summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/ode/nonstiff/AdamsBashforthFieldIntegrator.java
blob: bec334377cdfcfe1e08d9231f30445a636c49c58 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ode.nonstiff;

import org.apache.commons.math3.Field;
import org.apache.commons.math3.RealFieldElement;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MaxCountExceededException;
import org.apache.commons.math3.exception.NoBracketingException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.linear.Array2DRowFieldMatrix;
import org.apache.commons.math3.linear.FieldMatrix;
import org.apache.commons.math3.ode.FieldExpandableODE;
import org.apache.commons.math3.ode.FieldODEState;
import org.apache.commons.math3.ode.FieldODEStateAndDerivative;
import org.apache.commons.math3.util.MathArrays;


/**
 * This class implements explicit Adams-Bashforth integrators for Ordinary
 * Differential Equations.
 *
 * <p>Adams-Bashforth methods (in fact due to Adams alone) are explicit
 * multistep ODE solvers. This implementation is a variation of the classical
 * one: it uses adaptive stepsize to implement error control, whereas
 * classical implementations are fixed step size. The value of state vector
 * at step n+1 is a simple combination of the value at step n and of the
 * derivatives at steps n, n-1, n-2 ... Depending on the number k of previous
 * steps one wants to use for computing the next value, different formulas
 * are available:</p>
 * <ul>
 *   <li>k = 1: y<sub>n+1</sub> = y<sub>n</sub> + h y'<sub>n</sub></li>
 *   <li>k = 2: y<sub>n+1</sub> = y<sub>n</sub> + h (3y'<sub>n</sub>-y'<sub>n-1</sub>)/2</li>
 *   <li>k = 3: y<sub>n+1</sub> = y<sub>n</sub> + h (23y'<sub>n</sub>-16y'<sub>n-1</sub>+5y'<sub>n-2</sub>)/12</li>
 *   <li>k = 4: y<sub>n+1</sub> = y<sub>n</sub> + h (55y'<sub>n</sub>-59y'<sub>n-1</sub>+37y'<sub>n-2</sub>-9y'<sub>n-3</sub>)/24</li>
 *   <li>...</li>
 * </ul>
 *
 * <p>A k-steps Adams-Bashforth method is of order k.</p>
 *
 * <h3>Implementation details</h3>
 *
 * <p>We define scaled derivatives s<sub>i</sub>(n) at step n as:
 * <pre>
 * s<sub>1</sub>(n) = h y'<sub>n</sub> for first derivative
 * s<sub>2</sub>(n) = h<sup>2</sup>/2 y''<sub>n</sub> for second derivative
 * s<sub>3</sub>(n) = h<sup>3</sup>/6 y'''<sub>n</sub> for third derivative
 * ...
 * s<sub>k</sub>(n) = h<sup>k</sup>/k! y<sup>(k)</sup><sub>n</sub> for k<sup>th</sup> derivative
 * </pre></p>
 *
 * <p>The definitions above use the classical representation with several previous first
 * derivatives. Lets define
 * <pre>
 *   q<sub>n</sub> = [ s<sub>1</sub>(n-1) s<sub>1</sub>(n-2) ... s<sub>1</sub>(n-(k-1)) ]<sup>T</sup>
 * </pre>
 * (we omit the k index in the notation for clarity). With these definitions,
 * Adams-Bashforth methods can be written:
 * <ul>
 *   <li>k = 1: y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n)</li>
 *   <li>k = 2: y<sub>n+1</sub> = y<sub>n</sub> + 3/2 s<sub>1</sub>(n) + [ -1/2 ] q<sub>n</sub></li>
 *   <li>k = 3: y<sub>n+1</sub> = y<sub>n</sub> + 23/12 s<sub>1</sub>(n) + [ -16/12 5/12 ] q<sub>n</sub></li>
 *   <li>k = 4: y<sub>n+1</sub> = y<sub>n</sub> + 55/24 s<sub>1</sub>(n) + [ -59/24 37/24 -9/24 ] q<sub>n</sub></li>
 *   <li>...</li>
 * </ul></p>
 *
 * <p>Instead of using the classical representation with first derivatives only (y<sub>n</sub>,
 * s<sub>1</sub>(n) and q<sub>n</sub>), our implementation uses the Nordsieck vector with
 * higher degrees scaled derivatives all taken at the same step (y<sub>n</sub>, s<sub>1</sub>(n)
 * and r<sub>n</sub>) where r<sub>n</sub> is defined as:
 * <pre>
 * r<sub>n</sub> = [ s<sub>2</sub>(n), s<sub>3</sub>(n) ... s<sub>k</sub>(n) ]<sup>T</sup>
 * </pre>
 * (here again we omit the k index in the notation for clarity)
 * </p>
 *
 * <p>Taylor series formulas show that for any index offset i, s<sub>1</sub>(n-i) can be
 * computed from s<sub>1</sub>(n), s<sub>2</sub>(n) ... s<sub>k</sub>(n), the formula being exact
 * for degree k polynomials.
 * <pre>
 * s<sub>1</sub>(n-i) = s<sub>1</sub>(n) + &sum;<sub>j&gt;0</sub> (j+1) (-i)<sup>j</sup> s<sub>j+1</sub>(n)
 * </pre>
 * The previous formula can be used with several values for i to compute the transform between
 * classical representation and Nordsieck vector. The transform between r<sub>n</sub>
 * and q<sub>n</sub> resulting from the Taylor series formulas above is:
 * <pre>
 * q<sub>n</sub> = s<sub>1</sub>(n) u + P r<sub>n</sub>
 * </pre>
 * where u is the [ 1 1 ... 1 ]<sup>T</sup> vector and P is the (k-1)&times;(k-1) matrix built
 * with the (j+1) (-i)<sup>j</sup> terms with i being the row number starting from 1 and j being
 * the column number starting from 1:
 * <pre>
 *        [  -2   3   -4    5  ... ]
 *        [  -4  12  -32   80  ... ]
 *   P =  [  -6  27 -108  405  ... ]
 *        [  -8  48 -256 1280  ... ]
 *        [          ...           ]
 * </pre></p>
 *
 * <p>Using the Nordsieck vector has several advantages:
 * <ul>
 *   <li>it greatly simplifies step interpolation as the interpolator mainly applies
 *   Taylor series formulas,</li>
 *   <li>it simplifies step changes that occur when discrete events that truncate
 *   the step are triggered,</li>
 *   <li>it allows to extend the methods in order to support adaptive stepsize.</li>
 * </ul></p>
 *
 * <p>The Nordsieck vector at step n+1 is computed from the Nordsieck vector at step n as follows:
 * <ul>
 *   <li>y<sub>n+1</sub> = y<sub>n</sub> + s<sub>1</sub>(n) + u<sup>T</sup> r<sub>n</sub></li>
 *   <li>s<sub>1</sub>(n+1) = h f(t<sub>n+1</sub>, y<sub>n+1</sub>)</li>
 *   <li>r<sub>n+1</sub> = (s<sub>1</sub>(n) - s<sub>1</sub>(n+1)) P<sup>-1</sup> u + P<sup>-1</sup> A P r<sub>n</sub></li>
 * </ul>
 * where A is a rows shifting matrix (the lower left part is an identity matrix):
 * <pre>
 *        [ 0 0   ...  0 0 | 0 ]
 *        [ ---------------+---]
 *        [ 1 0   ...  0 0 | 0 ]
 *    A = [ 0 1   ...  0 0 | 0 ]
 *        [       ...      | 0 ]
 *        [ 0 0   ...  1 0 | 0 ]
 *        [ 0 0   ...  0 1 | 0 ]
 * </pre></p>
 *
 * <p>The P<sup>-1</sup>u vector and the P<sup>-1</sup> A P matrix do not depend on the state,
 * they only depend on k and therefore are precomputed once for all.</p>
 *
 * @param <T> the type of the field elements
 * @since 3.6
 */
public class AdamsBashforthFieldIntegrator<T extends RealFieldElement<T>> extends AdamsFieldIntegrator<T> {

    /** Integrator method name. */
    private static final String METHOD_NAME = "Adams-Bashforth";

    /**
     * Build an Adams-Bashforth integrator with the given order and step control parameters.
     * @param field field to which the time and state vector elements belong
     * @param nSteps number of steps of the method excluding the one being computed
     * @param minStep minimal step (sign is irrelevant, regardless of
     * integration direction, forward or backward), the last step can
     * be smaller than this
     * @param maxStep maximal step (sign is irrelevant, regardless of
     * integration direction, forward or backward), the last step can
     * be smaller than this
     * @param scalAbsoluteTolerance allowed absolute error
     * @param scalRelativeTolerance allowed relative error
     * @exception NumberIsTooSmallException if order is 1 or less
     */
    public AdamsBashforthFieldIntegrator(final Field<T> field, final int nSteps,
                                         final double minStep, final double maxStep,
                                         final double scalAbsoluteTolerance,
                                         final double scalRelativeTolerance)
        throws NumberIsTooSmallException {
        super(field, METHOD_NAME, nSteps, nSteps, minStep, maxStep,
              scalAbsoluteTolerance, scalRelativeTolerance);
    }

    /**
     * Build an Adams-Bashforth integrator with the given order and step control parameters.
     * @param field field to which the time and state vector elements belong
     * @param nSteps number of steps of the method excluding the one being computed
     * @param minStep minimal step (sign is irrelevant, regardless of
     * integration direction, forward or backward), the last step can
     * be smaller than this
     * @param maxStep maximal step (sign is irrelevant, regardless of
     * integration direction, forward or backward), the last step can
     * be smaller than this
     * @param vecAbsoluteTolerance allowed absolute error
     * @param vecRelativeTolerance allowed relative error
     * @exception IllegalArgumentException if order is 1 or less
     */
    public AdamsBashforthFieldIntegrator(final Field<T> field, final int nSteps,
                                         final double minStep, final double maxStep,
                                         final double[] vecAbsoluteTolerance,
                                         final double[] vecRelativeTolerance)
        throws IllegalArgumentException {
        super(field, METHOD_NAME, nSteps, nSteps, minStep, maxStep,
              vecAbsoluteTolerance, vecRelativeTolerance);
    }

    /** Estimate error.
     * <p>
     * Error is estimated by interpolating back to previous state using
     * the state Taylor expansion and comparing to real previous state.
     * </p>
     * @param previousState state vector at step start
     * @param predictedState predicted state vector at step end
     * @param predictedScaled predicted value of the scaled derivatives at step end
     * @param predictedNordsieck predicted value of the Nordsieck vector at step end
     * @return estimated normalized local discretization error
     */
    private T errorEstimation(final T[] previousState,
                              final T[] predictedState,
                              final T[] predictedScaled,
                              final FieldMatrix<T> predictedNordsieck) {

        T error = getField().getZero();
        for (int i = 0; i < mainSetDimension; ++i) {
            final T yScale = predictedState[i].abs();
            final T tol = (vecAbsoluteTolerance == null) ?
                          yScale.multiply(scalRelativeTolerance).add(scalAbsoluteTolerance) :
                          yScale.multiply(vecRelativeTolerance[i]).add(vecAbsoluteTolerance[i]);

            // apply Taylor formula from high order to low order,
            // for the sake of numerical accuracy
            T variation = getField().getZero();
            int sign = predictedNordsieck.getRowDimension() % 2 == 0 ? -1 : 1;
            for (int k = predictedNordsieck.getRowDimension() - 1; k >= 0; --k) {
                variation = variation.add(predictedNordsieck.getEntry(k, i).multiply(sign));
                sign      = -sign;
            }
            variation = variation.subtract(predictedScaled[i]);

            final T ratio  = predictedState[i].subtract(previousState[i]).add(variation).divide(tol);
            error = error.add(ratio.multiply(ratio));

        }

        return error.divide(mainSetDimension).sqrt();

    }

    /** {@inheritDoc} */
    @Override
    public FieldODEStateAndDerivative<T> integrate(final FieldExpandableODE<T> equations,
                                                   final FieldODEState<T> initialState,
                                                   final T finalTime)
        throws NumberIsTooSmallException, DimensionMismatchException,
               MaxCountExceededException, NoBracketingException {

        sanityChecks(initialState, finalTime);
        final T   t0 = initialState.getTime();
        final T[] y  = equations.getMapper().mapState(initialState);
        setStepStart(initIntegration(equations, t0, y, finalTime));
        final boolean forward = finalTime.subtract(initialState.getTime()).getReal() > 0;

        // compute the initial Nordsieck vector using the configured starter integrator
        start(equations, getStepStart(), finalTime);

        // reuse the step that was chosen by the starter integrator
        FieldODEStateAndDerivative<T> stepStart = getStepStart();
        FieldODEStateAndDerivative<T> stepEnd   =
                        AdamsFieldStepInterpolator.taylor(stepStart,
                                                          stepStart.getTime().add(getStepSize()),
                                                          getStepSize(), scaled, nordsieck);

        // main integration loop
        setIsLastStep(false);
        do {

            T[] predictedY = null;
            final T[] predictedScaled = MathArrays.buildArray(getField(), y.length);
            Array2DRowFieldMatrix<T> predictedNordsieck = null;
            T error = getField().getZero().add(10);
            while (error.subtract(1.0).getReal() >= 0.0) {

                // predict a first estimate of the state at step end
                predictedY = stepEnd.getState();

                // evaluate the derivative
                final T[] yDot = computeDerivatives(stepEnd.getTime(), predictedY);

                // predict Nordsieck vector at step end
                for (int j = 0; j < predictedScaled.length; ++j) {
                    predictedScaled[j] = getStepSize().multiply(yDot[j]);
                }
                predictedNordsieck = updateHighOrderDerivativesPhase1(nordsieck);
                updateHighOrderDerivativesPhase2(scaled, predictedScaled, predictedNordsieck);

                // evaluate error
                error = errorEstimation(y, predictedY, predictedScaled, predictedNordsieck);

                if (error.subtract(1.0).getReal() >= 0.0) {
                    // reject the step and attempt to reduce error by stepsize control
                    final T factor = computeStepGrowShrinkFactor(error);
                    rescale(filterStep(getStepSize().multiply(factor), forward, false));
                    stepEnd = AdamsFieldStepInterpolator.taylor(getStepStart(),
                                                                getStepStart().getTime().add(getStepSize()),
                                                                getStepSize(),
                                                                scaled,
                                                                nordsieck);

                }
            }

            // discrete events handling
            setStepStart(acceptStep(new AdamsFieldStepInterpolator<T>(getStepSize(), stepEnd,
                                                                      predictedScaled, predictedNordsieck, forward,
                                                                      getStepStart(), stepEnd,
                                                                      equations.getMapper()),
                                    finalTime));
            scaled    = predictedScaled;
            nordsieck = predictedNordsieck;

            if (!isLastStep()) {

                System.arraycopy(predictedY, 0, y, 0, y.length);

                if (resetOccurred()) {
                    // some events handler has triggered changes that
                    // invalidate the derivatives, we need to restart from scratch
                    start(equations, getStepStart(), finalTime);
                }

                // stepsize control for next step
                final T       factor     = computeStepGrowShrinkFactor(error);
                final T       scaledH    = getStepSize().multiply(factor);
                final T       nextT      = getStepStart().getTime().add(scaledH);
                final boolean nextIsLast = forward ?
                                           nextT.subtract(finalTime).getReal() >= 0 :
                                           nextT.subtract(finalTime).getReal() <= 0;
                T hNew = filterStep(scaledH, forward, nextIsLast);

                final T       filteredNextT      = getStepStart().getTime().add(hNew);
                final boolean filteredNextIsLast = forward ?
                                                   filteredNextT.subtract(finalTime).getReal() >= 0 :
                                                   filteredNextT.subtract(finalTime).getReal() <= 0;
                if (filteredNextIsLast) {
                    hNew = finalTime.subtract(getStepStart().getTime());
                }

                rescale(hNew);
                stepEnd = AdamsFieldStepInterpolator.taylor(getStepStart(), getStepStart().getTime().add(getStepSize()),
                                                            getStepSize(), scaled, nordsieck);

            }

        } while (!isLastStep());

        final FieldODEStateAndDerivative<T> finalState = getStepStart();
        setStepStart(null);
        setStepSize(null);
        return finalState;

    }

}