summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/ode/nonstiff/LutherStepInterpolator.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/ode/nonstiff/LutherStepInterpolator.java')
-rw-r--r--src/main/java/org/apache/commons/math3/ode/nonstiff/LutherStepInterpolator.java182
1 files changed, 182 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/ode/nonstiff/LutherStepInterpolator.java b/src/main/java/org/apache/commons/math3/ode/nonstiff/LutherStepInterpolator.java
new file mode 100644
index 0000000..207a9ea
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/ode/nonstiff/LutherStepInterpolator.java
@@ -0,0 +1,182 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.ode.nonstiff;
+
+import org.apache.commons.math3.ode.sampling.StepInterpolator;
+import org.apache.commons.math3.util.FastMath;
+
+/**
+ * This class represents an interpolator over the last step during an
+ * ODE integration for the 6th order Luther integrator.
+ *
+ * <p>This interpolator computes dense output inside the last
+ * step computed. The interpolation equation is consistent with the
+ * integration scheme.</p>
+ *
+ * @see LutherIntegrator
+ * @since 3.3
+ */
+
+class LutherStepInterpolator extends RungeKuttaStepInterpolator {
+
+ /** Serializable version identifier */
+ private static final long serialVersionUID = 20140416L;
+
+ /** Square root. */
+ private static final double Q = FastMath.sqrt(21);
+
+ /** Simple constructor.
+ * This constructor builds an instance that is not usable yet, the
+ * {@link
+ * org.apache.commons.math3.ode.sampling.AbstractStepInterpolator#reinitialize}
+ * method should be called before using the instance in order to
+ * initialize the internal arrays. This constructor is used only
+ * in order to delay the initialization in some cases. The {@link
+ * RungeKuttaIntegrator} class uses the prototyping design pattern
+ * to create the step interpolators by cloning an uninitialized model
+ * and later initializing the copy.
+ */
+ // CHECKSTYLE: stop RedundantModifier
+ // the public modifier here is needed for serialization
+ public LutherStepInterpolator() {
+ }
+ // CHECKSTYLE: resume RedundantModifier
+
+ /** Copy constructor.
+ * @param interpolator interpolator to copy from. The copy is a deep
+ * copy: its arrays are separated from the original arrays of the
+ * instance
+ */
+ LutherStepInterpolator(final LutherStepInterpolator interpolator) {
+ super(interpolator);
+ }
+
+ /** {@inheritDoc} */
+ @Override
+ protected StepInterpolator doCopy() {
+ return new LutherStepInterpolator(this);
+ }
+
+
+ /** {@inheritDoc} */
+ @Override
+ protected void computeInterpolatedStateAndDerivatives(final double theta,
+ final double oneMinusThetaH) {
+
+ // the coefficients below have been computed by solving the
+ // order conditions from a theorem from Butcher (1963), using
+ // the method explained in Folkmar Bornemann paper "Runge-Kutta
+ // Methods, Trees, and Maple", Center of Mathematical Sciences, Munich
+ // University of Technology, February 9, 2001
+ //<http://wwwzenger.informatik.tu-muenchen.de/selcuk/sjam012101.html>
+
+ // the method is implemented in the rkcheck tool
+ // <https://www.spaceroots.org/software/rkcheck/index.html>.
+ // Running it for order 5 gives the following order conditions
+ // for an interpolator:
+ // order 1 conditions
+ // \sum_{i=1}^{i=s}\left(b_{i} \right) =1
+ // order 2 conditions
+ // \sum_{i=1}^{i=s}\left(b_{i} c_{i}\right) = \frac{\theta}{2}
+ // order 3 conditions
+ // \sum_{i=2}^{i=s}\left(b_{i} \sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j} \right)}\right) = \frac{\theta^{2}}{6}
+ // \sum_{i=1}^{i=s}\left(b_{i} c_{i}^{2}\right) = \frac{\theta^{2}}{3}
+ // order 4 conditions
+ // \sum_{i=3}^{i=s}\left(b_{i} \sum_{j=2}^{j=i-1}{\left(a_{i,j} \sum_{k=1}^{k=j-1}{\left(a_{j,k} c_{k} \right)} \right)}\right) = \frac{\theta^{3}}{24}
+ // \sum_{i=2}^{i=s}\left(b_{i} \sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j}^{2} \right)}\right) = \frac{\theta^{3}}{12}
+ // \sum_{i=2}^{i=s}\left(b_{i} c_{i}\sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j} \right)}\right) = \frac{\theta^{3}}{8}
+ // \sum_{i=1}^{i=s}\left(b_{i} c_{i}^{3}\right) = \frac{\theta^{3}}{4}
+ // order 5 conditions
+ // \sum_{i=4}^{i=s}\left(b_{i} \sum_{j=3}^{j=i-1}{\left(a_{i,j} \sum_{k=2}^{k=j-1}{\left(a_{j,k} \sum_{l=1}^{l=k-1}{\left(a_{k,l} c_{l} \right)} \right)} \right)}\right) = \frac{\theta^{4}}{120}
+ // \sum_{i=3}^{i=s}\left(b_{i} \sum_{j=2}^{j=i-1}{\left(a_{i,j} \sum_{k=1}^{k=j-1}{\left(a_{j,k} c_{k}^{2} \right)} \right)}\right) = \frac{\theta^{4}}{60}
+ // \sum_{i=3}^{i=s}\left(b_{i} \sum_{j=2}^{j=i-1}{\left(a_{i,j} c_{j}\sum_{k=1}^{k=j-1}{\left(a_{j,k} c_{k} \right)} \right)}\right) = \frac{\theta^{4}}{40}
+ // \sum_{i=2}^{i=s}\left(b_{i} \sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j}^{3} \right)}\right) = \frac{\theta^{4}}{20}
+ // \sum_{i=3}^{i=s}\left(b_{i} c_{i}\sum_{j=2}^{j=i-1}{\left(a_{i,j} \sum_{k=1}^{k=j-1}{\left(a_{j,k} c_{k} \right)} \right)}\right) = \frac{\theta^{4}}{30}
+ // \sum_{i=2}^{i=s}\left(b_{i} c_{i}\sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j}^{2} \right)}\right) = \frac{\theta^{4}}{15}
+ // \sum_{i=2}^{i=s}\left(b_{i} \left(\sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j} \right)} \right)^{2}\right) = \frac{\theta^{4}}{20}
+ // \sum_{i=2}^{i=s}\left(b_{i} c_{i}^{2}\sum_{j=1}^{j=i-1}{\left(a_{i,j} c_{j} \right)}\right) = \frac{\theta^{4}}{10}
+ // \sum_{i=1}^{i=s}\left(b_{i} c_{i}^{4}\right) = \frac{\theta^{4}}{5}
+
+ // The a_{j,k} and c_{k} are given by the integrator Butcher arrays. What remains to solve
+ // are the b_i for the interpolator. They are found by solving the above equations.
+ // For a given interpolator, some equations are redundant, so in our case when we select
+ // all equations from order 1 to 4, we still don't have enough independent equations
+ // to solve from b_1 to b_7. We need to also select one equation from order 5. Here,
+ // we selected the last equation. It appears this choice implied at least the last 3 equations
+ // are fulfilled, but some of the former ones are not, so the resulting interpolator is order 5.
+ // At the end, we get the b_i as polynomials in theta.
+
+ final double coeffDot1 = 1 + theta * ( -54 / 5.0 + theta * ( 36 + theta * ( -47 + theta * 21)));
+ final double coeffDot2 = 0;
+ final double coeffDot3 = theta * (-208 / 15.0 + theta * ( 320 / 3.0 + theta * (-608 / 3.0 + theta * 112)));
+ final double coeffDot4 = theta * ( 324 / 25.0 + theta * ( -486 / 5.0 + theta * ( 972 / 5.0 + theta * -567 / 5.0)));
+ final double coeffDot5 = theta * ((833 + 343 * Q) / 150.0 + theta * ((-637 - 357 * Q) / 30.0 + theta * ((392 + 287 * Q) / 15.0 + theta * (-49 - 49 * Q) / 5.0)));
+ final double coeffDot6 = theta * ((833 - 343 * Q) / 150.0 + theta * ((-637 + 357 * Q) / 30.0 + theta * ((392 - 287 * Q) / 15.0 + theta * (-49 + 49 * Q) / 5.0)));
+ final double coeffDot7 = theta * ( 3 / 5.0 + theta * ( -3 + theta * 3));
+
+ if ((previousState != null) && (theta <= 0.5)) {
+
+ final double coeff1 = 1 + theta * ( -27 / 5.0 + theta * ( 12 + theta * ( -47 / 4.0 + theta * 21 / 5.0)));
+ final double coeff2 = 0;
+ final double coeff3 = theta * (-104 / 15.0 + theta * ( 320 / 9.0 + theta * (-152 / 3.0 + theta * 112 / 5.0)));
+ final double coeff4 = theta * ( 162 / 25.0 + theta * ( -162 / 5.0 + theta * ( 243 / 5.0 + theta * -567 / 25.0)));
+ final double coeff5 = theta * ((833 + 343 * Q) / 300.0 + theta * ((-637 - 357 * Q) / 90.0 + theta * ((392 + 287 * Q) / 60.0 + theta * (-49 - 49 * Q) / 25.0)));
+ final double coeff6 = theta * ((833 - 343 * Q) / 300.0 + theta * ((-637 + 357 * Q) / 90.0 + theta * ((392 - 287 * Q) / 60.0 + theta * (-49 + 49 * Q) / 25.0)));
+ final double coeff7 = theta * ( 3 / 10.0 + theta * ( -1 + theta * ( 3 / 4.0)));
+ for (int i = 0; i < interpolatedState.length; ++i) {
+ final double yDot1 = yDotK[0][i];
+ final double yDot2 = yDotK[1][i];
+ final double yDot3 = yDotK[2][i];
+ final double yDot4 = yDotK[3][i];
+ final double yDot5 = yDotK[4][i];
+ final double yDot6 = yDotK[5][i];
+ final double yDot7 = yDotK[6][i];
+ interpolatedState[i] = previousState[i] +
+ theta * h * (coeff1 * yDot1 + coeff2 * yDot2 + coeff3 * yDot3 +
+ coeff4 * yDot4 + coeff5 * yDot5 + coeff6 * yDot6 + coeff7 * yDot7);
+ interpolatedDerivatives[i] = coeffDot1 * yDot1 + coeffDot2 * yDot2 + coeffDot3 * yDot3 +
+ coeffDot4 * yDot4 + coeffDot5 * yDot5 + coeffDot6 * yDot6 + coeffDot7 * yDot7;
+ }
+ } else {
+
+ final double coeff1 = -1 / 20.0 + theta * ( 19 / 20.0 + theta * ( -89 / 20.0 + theta * ( 151 / 20.0 + theta * -21 / 5.0)));
+ final double coeff2 = 0;
+ final double coeff3 = -16 / 45.0 + theta * ( -16 / 45.0 + theta * ( -328 / 45.0 + theta * ( 424 / 15.0 + theta * -112 / 5.0)));
+ final double coeff4 = theta * ( theta * ( 162 / 25.0 + theta * ( -648 / 25.0 + theta * 567 / 25.0)));
+ final double coeff5 = -49 / 180.0 + theta * ( -49 / 180.0 + theta * ((2254 + 1029 * Q) / 900.0 + theta * ((-1372 - 847 * Q) / 300.0 + theta * ( 49 + 49 * Q) / 25.0)));
+ final double coeff6 = -49 / 180.0 + theta * ( -49 / 180.0 + theta * ((2254 - 1029 * Q) / 900.0 + theta * ((-1372 + 847 * Q) / 300.0 + theta * ( 49 - 49 * Q) / 25.0)));
+ final double coeff7 = -1 / 20.0 + theta * ( -1 / 20.0 + theta * ( 1 / 4.0 + theta * ( -3 / 4.0)));
+ for (int i = 0; i < interpolatedState.length; ++i) {
+ final double yDot1 = yDotK[0][i];
+ final double yDot2 = yDotK[1][i];
+ final double yDot3 = yDotK[2][i];
+ final double yDot4 = yDotK[3][i];
+ final double yDot5 = yDotK[4][i];
+ final double yDot6 = yDotK[5][i];
+ final double yDot7 = yDotK[6][i];
+ interpolatedState[i] = currentState[i] +
+ oneMinusThetaH * (coeff1 * yDot1 + coeff2 * yDot2 + coeff3 * yDot3 +
+ coeff4 * yDot4 + coeff5 * yDot5 + coeff6 * yDot6 + coeff7 * yDot7);
+ interpolatedDerivatives[i] = coeffDot1 * yDot1 + coeffDot2 * yDot2 + coeffDot3 * yDot3 +
+ coeffDot4 * yDot4 + coeffDot5 * yDot5 + coeffDot6 * yDot6 + coeffDot7 * yDot7;
+ }
+ }
+
+ }
+
+}