summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/ode/ContinuousOutputModel.java
blob: 6bb637dfa50c612dd921ca8ad60984f83c09451e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ode;

import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MathIllegalArgumentException;
import org.apache.commons.math3.exception.MaxCountExceededException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.ode.sampling.StepHandler;
import org.apache.commons.math3.ode.sampling.StepInterpolator;
import org.apache.commons.math3.util.FastMath;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;

/**
 * This class stores all information provided by an ODE integrator during the integration process
 * and build a continuous model of the solution from this.
 *
 * <p>This class act as a step handler from the integrator point of view. It is called iteratively
 * during the integration process and stores a copy of all steps information in a sorted collection
 * for later use. Once the integration process is over, the user can use the {@link
 * #setInterpolatedTime setInterpolatedTime} and {@link #getInterpolatedState getInterpolatedState}
 * to retrieve this information at any time. It is important to wait for the integration to be over
 * before attempting to call {@link #setInterpolatedTime setInterpolatedTime} because some internal
 * variables are set only once the last step has been handled.
 *
 * <p>This is useful for example if the main loop of the user application should remain independent
 * from the integration process or if one needs to mimic the behaviour of an analytical model
 * despite a numerical model is used (i.e. one needs the ability to get the model value at any time
 * or to navigate through the data).
 *
 * <p>If problem modeling is done with several separate integration phases for contiguous intervals,
 * the same ContinuousOutputModel can be used as step handler for all integration phases as long as
 * they are performed in order and in the same direction. As an example, one can extrapolate the
 * trajectory of a satellite with one model (i.e. one set of differential equations) up to the
 * beginning of a maneuver, use another more complex model including thrusters modeling and accurate
 * attitude control during the maneuver, and revert to the first model after the end of the
 * maneuver. If the same continuous output model handles the steps of all integration phases, the
 * user do not need to bother when the maneuver begins or ends, he has all the data available in a
 * transparent manner.
 *
 * <p>An important feature of this class is that it implements the <code>Serializable</code>
 * interface. This means that the result of an integration can be serialized and reused later (if
 * stored into a persistent medium like a filesystem or a database) or elsewhere (if sent to another
 * application). Only the result of the integration is stored, there is no reference to the
 * integrated problem by itself.
 *
 * <p>One should be aware that the amount of data stored in a ContinuousOutputModel instance can be
 * important if the state vector is large, if the integration interval is long or if the steps are
 * small (which can result from small tolerance settings in {@link
 * org.apache.commons.math3.ode.nonstiff.AdaptiveStepsizeIntegrator adaptive step size
 * integrators}).
 *
 * @see StepHandler
 * @see StepInterpolator
 * @since 1.2
 */
public class ContinuousOutputModel implements StepHandler, Serializable {

    /** Serializable version identifier */
    private static final long serialVersionUID = -1417964919405031606L;

    /** Initial integration time. */
    private double initialTime;

    /** Final integration time. */
    private double finalTime;

    /** Integration direction indicator. */
    private boolean forward;

    /** Current interpolator index. */
    private int index;

    /** Steps table. */
    private List<StepInterpolator> steps;

    /** Simple constructor. Build an empty continuous output model. */
    public ContinuousOutputModel() {
        steps = new ArrayList<StepInterpolator>();
        initialTime = Double.NaN;
        finalTime = Double.NaN;
        forward = true;
        index = 0;
    }

    /**
     * Append another model at the end of the instance.
     *
     * @param model model to add at the end of the instance
     * @exception MathIllegalArgumentException if the model to append is not compatible with the
     *     instance (dimension of the state vector, propagation direction, hole between the dates)
     * @exception MaxCountExceededException if the number of functions evaluations is exceeded
     *     during step finalization
     */
    public void append(final ContinuousOutputModel model)
            throws MathIllegalArgumentException, MaxCountExceededException {

        if (model.steps.size() == 0) {
            return;
        }

        if (steps.size() == 0) {
            initialTime = model.initialTime;
            forward = model.forward;
        } else {

            if (getInterpolatedState().length != model.getInterpolatedState().length) {
                throw new DimensionMismatchException(
                        model.getInterpolatedState().length, getInterpolatedState().length);
            }

            if (forward ^ model.forward) {
                throw new MathIllegalArgumentException(
                        LocalizedFormats.PROPAGATION_DIRECTION_MISMATCH);
            }

            final StepInterpolator lastInterpolator = steps.get(index);
            final double current = lastInterpolator.getCurrentTime();
            final double previous = lastInterpolator.getPreviousTime();
            final double step = current - previous;
            final double gap = model.getInitialTime() - current;
            if (FastMath.abs(gap) > 1.0e-3 * FastMath.abs(step)) {
                throw new MathIllegalArgumentException(
                        LocalizedFormats.HOLE_BETWEEN_MODELS_TIME_RANGES, FastMath.abs(gap));
            }
        }

        for (StepInterpolator interpolator : model.steps) {
            steps.add(interpolator.copy());
        }

        index = steps.size() - 1;
        finalTime = (steps.get(index)).getCurrentTime();
    }

    /** {@inheritDoc} */
    public void init(double t0, double[] y0, double t) {
        initialTime = Double.NaN;
        finalTime = Double.NaN;
        forward = true;
        index = 0;
        steps.clear();
    }

    /**
     * Handle the last accepted step. A copy of the information provided by the last step is stored
     * in the instance for later use.
     *
     * @param interpolator interpolator for the last accepted step.
     * @param isLast true if the step is the last one
     * @exception MaxCountExceededException if the number of functions evaluations is exceeded
     *     during step finalization
     */
    public void handleStep(final StepInterpolator interpolator, final boolean isLast)
            throws MaxCountExceededException {

        if (steps.size() == 0) {
            initialTime = interpolator.getPreviousTime();
            forward = interpolator.isForward();
        }

        steps.add(interpolator.copy());

        if (isLast) {
            finalTime = interpolator.getCurrentTime();
            index = steps.size() - 1;
        }
    }

    /**
     * Get the initial integration time.
     *
     * @return initial integration time
     */
    public double getInitialTime() {
        return initialTime;
    }

    /**
     * Get the final integration time.
     *
     * @return final integration time
     */
    public double getFinalTime() {
        return finalTime;
    }

    /**
     * Get the time of the interpolated point. If {@link #setInterpolatedTime} has not been called,
     * it returns the final integration time.
     *
     * @return interpolation point time
     */
    public double getInterpolatedTime() {
        return steps.get(index).getInterpolatedTime();
    }

    /**
     * Set the time of the interpolated point.
     *
     * <p>This method should <strong>not</strong> be called before the integration is over because
     * some internal variables are set only once the last step has been handled.
     *
     * <p>Setting the time outside of the integration interval is now allowed, but should be used
     * with care since the accuracy of the interpolator will probably be very poor far from this
     * interval. This allowance has been added to simplify implementation of search algorithms near
     * the interval endpoints.
     *
     * <p>Note that each time this method is called, the internal arrays returned in {@link
     * #getInterpolatedState()}, {@link #getInterpolatedDerivatives()} and {@link
     * #getInterpolatedSecondaryState(int)} <em>will</em> be overwritten. So if their content must
     * be preserved across several calls, user must copy them.
     *
     * @param time time of the interpolated point
     * @see #getInterpolatedState()
     * @see #getInterpolatedDerivatives()
     * @see #getInterpolatedSecondaryState(int)
     */
    public void setInterpolatedTime(final double time) {

        // initialize the search with the complete steps table
        int iMin = 0;
        final StepInterpolator sMin = steps.get(iMin);
        double tMin = 0.5 * (sMin.getPreviousTime() + sMin.getCurrentTime());

        int iMax = steps.size() - 1;
        final StepInterpolator sMax = steps.get(iMax);
        double tMax = 0.5 * (sMax.getPreviousTime() + sMax.getCurrentTime());

        // handle points outside of the integration interval
        // or in the first and last step
        if (locatePoint(time, sMin) <= 0) {
            index = iMin;
            sMin.setInterpolatedTime(time);
            return;
        }
        if (locatePoint(time, sMax) >= 0) {
            index = iMax;
            sMax.setInterpolatedTime(time);
            return;
        }

        // reduction of the table slice size
        while (iMax - iMin > 5) {

            // use the last estimated index as the splitting index
            final StepInterpolator si = steps.get(index);
            final int location = locatePoint(time, si);
            if (location < 0) {
                iMax = index;
                tMax = 0.5 * (si.getPreviousTime() + si.getCurrentTime());
            } else if (location > 0) {
                iMin = index;
                tMin = 0.5 * (si.getPreviousTime() + si.getCurrentTime());
            } else {
                // we have found the target step, no need to continue searching
                si.setInterpolatedTime(time);
                return;
            }

            // compute a new estimate of the index in the reduced table slice
            final int iMed = (iMin + iMax) / 2;
            final StepInterpolator sMed = steps.get(iMed);
            final double tMed = 0.5 * (sMed.getPreviousTime() + sMed.getCurrentTime());

            if ((FastMath.abs(tMed - tMin) < 1e-6) || (FastMath.abs(tMax - tMed) < 1e-6)) {
                // too close to the bounds, we estimate using a simple dichotomy
                index = iMed;
            } else {
                // estimate the index using a reverse quadratic polynom
                // (reverse means we have i = P(t), thus allowing to simply
                // compute index = P(time) rather than solving a quadratic equation)
                final double d12 = tMax - tMed;
                final double d23 = tMed - tMin;
                final double d13 = tMax - tMin;
                final double dt1 = time - tMax;
                final double dt2 = time - tMed;
                final double dt3 = time - tMin;
                final double iLagrange =
                        ((dt2 * dt3 * d23) * iMax
                                        - (dt1 * dt3 * d13) * iMed
                                        + (dt1 * dt2 * d12) * iMin)
                                / (d12 * d23 * d13);
                index = (int) FastMath.rint(iLagrange);
            }

            // force the next size reduction to be at least one tenth
            final int low = FastMath.max(iMin + 1, (9 * iMin + iMax) / 10);
            final int high = FastMath.min(iMax - 1, (iMin + 9 * iMax) / 10);
            if (index < low) {
                index = low;
            } else if (index > high) {
                index = high;
            }
        }

        // now the table slice is very small, we perform an iterative search
        index = iMin;
        while ((index <= iMax) && (locatePoint(time, steps.get(index)) > 0)) {
            ++index;
        }

        steps.get(index).setInterpolatedTime(time);
    }

    /**
     * Get the state vector of the interpolated point.
     *
     * <p>The returned vector is a reference to a reused array, so it should not be modified and it
     * should be copied if it needs to be preserved across several calls to the associated {@link
     * #setInterpolatedTime(double)} method.
     *
     * @return state vector at time {@link #getInterpolatedTime}
     * @exception MaxCountExceededException if the number of functions evaluations is exceeded
     * @see #setInterpolatedTime(double)
     * @see #getInterpolatedDerivatives()
     * @see #getInterpolatedSecondaryState(int)
     * @see #getInterpolatedSecondaryDerivatives(int)
     */
    public double[] getInterpolatedState() throws MaxCountExceededException {
        return steps.get(index).getInterpolatedState();
    }

    /**
     * Get the derivatives of the state vector of the interpolated point.
     *
     * <p>The returned vector is a reference to a reused array, so it should not be modified and it
     * should be copied if it needs to be preserved across several calls to the associated {@link
     * #setInterpolatedTime(double)} method.
     *
     * @return derivatives of the state vector at time {@link #getInterpolatedTime}
     * @exception MaxCountExceededException if the number of functions evaluations is exceeded
     * @see #setInterpolatedTime(double)
     * @see #getInterpolatedState()
     * @see #getInterpolatedSecondaryState(int)
     * @see #getInterpolatedSecondaryDerivatives(int)
     * @since 3.4
     */
    public double[] getInterpolatedDerivatives() throws MaxCountExceededException {
        return steps.get(index).getInterpolatedDerivatives();
    }

    /**
     * Get the interpolated secondary state corresponding to the secondary equations.
     *
     * <p>The returned vector is a reference to a reused array, so it should not be modified and it
     * should be copied if it needs to be preserved across several calls to the associated {@link
     * #setInterpolatedTime(double)} method.
     *
     * @param secondaryStateIndex index of the secondary set, as returned by {@link
     *     org.apache.commons.math3.ode.ExpandableStatefulODE#addSecondaryEquations(
     *     org.apache.commons.math3.ode.SecondaryEquations)
     *     ExpandableStatefulODE.addSecondaryEquations(SecondaryEquations)}
     * @return interpolated secondary state at the current interpolation date
     * @see #setInterpolatedTime(double)
     * @see #getInterpolatedState()
     * @see #getInterpolatedDerivatives()
     * @see #getInterpolatedSecondaryDerivatives(int)
     * @since 3.2
     * @exception MaxCountExceededException if the number of functions evaluations is exceeded
     */
    public double[] getInterpolatedSecondaryState(final int secondaryStateIndex)
            throws MaxCountExceededException {
        return steps.get(index).getInterpolatedSecondaryState(secondaryStateIndex);
    }

    /**
     * Get the interpolated secondary derivatives corresponding to the secondary equations.
     *
     * <p>The returned vector is a reference to a reused array, so it should not be modified and it
     * should be copied if it needs to be preserved across several calls to the associated {@link
     * #setInterpolatedTime(double)} method.
     *
     * @param secondaryStateIndex index of the secondary set, as returned by {@link
     *     org.apache.commons.math3.ode.ExpandableStatefulODE#addSecondaryEquations(
     *     org.apache.commons.math3.ode.SecondaryEquations)
     *     ExpandableStatefulODE.addSecondaryEquations(SecondaryEquations)}
     * @return interpolated secondary derivatives at the current interpolation date
     * @see #setInterpolatedTime(double)
     * @see #getInterpolatedState()
     * @see #getInterpolatedDerivatives()
     * @see #getInterpolatedSecondaryState(int)
     * @since 3.4
     * @exception MaxCountExceededException if the number of functions evaluations is exceeded
     */
    public double[] getInterpolatedSecondaryDerivatives(final int secondaryStateIndex)
            throws MaxCountExceededException {
        return steps.get(index).getInterpolatedSecondaryDerivatives(secondaryStateIndex);
    }

    /**
     * Compare a step interval and a double.
     *
     * @param time point to locate
     * @param interval step interval
     * @return -1 if the double is before the interval, 0 if it is in the interval, and +1 if it is
     *     after the interval, according to the interval direction
     */
    private int locatePoint(final double time, final StepInterpolator interval) {
        if (forward) {
            if (time < interval.getPreviousTime()) {
                return -1;
            } else if (time > interval.getCurrentTime()) {
                return +1;
            } else {
                return 0;
            }
        }
        if (time > interval.getPreviousTime()) {
            return -1;
        } else if (time < interval.getCurrentTime()) {
            return +1;
        } else {
            return 0;
        }
    }
}