sqrt(nonTiedPairsMultiplied);
    }

    /**
     * Returns the sum of the number from 1 .. n according to Gauss' summation formula:
     * \[ \sum\limits_{k=1}^n k = \frac{n(n + 1)}{2} \]
     *
     * @param n the summation end
     * @return the sum of the number from 1 to n
     */
    private static long sum(long n) {
        return n * (n + 1) / 2l;
    }
}