summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/distribution/WeibullDistribution.java
blob: b7d29536bd323ac0531bd9cab7a45ccb97d8be80 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.distribution;

import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.Well19937c;
import org.apache.commons.math3.special.Gamma;
import org.apache.commons.math3.util.FastMath;

/**
 * Implementation of the Weibull distribution. This implementation uses the two parameter form of
 * the distribution defined by <a href="http://mathworld.wolfram.com/WeibullDistribution.html">
 * Weibull Distribution</a>, equations (1) and (2).
 *
 * @see <a href="http://en.wikipedia.org/wiki/Weibull_distribution">Weibull distribution
 *     (Wikipedia)</a>
 * @see <a href="http://mathworld.wolfram.com/WeibullDistribution.html">Weibull distribution
 *     (MathWorld)</a>
 * @since 1.1 (changed to concrete class in 3.0)
 */
public class WeibullDistribution extends AbstractRealDistribution {
    /**
     * Default inverse cumulative probability accuracy.
     *
     * @since 2.1
     */
    public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;

    /** Serializable version identifier. */
    private static final long serialVersionUID = 8589540077390120676L;

    /** The shape parameter. */
    private final double shape;

    /** The scale parameter. */
    private final double scale;

    /** Inverse cumulative probability accuracy. */
    private final double solverAbsoluteAccuracy;

    /** Cached numerical mean */
    private double numericalMean = Double.NaN;

    /** Whether or not the numerical mean has been calculated */
    private boolean numericalMeanIsCalculated = false;

    /** Cached numerical variance */
    private double numericalVariance = Double.NaN;

    /** Whether or not the numerical variance has been calculated */
    private boolean numericalVarianceIsCalculated = false;

    /**
     * Create a Weibull distribution with the given shape and scale and a location equal to zero.
     *
     * <p><b>Note:</b> this constructor will implicitly create an instance of {@link Well19937c} as
     * random generator to be used for sampling only (see {@link #sample()} and {@link
     * #sample(int)}). In case no sampling is needed for the created distribution, it is advised to
     * pass {@code null} as random generator via the appropriate constructors to avoid the
     * additional initialisation overhead.
     *
     * @param alpha Shape parameter.
     * @param beta Scale parameter.
     * @throws NotStrictlyPositiveException if {@code alpha <= 0} or {@code beta <= 0}.
     */
    public WeibullDistribution(double alpha, double beta) throws NotStrictlyPositiveException {
        this(alpha, beta, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
    }

    /**
     * Create a Weibull distribution with the given shape, scale and inverse cumulative probability
     * accuracy and a location equal to zero.
     *
     * <p><b>Note:</b> this constructor will implicitly create an instance of {@link Well19937c} as
     * random generator to be used for sampling only (see {@link #sample()} and {@link
     * #sample(int)}). In case no sampling is needed for the created distribution, it is advised to
     * pass {@code null} as random generator via the appropriate constructors to avoid the
     * additional initialisation overhead.
     *
     * @param alpha Shape parameter.
     * @param beta Scale parameter.
     * @param inverseCumAccuracy Maximum absolute error in inverse cumulative probability estimates
     *     (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}).
     * @throws NotStrictlyPositiveException if {@code alpha <= 0} or {@code beta <= 0}.
     * @since 2.1
     */
    public WeibullDistribution(double alpha, double beta, double inverseCumAccuracy) {
        this(new Well19937c(), alpha, beta, inverseCumAccuracy);
    }

    /**
     * Creates a Weibull distribution.
     *
     * @param rng Random number generator.
     * @param alpha Shape parameter.
     * @param beta Scale parameter.
     * @throws NotStrictlyPositiveException if {@code alpha <= 0} or {@code beta <= 0}.
     * @since 3.3
     */
    public WeibullDistribution(RandomGenerator rng, double alpha, double beta)
            throws NotStrictlyPositiveException {
        this(rng, alpha, beta, DEFAULT_INVERSE_ABSOLUTE_ACCURACY);
    }

    /**
     * Creates a Weibull distribution.
     *
     * @param rng Random number generator.
     * @param alpha Shape parameter.
     * @param beta Scale parameter.
     * @param inverseCumAccuracy Maximum absolute error in inverse cumulative probability estimates
     *     (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}).
     * @throws NotStrictlyPositiveException if {@code alpha <= 0} or {@code beta <= 0}.
     * @since 3.1
     */
    public WeibullDistribution(
            RandomGenerator rng, double alpha, double beta, double inverseCumAccuracy)
            throws NotStrictlyPositiveException {
        super(rng);

        if (alpha <= 0) {
            throw new NotStrictlyPositiveException(LocalizedFormats.SHAPE, alpha);
        }
        if (beta <= 0) {
            throw new NotStrictlyPositiveException(LocalizedFormats.SCALE, beta);
        }
        scale = beta;
        shape = alpha;
        solverAbsoluteAccuracy = inverseCumAccuracy;
    }

    /**
     * Access the shape parameter, {@code alpha}.
     *
     * @return the shape parameter, {@code alpha}.
     */
    public double getShape() {
        return shape;
    }

    /**
     * Access the scale parameter, {@code beta}.
     *
     * @return the scale parameter, {@code beta}.
     */
    public double getScale() {
        return scale;
    }

    /** {@inheritDoc} */
    public double density(double x) {
        if (x < 0) {
            return 0;
        }

        final double xscale = x / scale;
        final double xscalepow = FastMath.pow(xscale, shape - 1);

        /*
         * FastMath.pow(x / scale, shape) =
         * FastMath.pow(xscale, shape) =
         * FastMath.pow(xscale, shape - 1) * xscale
         */
        final double xscalepowshape = xscalepow * xscale;

        return (shape / scale) * xscalepow * FastMath.exp(-xscalepowshape);
    }

    /** {@inheritDoc} */
    @Override
    public double logDensity(double x) {
        if (x < 0) {
            return Double.NEGATIVE_INFINITY;
        }

        final double xscale = x / scale;
        final double logxscalepow = FastMath.log(xscale) * (shape - 1);

        /*
         * FastMath.pow(x / scale, shape) =
         * FastMath.pow(xscale, shape) =
         * FastMath.pow(xscale, shape - 1) * xscale
         */
        final double xscalepowshape = FastMath.exp(logxscalepow) * xscale;

        return FastMath.log(shape / scale) + logxscalepow - xscalepowshape;
    }

    /** {@inheritDoc} */
    public double cumulativeProbability(double x) {
        double ret;
        if (x <= 0.0) {
            ret = 0.0;
        } else {
            ret = 1.0 - FastMath.exp(-FastMath.pow(x / scale, shape));
        }
        return ret;
    }

    /**
     * {@inheritDoc}
     *
     * <p>Returns {@code 0} when {@code p == 0} and {@code Double.POSITIVE_INFINITY} when {@code p
     * == 1}.
     */
    @Override
    public double inverseCumulativeProbability(double p) {
        double ret;
        if (p < 0.0 || p > 1.0) {
            throw new OutOfRangeException(p, 0.0, 1.0);
        } else if (p == 0) {
            ret = 0.0;
        } else if (p == 1) {
            ret = Double.POSITIVE_INFINITY;
        } else {
            ret = scale * FastMath.pow(-FastMath.log1p(-p), 1.0 / shape);
        }
        return ret;
    }

    /**
     * Return the absolute accuracy setting of the solver used to estimate inverse cumulative
     * probabilities.
     *
     * @return the solver absolute accuracy.
     * @since 2.1
     */
    @Override
    protected double getSolverAbsoluteAccuracy() {
        return solverAbsoluteAccuracy;
    }

    /**
     * {@inheritDoc}
     *
     * <p>The mean is {@code scale * Gamma(1 + (1 / shape))}, where {@code Gamma()} is the
     * Gamma-function.
     */
    public double getNumericalMean() {
        if (!numericalMeanIsCalculated) {
            numericalMean = calculateNumericalMean();
            numericalMeanIsCalculated = true;
        }
        return numericalMean;
    }

    /**
     * used by {@link #getNumericalMean()}
     *
     * @return the mean of this distribution
     */
    protected double calculateNumericalMean() {
        final double sh = getShape();
        final double sc = getScale();

        return sc * FastMath.exp(Gamma.logGamma(1 + (1 / sh)));
    }

    /**
     * {@inheritDoc}
     *
     * <p>The variance is {@code scale^2 * Gamma(1 + (2 / shape)) - mean^2} where {@code Gamma()} is
     * the Gamma-function.
     */
    public double getNumericalVariance() {
        if (!numericalVarianceIsCalculated) {
            numericalVariance = calculateNumericalVariance();
            numericalVarianceIsCalculated = true;
        }
        return numericalVariance;
    }

    /**
     * used by {@link #getNumericalVariance()}
     *
     * @return the variance of this distribution
     */
    protected double calculateNumericalVariance() {
        final double sh = getShape();
        final double sc = getScale();
        final double mn = getNumericalMean();

        return (sc * sc) * FastMath.exp(Gamma.logGamma(1 + (2 / sh))) - (mn * mn);
    }

    /**
     * {@inheritDoc}
     *
     * <p>The lower bound of the support is always 0 no matter the parameters.
     *
     * @return lower bound of the support (always 0)
     */
    public double getSupportLowerBound() {
        return 0;
    }

    /**
     * {@inheritDoc}
     *
     * <p>The upper bound of the support is always positive infinity no matter the parameters.
     *
     * @return upper bound of the support (always {@code Double.POSITIVE_INFINITY})
     */
    public double getSupportUpperBound() {
        return Double.POSITIVE_INFINITY;
    }

    /** {@inheritDoc} */
    public boolean isSupportLowerBoundInclusive() {
        return true;
    }

    /** {@inheritDoc} */
    public boolean isSupportUpperBoundInclusive() {
        return false;
    }

    /**
     * {@inheritDoc}
     *
     * <p>The support of this distribution is connected.
     *
     * @return {@code true}
     */
    public boolean isSupportConnected() {
        return true;
    }
}