summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/optimization/general/AbstractLeastSquaresOptimizer.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/optimization/general/AbstractLeastSquaresOptimizer.java')
-rw-r--r--src/main/java/org/apache/commons/math3/optimization/general/AbstractLeastSquaresOptimizer.java577
1 files changed, 577 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/optimization/general/AbstractLeastSquaresOptimizer.java b/src/main/java/org/apache/commons/math3/optimization/general/AbstractLeastSquaresOptimizer.java
new file mode 100644
index 0000000..96f7fb2
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/optimization/general/AbstractLeastSquaresOptimizer.java
@@ -0,0 +1,577 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.optimization.general;
+
+import org.apache.commons.math3.analysis.DifferentiableMultivariateVectorFunction;
+import org.apache.commons.math3.analysis.FunctionUtils;
+import org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
+import org.apache.commons.math3.analysis.differentiation.MultivariateDifferentiableVectorFunction;
+import org.apache.commons.math3.exception.DimensionMismatchException;
+import org.apache.commons.math3.exception.NumberIsTooSmallException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+import org.apache.commons.math3.linear.ArrayRealVector;
+import org.apache.commons.math3.linear.RealMatrix;
+import org.apache.commons.math3.linear.DiagonalMatrix;
+import org.apache.commons.math3.linear.DecompositionSolver;
+import org.apache.commons.math3.linear.MatrixUtils;
+import org.apache.commons.math3.linear.QRDecomposition;
+import org.apache.commons.math3.linear.EigenDecomposition;
+import org.apache.commons.math3.optimization.OptimizationData;
+import org.apache.commons.math3.optimization.InitialGuess;
+import org.apache.commons.math3.optimization.Target;
+import org.apache.commons.math3.optimization.Weight;
+import org.apache.commons.math3.optimization.ConvergenceChecker;
+import org.apache.commons.math3.optimization.DifferentiableMultivariateVectorOptimizer;
+import org.apache.commons.math3.optimization.PointVectorValuePair;
+import org.apache.commons.math3.optimization.direct.BaseAbstractMultivariateVectorOptimizer;
+import org.apache.commons.math3.util.FastMath;
+
+/**
+ * Base class for implementing least squares optimizers.
+ * It handles the boilerplate methods associated to thresholds settings,
+ * Jacobian and error estimation.
+ * <br/>
+ * This class constructs the Jacobian matrix of the function argument in method
+ * {@link BaseAbstractMultivariateVectorOptimizer#optimize(int,
+ * org.apache.commons.math3.analysis.MultivariateVectorFunction,OptimizationData[])
+ * optimize} and assumes that the rows of that matrix iterate on the model
+ * functions while the columns iterate on the parameters; thus, the numbers
+ * of rows is equal to the dimension of the
+ * {@link org.apache.commons.math3.optimization.Target Target} while
+ * the number of columns is equal to the dimension of the
+ * {@link org.apache.commons.math3.optimization.InitialGuess InitialGuess}.
+ *
+ * @deprecated As of 3.1 (to be removed in 4.0).
+ * @since 1.2
+ */
+@Deprecated
+public abstract class AbstractLeastSquaresOptimizer
+ extends BaseAbstractMultivariateVectorOptimizer<DifferentiableMultivariateVectorFunction>
+ implements DifferentiableMultivariateVectorOptimizer {
+ /**
+ * Singularity threshold (cf. {@link #getCovariances(double)}).
+ * @deprecated As of 3.1.
+ */
+ @Deprecated
+ private static final double DEFAULT_SINGULARITY_THRESHOLD = 1e-14;
+ /**
+ * Jacobian matrix of the weighted residuals.
+ * This matrix is in canonical form just after the calls to
+ * {@link #updateJacobian()}, but may be modified by the solver
+ * in the derived class (the {@link LevenbergMarquardtOptimizer
+ * Levenberg-Marquardt optimizer} does this).
+ * @deprecated As of 3.1. To be removed in 4.0. Please use
+ * {@link #computeWeightedJacobian(double[])} instead.
+ */
+ @Deprecated
+ protected double[][] weightedResidualJacobian;
+ /** Number of columns of the jacobian matrix.
+ * @deprecated As of 3.1.
+ */
+ @Deprecated
+ protected int cols;
+ /** Number of rows of the jacobian matrix.
+ * @deprecated As of 3.1.
+ */
+ @Deprecated
+ protected int rows;
+ /** Current point.
+ * @deprecated As of 3.1.
+ */
+ @Deprecated
+ protected double[] point;
+ /** Current objective function value.
+ * @deprecated As of 3.1.
+ */
+ @Deprecated
+ protected double[] objective;
+ /** Weighted residuals
+ * @deprecated As of 3.1.
+ */
+ @Deprecated
+ protected double[] weightedResiduals;
+ /** Cost value (square root of the sum of the residuals).
+ * @deprecated As of 3.1. Field to become "private" in 4.0.
+ * Please use {@link #setCost(double)}.
+ */
+ @Deprecated
+ protected double cost;
+ /** Objective function derivatives. */
+ private MultivariateDifferentiableVectorFunction jF;
+ /** Number of evaluations of the Jacobian. */
+ private int jacobianEvaluations;
+ /** Square-root of the weight matrix. */
+ private RealMatrix weightMatrixSqrt;
+
+ /**
+ * Simple constructor with default settings.
+ * The convergence check is set to a {@link
+ * org.apache.commons.math3.optimization.SimpleVectorValueChecker}.
+ * @deprecated See {@link org.apache.commons.math3.optimization.SimpleValueChecker#SimpleValueChecker()}
+ */
+ @Deprecated
+ protected AbstractLeastSquaresOptimizer() {}
+
+ /**
+ * @param checker Convergence checker.
+ */
+ protected AbstractLeastSquaresOptimizer(ConvergenceChecker<PointVectorValuePair> checker) {
+ super(checker);
+ }
+
+ /**
+ * @return the number of evaluations of the Jacobian function.
+ */
+ public int getJacobianEvaluations() {
+ return jacobianEvaluations;
+ }
+
+ /**
+ * Update the jacobian matrix.
+ *
+ * @throws DimensionMismatchException if the Jacobian dimension does not
+ * match problem dimension.
+ * @deprecated As of 3.1. Please use {@link #computeWeightedJacobian(double[])}
+ * instead.
+ */
+ @Deprecated
+ protected void updateJacobian() {
+ final RealMatrix weightedJacobian = computeWeightedJacobian(point);
+ weightedResidualJacobian = weightedJacobian.scalarMultiply(-1).getData();
+ }
+
+ /**
+ * Computes the Jacobian matrix.
+ *
+ * @param params Model parameters at which to compute the Jacobian.
+ * @return the weighted Jacobian: W<sup>1/2</sup> J.
+ * @throws DimensionMismatchException if the Jacobian dimension does not
+ * match problem dimension.
+ * @since 3.1
+ */
+ protected RealMatrix computeWeightedJacobian(double[] params) {
+ ++jacobianEvaluations;
+
+ final DerivativeStructure[] dsPoint = new DerivativeStructure[params.length];
+ final int nC = params.length;
+ for (int i = 0; i < nC; ++i) {
+ dsPoint[i] = new DerivativeStructure(nC, 1, i, params[i]);
+ }
+ final DerivativeStructure[] dsValue = jF.value(dsPoint);
+ final int nR = getTarget().length;
+ if (dsValue.length != nR) {
+ throw new DimensionMismatchException(dsValue.length, nR);
+ }
+ final double[][] jacobianData = new double[nR][nC];
+ for (int i = 0; i < nR; ++i) {
+ int[] orders = new int[nC];
+ for (int j = 0; j < nC; ++j) {
+ orders[j] = 1;
+ jacobianData[i][j] = dsValue[i].getPartialDerivative(orders);
+ orders[j] = 0;
+ }
+ }
+
+ return weightMatrixSqrt.multiply(MatrixUtils.createRealMatrix(jacobianData));
+ }
+
+ /**
+ * Update the residuals array and cost function value.
+ * @throws DimensionMismatchException if the dimension does not match the
+ * problem dimension.
+ * @throws org.apache.commons.math3.exception.TooManyEvaluationsException
+ * if the maximal number of evaluations is exceeded.
+ * @deprecated As of 3.1. Please use {@link #computeResiduals(double[])},
+ * {@link #computeObjectiveValue(double[])}, {@link #computeCost(double[])}
+ * and {@link #setCost(double)} instead.
+ */
+ @Deprecated
+ protected void updateResidualsAndCost() {
+ objective = computeObjectiveValue(point);
+ final double[] res = computeResiduals(objective);
+
+ // Compute cost.
+ cost = computeCost(res);
+
+ // Compute weighted residuals.
+ final ArrayRealVector residuals = new ArrayRealVector(res);
+ weightedResiduals = weightMatrixSqrt.operate(residuals).toArray();
+ }
+
+ /**
+ * Computes the cost.
+ *
+ * @param residuals Residuals.
+ * @return the cost.
+ * @see #computeResiduals(double[])
+ * @since 3.1
+ */
+ protected double computeCost(double[] residuals) {
+ final ArrayRealVector r = new ArrayRealVector(residuals);
+ return FastMath.sqrt(r.dotProduct(getWeight().operate(r)));
+ }
+
+ /**
+ * Get the Root Mean Square value.
+ * Get the Root Mean Square value, i.e. the root of the arithmetic
+ * mean of the square of all weighted residuals. This is related to the
+ * criterion that is minimized by the optimizer as follows: if
+ * <em>c</em> if the criterion, and <em>n</em> is the number of
+ * measurements, then the RMS is <em>sqrt (c/n)</em>.
+ *
+ * @return RMS value
+ */
+ public double getRMS() {
+ return FastMath.sqrt(getChiSquare() / rows);
+ }
+
+ /**
+ * Get a Chi-Square-like value assuming the N residuals follow N
+ * distinct normal distributions centered on 0 and whose variances are
+ * the reciprocal of the weights.
+ * @return chi-square value
+ */
+ public double getChiSquare() {
+ return cost * cost;
+ }
+
+ /**
+ * Gets the square-root of the weight matrix.
+ *
+ * @return the square-root of the weight matrix.
+ * @since 3.1
+ */
+ public RealMatrix getWeightSquareRoot() {
+ return weightMatrixSqrt.copy();
+ }
+
+ /**
+ * Sets the cost.
+ *
+ * @param cost Cost value.
+ * @since 3.1
+ */
+ protected void setCost(double cost) {
+ this.cost = cost;
+ }
+
+ /**
+ * Get the covariance matrix of the optimized parameters.
+ *
+ * @return the covariance matrix.
+ * @throws org.apache.commons.math3.linear.SingularMatrixException
+ * if the covariance matrix cannot be computed (singular problem).
+ * @see #getCovariances(double)
+ * @deprecated As of 3.1. Please use {@link #computeCovariances(double[],double)}
+ * instead.
+ */
+ @Deprecated
+ public double[][] getCovariances() {
+ return getCovariances(DEFAULT_SINGULARITY_THRESHOLD);
+ }
+
+ /**
+ * Get the covariance matrix of the optimized parameters.
+ * <br/>
+ * Note that this operation involves the inversion of the
+ * <code>J<sup>T</sup>J</code> matrix, where {@code J} is the
+ * Jacobian matrix.
+ * The {@code threshold} parameter is a way for the caller to specify
+ * that the result of this computation should be considered meaningless,
+ * and thus trigger an exception.
+ *
+ * @param threshold Singularity threshold.
+ * @return the covariance matrix.
+ * @throws org.apache.commons.math3.linear.SingularMatrixException
+ * if the covariance matrix cannot be computed (singular problem).
+ * @deprecated As of 3.1. Please use {@link #computeCovariances(double[],double)}
+ * instead.
+ */
+ @Deprecated
+ public double[][] getCovariances(double threshold) {
+ return computeCovariances(point, threshold);
+ }
+
+ /**
+ * Get the covariance matrix of the optimized parameters.
+ * <br/>
+ * Note that this operation involves the inversion of the
+ * <code>J<sup>T</sup>J</code> matrix, where {@code J} is the
+ * Jacobian matrix.
+ * The {@code threshold} parameter is a way for the caller to specify
+ * that the result of this computation should be considered meaningless,
+ * and thus trigger an exception.
+ *
+ * @param params Model parameters.
+ * @param threshold Singularity threshold.
+ * @return the covariance matrix.
+ * @throws org.apache.commons.math3.linear.SingularMatrixException
+ * if the covariance matrix cannot be computed (singular problem).
+ * @since 3.1
+ */
+ public double[][] computeCovariances(double[] params,
+ double threshold) {
+ // Set up the Jacobian.
+ final RealMatrix j = computeWeightedJacobian(params);
+
+ // Compute transpose(J)J.
+ final RealMatrix jTj = j.transpose().multiply(j);
+
+ // Compute the covariances matrix.
+ final DecompositionSolver solver
+ = new QRDecomposition(jTj, threshold).getSolver();
+ return solver.getInverse().getData();
+ }
+
+ /**
+ * <p>
+ * Returns an estimate of the standard deviation of each parameter. The
+ * returned values are the so-called (asymptotic) standard errors on the
+ * parameters, defined as {@code sd(a[i]) = sqrt(S / (n - m) * C[i][i])},
+ * where {@code a[i]} is the optimized value of the {@code i}-th parameter,
+ * {@code S} is the minimized value of the sum of squares objective function
+ * (as returned by {@link #getChiSquare()}), {@code n} is the number of
+ * observations, {@code m} is the number of parameters and {@code C} is the
+ * covariance matrix.
+ * </p>
+ * <p>
+ * See also
+ * <a href="http://en.wikipedia.org/wiki/Least_squares">Wikipedia</a>,
+ * or
+ * <a href="http://mathworld.wolfram.com/LeastSquaresFitting.html">MathWorld</a>,
+ * equations (34) and (35) for a particular case.
+ * </p>
+ *
+ * @return an estimate of the standard deviation of the optimized parameters
+ * @throws org.apache.commons.math3.linear.SingularMatrixException
+ * if the covariance matrix cannot be computed.
+ * @throws NumberIsTooSmallException if the number of degrees of freedom is not
+ * positive, i.e. the number of measurements is less or equal to the number of
+ * parameters.
+ * @deprecated as of version 3.1, {@link #computeSigma(double[],double)} should be used
+ * instead. It should be emphasized that {@code guessParametersErrors} and
+ * {@code computeSigma} are <em>not</em> strictly equivalent.
+ */
+ @Deprecated
+ public double[] guessParametersErrors() {
+ if (rows <= cols) {
+ throw new NumberIsTooSmallException(LocalizedFormats.NO_DEGREES_OF_FREEDOM,
+ rows, cols, false);
+ }
+ double[] errors = new double[cols];
+ final double c = FastMath.sqrt(getChiSquare() / (rows - cols));
+ double[][] covar = computeCovariances(point, 1e-14);
+ for (int i = 0; i < errors.length; ++i) {
+ errors[i] = FastMath.sqrt(covar[i][i]) * c;
+ }
+ return errors;
+ }
+
+ /**
+ * Computes an estimate of the standard deviation of the parameters. The
+ * returned values are the square root of the diagonal coefficients of the
+ * covariance matrix, {@code sd(a[i]) ~= sqrt(C[i][i])}, where {@code a[i]}
+ * is the optimized value of the {@code i}-th parameter, and {@code C} is
+ * the covariance matrix.
+ *
+ * @param params Model parameters.
+ * @param covarianceSingularityThreshold Singularity threshold (see
+ * {@link #computeCovariances(double[],double) computeCovariances}).
+ * @return an estimate of the standard deviation of the optimized parameters
+ * @throws org.apache.commons.math3.linear.SingularMatrixException
+ * if the covariance matrix cannot be computed.
+ * @since 3.1
+ */
+ public double[] computeSigma(double[] params,
+ double covarianceSingularityThreshold) {
+ final int nC = params.length;
+ final double[] sig = new double[nC];
+ final double[][] cov = computeCovariances(params, covarianceSingularityThreshold);
+ for (int i = 0; i < nC; ++i) {
+ sig[i] = FastMath.sqrt(cov[i][i]);
+ }
+ return sig;
+ }
+
+ /** {@inheritDoc}
+ * @deprecated As of 3.1. Please use
+ * {@link BaseAbstractMultivariateVectorOptimizer#optimize(int,
+ * org.apache.commons.math3.analysis.MultivariateVectorFunction,OptimizationData[])
+ * optimize(int,MultivariateDifferentiableVectorFunction,OptimizationData...)}
+ * instead.
+ */
+ @Override
+ @Deprecated
+ public PointVectorValuePair optimize(int maxEval,
+ final DifferentiableMultivariateVectorFunction f,
+ final double[] target, final double[] weights,
+ final double[] startPoint) {
+ return optimizeInternal(maxEval,
+ FunctionUtils.toMultivariateDifferentiableVectorFunction(f),
+ new Target(target),
+ new Weight(weights),
+ new InitialGuess(startPoint));
+ }
+
+ /**
+ * Optimize an objective function.
+ * Optimization is considered to be a weighted least-squares minimization.
+ * The cost function to be minimized is
+ * <code>&sum;weight<sub>i</sub>(objective<sub>i</sub> - target<sub>i</sub>)<sup>2</sup></code>
+ *
+ * @param f Objective function.
+ * @param target Target value for the objective functions at optimum.
+ * @param weights Weights for the least squares cost computation.
+ * @param startPoint Start point for optimization.
+ * @return the point/value pair giving the optimal value for objective
+ * function.
+ * @param maxEval Maximum number of function evaluations.
+ * @throws org.apache.commons.math3.exception.DimensionMismatchException
+ * if the start point dimension is wrong.
+ * @throws org.apache.commons.math3.exception.TooManyEvaluationsException
+ * if the maximal number of evaluations is exceeded.
+ * @throws org.apache.commons.math3.exception.NullArgumentException if
+ * any argument is {@code null}.
+ * @deprecated As of 3.1. Please use
+ * {@link BaseAbstractMultivariateVectorOptimizer#optimize(int,
+ * org.apache.commons.math3.analysis.MultivariateVectorFunction,OptimizationData[])
+ * optimize(int,MultivariateDifferentiableVectorFunction,OptimizationData...)}
+ * instead.
+ */
+ @Deprecated
+ public PointVectorValuePair optimize(final int maxEval,
+ final MultivariateDifferentiableVectorFunction f,
+ final double[] target, final double[] weights,
+ final double[] startPoint) {
+ return optimizeInternal(maxEval, f,
+ new Target(target),
+ new Weight(weights),
+ new InitialGuess(startPoint));
+ }
+
+ /**
+ * Optimize an objective function.
+ * Optimization is considered to be a weighted least-squares minimization.
+ * The cost function to be minimized is
+ * <code>&sum;weight<sub>i</sub>(objective<sub>i</sub> - target<sub>i</sub>)<sup>2</sup></code>
+ *
+ * @param maxEval Allowed number of evaluations of the objective function.
+ * @param f Objective function.
+ * @param optData Optimization data. The following data will be looked for:
+ * <ul>
+ * <li>{@link Target}</li>
+ * <li>{@link Weight}</li>
+ * <li>{@link InitialGuess}</li>
+ * </ul>
+ * @return the point/value pair giving the optimal value of the objective
+ * function.
+ * @throws org.apache.commons.math3.exception.TooManyEvaluationsException if
+ * the maximal number of evaluations is exceeded.
+ * @throws DimensionMismatchException if the target, and weight arguments
+ * have inconsistent dimensions.
+ * @see BaseAbstractMultivariateVectorOptimizer#optimizeInternal(int,
+ * org.apache.commons.math3.analysis.MultivariateVectorFunction,OptimizationData[])
+ * @since 3.1
+ * @deprecated As of 3.1. Override is necessary only until this class's generic
+ * argument is changed to {@code MultivariateDifferentiableVectorFunction}.
+ */
+ @Deprecated
+ protected PointVectorValuePair optimizeInternal(final int maxEval,
+ final MultivariateDifferentiableVectorFunction f,
+ OptimizationData... optData) {
+ // XXX Conversion will be removed when the generic argument of the
+ // base class becomes "MultivariateDifferentiableVectorFunction".
+ return super.optimizeInternal(maxEval, FunctionUtils.toDifferentiableMultivariateVectorFunction(f), optData);
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ protected void setUp() {
+ super.setUp();
+
+ // Reset counter.
+ jacobianEvaluations = 0;
+
+ // Square-root of the weight matrix.
+ weightMatrixSqrt = squareRoot(getWeight());
+
+ // Store least squares problem characteristics.
+ // XXX The conversion won't be necessary when the generic argument of
+ // the base class becomes "MultivariateDifferentiableVectorFunction".
+ // XXX "jF" is not strictly necessary anymore but is currently more
+ // efficient than converting the value returned from "getObjectiveFunction()"
+ // every time it is used.
+ jF = FunctionUtils.toMultivariateDifferentiableVectorFunction((DifferentiableMultivariateVectorFunction) getObjectiveFunction());
+
+ // Arrays shared with "private" and "protected" methods.
+ point = getStartPoint();
+ rows = getTarget().length;
+ cols = point.length;
+ }
+
+ /**
+ * Computes the residuals.
+ * The residual is the difference between the observed (target)
+ * values and the model (objective function) value.
+ * There is one residual for each element of the vector-valued
+ * function.
+ *
+ * @param objectiveValue Value of the the objective function. This is
+ * the value returned from a call to
+ * {@link #computeObjectiveValue(double[]) computeObjectiveValue}
+ * (whose array argument contains the model parameters).
+ * @return the residuals.
+ * @throws DimensionMismatchException if {@code params} has a wrong
+ * length.
+ * @since 3.1
+ */
+ protected double[] computeResiduals(double[] objectiveValue) {
+ final double[] target = getTarget();
+ if (objectiveValue.length != target.length) {
+ throw new DimensionMismatchException(target.length,
+ objectiveValue.length);
+ }
+
+ final double[] residuals = new double[target.length];
+ for (int i = 0; i < target.length; i++) {
+ residuals[i] = target[i] - objectiveValue[i];
+ }
+
+ return residuals;
+ }
+
+ /**
+ * Computes the square-root of the weight matrix.
+ *
+ * @param m Symmetric, positive-definite (weight) matrix.
+ * @return the square-root of the weight matrix.
+ */
+ private RealMatrix squareRoot(RealMatrix m) {
+ if (m instanceof DiagonalMatrix) {
+ final int dim = m.getRowDimension();
+ final RealMatrix sqrtM = new DiagonalMatrix(dim);
+ for (int i = 0; i < dim; i++) {
+ sqrtM.setEntry(i, i, FastMath.sqrt(m.getEntry(i, i)));
+ }
+ return sqrtM;
+ } else {
+ final EigenDecomposition dec = new EigenDecomposition(m);
+ return dec.getSquareRoot();
+ }
+ }
+}