summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/analysis/polynomials/PolynomialFunctionLagrangeForm.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/analysis/polynomials/PolynomialFunctionLagrangeForm.java')
-rw-r--r--src/main/java/org/apache/commons/math3/analysis/polynomials/PolynomialFunctionLagrangeForm.java326
1 files changed, 326 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/analysis/polynomials/PolynomialFunctionLagrangeForm.java b/src/main/java/org/apache/commons/math3/analysis/polynomials/PolynomialFunctionLagrangeForm.java
new file mode 100644
index 0000000..9d812df
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/analysis/polynomials/PolynomialFunctionLagrangeForm.java
@@ -0,0 +1,326 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.analysis.polynomials;
+
+import org.apache.commons.math3.analysis.UnivariateFunction;
+import org.apache.commons.math3.util.FastMath;
+import org.apache.commons.math3.util.MathArrays;
+import org.apache.commons.math3.exception.DimensionMismatchException;
+import org.apache.commons.math3.exception.NonMonotonicSequenceException;
+import org.apache.commons.math3.exception.NumberIsTooSmallException;
+import org.apache.commons.math3.exception.util.LocalizedFormats;
+
+/**
+ * Implements the representation of a real polynomial function in
+ * <a href="http://mathworld.wolfram.com/LagrangeInterpolatingPolynomial.html">
+ * Lagrange Form</a>. For reference, see <b>Introduction to Numerical
+ * Analysis</b>, ISBN 038795452X, chapter 2.
+ * <p>
+ * The approximated function should be smooth enough for Lagrange polynomial
+ * to work well. Otherwise, consider using splines instead.</p>
+ *
+ * @since 1.2
+ */
+public class PolynomialFunctionLagrangeForm implements UnivariateFunction {
+ /**
+ * The coefficients of the polynomial, ordered by degree -- i.e.
+ * coefficients[0] is the constant term and coefficients[n] is the
+ * coefficient of x^n where n is the degree of the polynomial.
+ */
+ private double coefficients[];
+ /**
+ * Interpolating points (abscissas).
+ */
+ private final double x[];
+ /**
+ * Function values at interpolating points.
+ */
+ private final double y[];
+ /**
+ * Whether the polynomial coefficients are available.
+ */
+ private boolean coefficientsComputed;
+
+ /**
+ * Construct a Lagrange polynomial with the given abscissas and function
+ * values. The order of interpolating points are not important.
+ * <p>
+ * The constructor makes copy of the input arrays and assigns them.</p>
+ *
+ * @param x interpolating points
+ * @param y function values at interpolating points
+ * @throws DimensionMismatchException if the array lengths are different.
+ * @throws NumberIsTooSmallException if the number of points is less than 2.
+ * @throws NonMonotonicSequenceException
+ * if two abscissae have the same value.
+ */
+ public PolynomialFunctionLagrangeForm(double x[], double y[])
+ throws DimensionMismatchException, NumberIsTooSmallException, NonMonotonicSequenceException {
+ this.x = new double[x.length];
+ this.y = new double[y.length];
+ System.arraycopy(x, 0, this.x, 0, x.length);
+ System.arraycopy(y, 0, this.y, 0, y.length);
+ coefficientsComputed = false;
+
+ if (!verifyInterpolationArray(x, y, false)) {
+ MathArrays.sortInPlace(this.x, this.y);
+ // Second check in case some abscissa is duplicated.
+ verifyInterpolationArray(this.x, this.y, true);
+ }
+ }
+
+ /**
+ * Calculate the function value at the given point.
+ *
+ * @param z Point at which the function value is to be computed.
+ * @return the function value.
+ * @throws DimensionMismatchException if {@code x} and {@code y} have
+ * different lengths.
+ * @throws org.apache.commons.math3.exception.NonMonotonicSequenceException
+ * if {@code x} is not sorted in strictly increasing order.
+ * @throws NumberIsTooSmallException if the size of {@code x} is less
+ * than 2.
+ */
+ public double value(double z) {
+ return evaluateInternal(x, y, z);
+ }
+
+ /**
+ * Returns the degree of the polynomial.
+ *
+ * @return the degree of the polynomial
+ */
+ public int degree() {
+ return x.length - 1;
+ }
+
+ /**
+ * Returns a copy of the interpolating points array.
+ * <p>
+ * Changes made to the returned copy will not affect the polynomial.</p>
+ *
+ * @return a fresh copy of the interpolating points array
+ */
+ public double[] getInterpolatingPoints() {
+ double[] out = new double[x.length];
+ System.arraycopy(x, 0, out, 0, x.length);
+ return out;
+ }
+
+ /**
+ * Returns a copy of the interpolating values array.
+ * <p>
+ * Changes made to the returned copy will not affect the polynomial.</p>
+ *
+ * @return a fresh copy of the interpolating values array
+ */
+ public double[] getInterpolatingValues() {
+ double[] out = new double[y.length];
+ System.arraycopy(y, 0, out, 0, y.length);
+ return out;
+ }
+
+ /**
+ * Returns a copy of the coefficients array.
+ * <p>
+ * Changes made to the returned copy will not affect the polynomial.</p>
+ * <p>
+ * Note that coefficients computation can be ill-conditioned. Use with caution
+ * and only when it is necessary.</p>
+ *
+ * @return a fresh copy of the coefficients array
+ */
+ public double[] getCoefficients() {
+ if (!coefficientsComputed) {
+ computeCoefficients();
+ }
+ double[] out = new double[coefficients.length];
+ System.arraycopy(coefficients, 0, out, 0, coefficients.length);
+ return out;
+ }
+
+ /**
+ * Evaluate the Lagrange polynomial using
+ * <a href="http://mathworld.wolfram.com/NevillesAlgorithm.html">
+ * Neville's Algorithm</a>. It takes O(n^2) time.
+ *
+ * @param x Interpolating points array.
+ * @param y Interpolating values array.
+ * @param z Point at which the function value is to be computed.
+ * @return the function value.
+ * @throws DimensionMismatchException if {@code x} and {@code y} have
+ * different lengths.
+ * @throws NonMonotonicSequenceException
+ * if {@code x} is not sorted in strictly increasing order.
+ * @throws NumberIsTooSmallException if the size of {@code x} is less
+ * than 2.
+ */
+ public static double evaluate(double x[], double y[], double z)
+ throws DimensionMismatchException, NumberIsTooSmallException, NonMonotonicSequenceException {
+ if (verifyInterpolationArray(x, y, false)) {
+ return evaluateInternal(x, y, z);
+ }
+
+ // Array is not sorted.
+ final double[] xNew = new double[x.length];
+ final double[] yNew = new double[y.length];
+ System.arraycopy(x, 0, xNew, 0, x.length);
+ System.arraycopy(y, 0, yNew, 0, y.length);
+
+ MathArrays.sortInPlace(xNew, yNew);
+ // Second check in case some abscissa is duplicated.
+ verifyInterpolationArray(xNew, yNew, true);
+ return evaluateInternal(xNew, yNew, z);
+ }
+
+ /**
+ * Evaluate the Lagrange polynomial using
+ * <a href="http://mathworld.wolfram.com/NevillesAlgorithm.html">
+ * Neville's Algorithm</a>. It takes O(n^2) time.
+ *
+ * @param x Interpolating points array.
+ * @param y Interpolating values array.
+ * @param z Point at which the function value is to be computed.
+ * @return the function value.
+ * @throws DimensionMismatchException if {@code x} and {@code y} have
+ * different lengths.
+ * @throws org.apache.commons.math3.exception.NonMonotonicSequenceException
+ * if {@code x} is not sorted in strictly increasing order.
+ * @throws NumberIsTooSmallException if the size of {@code x} is less
+ * than 2.
+ */
+ private static double evaluateInternal(double x[], double y[], double z) {
+ int nearest = 0;
+ final int n = x.length;
+ final double[] c = new double[n];
+ final double[] d = new double[n];
+ double min_dist = Double.POSITIVE_INFINITY;
+ for (int i = 0; i < n; i++) {
+ // initialize the difference arrays
+ c[i] = y[i];
+ d[i] = y[i];
+ // find out the abscissa closest to z
+ final double dist = FastMath.abs(z - x[i]);
+ if (dist < min_dist) {
+ nearest = i;
+ min_dist = dist;
+ }
+ }
+
+ // initial approximation to the function value at z
+ double value = y[nearest];
+
+ for (int i = 1; i < n; i++) {
+ for (int j = 0; j < n-i; j++) {
+ final double tc = x[j] - z;
+ final double td = x[i+j] - z;
+ final double divider = x[j] - x[i+j];
+ // update the difference arrays
+ final double w = (c[j+1] - d[j]) / divider;
+ c[j] = tc * w;
+ d[j] = td * w;
+ }
+ // sum up the difference terms to get the final value
+ if (nearest < 0.5*(n-i+1)) {
+ value += c[nearest]; // fork down
+ } else {
+ nearest--;
+ value += d[nearest]; // fork up
+ }
+ }
+
+ return value;
+ }
+
+ /**
+ * Calculate the coefficients of Lagrange polynomial from the
+ * interpolation data. It takes O(n^2) time.
+ * Note that this computation can be ill-conditioned: Use with caution
+ * and only when it is necessary.
+ */
+ protected void computeCoefficients() {
+ final int n = degree() + 1;
+ coefficients = new double[n];
+ for (int i = 0; i < n; i++) {
+ coefficients[i] = 0.0;
+ }
+
+ // c[] are the coefficients of P(x) = (x-x[0])(x-x[1])...(x-x[n-1])
+ final double[] c = new double[n+1];
+ c[0] = 1.0;
+ for (int i = 0; i < n; i++) {
+ for (int j = i; j > 0; j--) {
+ c[j] = c[j-1] - c[j] * x[i];
+ }
+ c[0] *= -x[i];
+ c[i+1] = 1;
+ }
+
+ final double[] tc = new double[n];
+ for (int i = 0; i < n; i++) {
+ // d = (x[i]-x[0])...(x[i]-x[i-1])(x[i]-x[i+1])...(x[i]-x[n-1])
+ double d = 1;
+ for (int j = 0; j < n; j++) {
+ if (i != j) {
+ d *= x[i] - x[j];
+ }
+ }
+ final double t = y[i] / d;
+ // Lagrange polynomial is the sum of n terms, each of which is a
+ // polynomial of degree n-1. tc[] are the coefficients of the i-th
+ // numerator Pi(x) = (x-x[0])...(x-x[i-1])(x-x[i+1])...(x-x[n-1]).
+ tc[n-1] = c[n]; // actually c[n] = 1
+ coefficients[n-1] += t * tc[n-1];
+ for (int j = n-2; j >= 0; j--) {
+ tc[j] = c[j+1] + tc[j+1] * x[i];
+ coefficients[j] += t * tc[j];
+ }
+ }
+
+ coefficientsComputed = true;
+ }
+
+ /**
+ * Check that the interpolation arrays are valid.
+ * The arrays features checked by this method are that both arrays have the
+ * same length and this length is at least 2.
+ *
+ * @param x Interpolating points array.
+ * @param y Interpolating values array.
+ * @param abort Whether to throw an exception if {@code x} is not sorted.
+ * @throws DimensionMismatchException if the array lengths are different.
+ * @throws NumberIsTooSmallException if the number of points is less than 2.
+ * @throws org.apache.commons.math3.exception.NonMonotonicSequenceException
+ * if {@code x} is not sorted in strictly increasing order and {@code abort}
+ * is {@code true}.
+ * @return {@code false} if the {@code x} is not sorted in increasing order,
+ * {@code true} otherwise.
+ * @see #evaluate(double[], double[], double)
+ * @see #computeCoefficients()
+ */
+ public static boolean verifyInterpolationArray(double x[], double y[], boolean abort)
+ throws DimensionMismatchException, NumberIsTooSmallException, NonMonotonicSequenceException {
+ if (x.length != y.length) {
+ throw new DimensionMismatchException(x.length, y.length);
+ }
+ if (x.length < 2) {
+ throw new NumberIsTooSmallException(LocalizedFormats.WRONG_NUMBER_OF_POINTS, 2, x.length, true);
+ }
+
+ return MathArrays.checkOrder(x, MathArrays.OrderDirection.INCREASING, true, abort);
+ }
+}