summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/analysis/differentiation/DSCompiler.java
diff options
context:
space:
mode:
Diffstat (limited to 'src/main/java/org/apache/commons/math3/analysis/differentiation/DSCompiler.java')
-rw-r--r--src/main/java/org/apache/commons/math3/analysis/differentiation/DSCompiler.java1820
1 files changed, 1820 insertions, 0 deletions
diff --git a/src/main/java/org/apache/commons/math3/analysis/differentiation/DSCompiler.java b/src/main/java/org/apache/commons/math3/analysis/differentiation/DSCompiler.java
new file mode 100644
index 0000000..15fa499
--- /dev/null
+++ b/src/main/java/org/apache/commons/math3/analysis/differentiation/DSCompiler.java
@@ -0,0 +1,1820 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.commons.math3.analysis.differentiation;
+
+import java.util.ArrayList;
+import java.util.Arrays;
+import java.util.List;
+import java.util.concurrent.atomic.AtomicReference;
+
+import org.apache.commons.math3.exception.DimensionMismatchException;
+import org.apache.commons.math3.exception.MathArithmeticException;
+import org.apache.commons.math3.exception.MathInternalError;
+import org.apache.commons.math3.exception.NotPositiveException;
+import org.apache.commons.math3.exception.NumberIsTooLargeException;
+import org.apache.commons.math3.util.CombinatoricsUtils;
+import org.apache.commons.math3.util.FastMath;
+import org.apache.commons.math3.util.MathArrays;
+
+/** Class holding "compiled" computation rules for derivative structures.
+ * <p>This class implements the computation rules described in Dan Kalman's paper <a
+ * href="http://www1.american.edu/cas/mathstat/People/kalman/pdffiles/mmgautodiff.pdf">Doubly
+ * Recursive Multivariate Automatic Differentiation</a>, Mathematics Magazine, vol. 75,
+ * no. 3, June 2002. However, in order to avoid performances bottlenecks, the recursive
+ * rules are "compiled" once in an unfold form. This class does this recursion unrolling
+ * and stores the computation rules as simple loops with pre-computed indirection arrays.</p>
+ * <p>
+ * This class maps all derivative computation into single dimension arrays that hold the
+ * value and partial derivatives. The class does not hold these arrays, which remains under
+ * the responsibility of the caller. For each combination of number of free parameters and
+ * derivation order, only one compiler is necessary, and this compiler will be used to
+ * perform computations on all arrays provided to it, which can represent hundreds or
+ * thousands of different parameters kept together with all theur partial derivatives.
+ * </p>
+ * <p>
+ * The arrays on which compilers operate contain only the partial derivatives together
+ * with the 0<sup>th</sup> derivative, i.e. the value. The partial derivatives are stored in
+ * a compiler-specific order, which can be retrieved using methods {@link
+ * #getPartialDerivativeIndex(int...) getPartialDerivativeIndex} and {@link
+ * #getPartialDerivativeOrders(int)}. The value is guaranteed to be stored as the first element
+ * (i.e. the {@link #getPartialDerivativeIndex(int...) getPartialDerivativeIndex} method returns
+ * 0 when called with 0 for all derivation orders and {@link #getPartialDerivativeOrders(int)
+ * getPartialDerivativeOrders} returns an array filled with 0 when called with 0 as the index).
+ * </p>
+ * <p>
+ * Note that the ordering changes with number of parameters and derivation order. For example
+ * given 2 parameters x and y, df/dy is stored at index 2 when derivation order is set to 1 (in
+ * this case the array has three elements: f, df/dx and df/dy). If derivation order is set to
+ * 2, then df/dy will be stored at index 3 (in this case the array has six elements: f, df/dx,
+ * df/dxdx, df/dy, df/dxdy and df/dydy).
+ * </p>
+ * <p>
+ * Given this structure, users can perform some simple operations like adding, subtracting
+ * or multiplying constants and negating the elements by themselves, knowing if they want to
+ * mutate their array or create a new array. These simple operations are not provided by
+ * the compiler. The compiler provides only the more complex operations between several arrays.
+ * </p>
+ * <p>This class is mainly used as the engine for scalar variable {@link DerivativeStructure}.
+ * It can also be used directly to hold several variables in arrays for more complex data
+ * structures. User can for example store a vector of n variables depending on three x, y
+ * and z free parameters in one array as follows:</p> <pre>
+ * // parameter 0 is x, parameter 1 is y, parameter 2 is z
+ * int parameters = 3;
+ * DSCompiler compiler = DSCompiler.getCompiler(parameters, order);
+ * int size = compiler.getSize();
+ *
+ * // pack all elements in a single array
+ * double[] array = new double[n * size];
+ * for (int i = 0; i &lt; n; ++i) {
+ *
+ * // we know value is guaranteed to be the first element
+ * array[i * size] = v[i];
+ *
+ * // we don't know where first derivatives are stored, so we ask the compiler
+ * array[i * size + compiler.getPartialDerivativeIndex(1, 0, 0) = dvOnDx[i][0];
+ * array[i * size + compiler.getPartialDerivativeIndex(0, 1, 0) = dvOnDy[i][0];
+ * array[i * size + compiler.getPartialDerivativeIndex(0, 0, 1) = dvOnDz[i][0];
+ *
+ * // we let all higher order derivatives set to 0
+ *
+ * }
+ * </pre>
+ * <p>Then in another function, user can perform some operations on all elements stored
+ * in the single array, such as a simple product of all variables:</p> <pre>
+ * // compute the product of all elements
+ * double[] product = new double[size];
+ * prod[0] = 1.0;
+ * for (int i = 0; i &lt; n; ++i) {
+ * double[] tmp = product.clone();
+ * compiler.multiply(tmp, 0, array, i * size, product, 0);
+ * }
+ *
+ * // value
+ * double p = product[0];
+ *
+ * // first derivatives
+ * double dPdX = product[compiler.getPartialDerivativeIndex(1, 0, 0)];
+ * double dPdY = product[compiler.getPartialDerivativeIndex(0, 1, 0)];
+ * double dPdZ = product[compiler.getPartialDerivativeIndex(0, 0, 1)];
+ *
+ * // cross derivatives (assuming order was at least 2)
+ * double dPdXdX = product[compiler.getPartialDerivativeIndex(2, 0, 0)];
+ * double dPdXdY = product[compiler.getPartialDerivativeIndex(1, 1, 0)];
+ * double dPdXdZ = product[compiler.getPartialDerivativeIndex(1, 0, 1)];
+ * double dPdYdY = product[compiler.getPartialDerivativeIndex(0, 2, 0)];
+ * double dPdYdZ = product[compiler.getPartialDerivativeIndex(0, 1, 1)];
+ * double dPdZdZ = product[compiler.getPartialDerivativeIndex(0, 0, 2)];
+ * </pre>
+ * @see DerivativeStructure
+ * @since 3.1
+ */
+public class DSCompiler {
+
+ /** Array of all compilers created so far. */
+ private static AtomicReference<DSCompiler[][]> compilers =
+ new AtomicReference<DSCompiler[][]>(null);
+
+ /** Number of free parameters. */
+ private final int parameters;
+
+ /** Derivation order. */
+ private final int order;
+
+ /** Number of partial derivatives (including the single 0 order derivative element). */
+ private final int[][] sizes;
+
+ /** Indirection array for partial derivatives. */
+ private final int[][] derivativesIndirection;
+
+ /** Indirection array of the lower derivative elements. */
+ private final int[] lowerIndirection;
+
+ /** Indirection arrays for multiplication. */
+ private final int[][][] multIndirection;
+
+ /** Indirection arrays for function composition. */
+ private final int[][][] compIndirection;
+
+ /** Private constructor, reserved for the factory method {@link #getCompiler(int, int)}.
+ * @param parameters number of free parameters
+ * @param order derivation order
+ * @param valueCompiler compiler for the value part
+ * @param derivativeCompiler compiler for the derivative part
+ * @throws NumberIsTooLargeException if order is too large
+ */
+ private DSCompiler(final int parameters, final int order,
+ final DSCompiler valueCompiler, final DSCompiler derivativeCompiler)
+ throws NumberIsTooLargeException {
+
+ this.parameters = parameters;
+ this.order = order;
+ this.sizes = compileSizes(parameters, order, valueCompiler);
+ this.derivativesIndirection =
+ compileDerivativesIndirection(parameters, order,
+ valueCompiler, derivativeCompiler);
+ this.lowerIndirection =
+ compileLowerIndirection(parameters, order,
+ valueCompiler, derivativeCompiler);
+ this.multIndirection =
+ compileMultiplicationIndirection(parameters, order,
+ valueCompiler, derivativeCompiler, lowerIndirection);
+ this.compIndirection =
+ compileCompositionIndirection(parameters, order,
+ valueCompiler, derivativeCompiler,
+ sizes, derivativesIndirection);
+
+ }
+
+ /** Get the compiler for number of free parameters and order.
+ * @param parameters number of free parameters
+ * @param order derivation order
+ * @return cached rules set
+ * @throws NumberIsTooLargeException if order is too large
+ */
+ public static DSCompiler getCompiler(int parameters, int order)
+ throws NumberIsTooLargeException {
+
+ // get the cached compilers
+ final DSCompiler[][] cache = compilers.get();
+ if (cache != null && cache.length > parameters &&
+ cache[parameters].length > order && cache[parameters][order] != null) {
+ // the compiler has already been created
+ return cache[parameters][order];
+ }
+
+ // we need to create more compilers
+ final int maxParameters = FastMath.max(parameters, cache == null ? 0 : cache.length);
+ final int maxOrder = FastMath.max(order, cache == null ? 0 : cache[0].length);
+ final DSCompiler[][] newCache = new DSCompiler[maxParameters + 1][maxOrder + 1];
+
+ if (cache != null) {
+ // preserve the already created compilers
+ for (int i = 0; i < cache.length; ++i) {
+ System.arraycopy(cache[i], 0, newCache[i], 0, cache[i].length);
+ }
+ }
+
+ // create the array in increasing diagonal order
+ for (int diag = 0; diag <= parameters + order; ++diag) {
+ for (int o = FastMath.max(0, diag - parameters); o <= FastMath.min(order, diag); ++o) {
+ final int p = diag - o;
+ if (newCache[p][o] == null) {
+ final DSCompiler valueCompiler = (p == 0) ? null : newCache[p - 1][o];
+ final DSCompiler derivativeCompiler = (o == 0) ? null : newCache[p][o - 1];
+ newCache[p][o] = new DSCompiler(p, o, valueCompiler, derivativeCompiler);
+ }
+ }
+ }
+
+ // atomically reset the cached compilers array
+ compilers.compareAndSet(cache, newCache);
+
+ return newCache[parameters][order];
+
+ }
+
+ /** Compile the sizes array.
+ * @param parameters number of free parameters
+ * @param order derivation order
+ * @param valueCompiler compiler for the value part
+ * @return sizes array
+ */
+ private static int[][] compileSizes(final int parameters, final int order,
+ final DSCompiler valueCompiler) {
+
+ final int[][] sizes = new int[parameters + 1][order + 1];
+ if (parameters == 0) {
+ Arrays.fill(sizes[0], 1);
+ } else {
+ System.arraycopy(valueCompiler.sizes, 0, sizes, 0, parameters);
+ sizes[parameters][0] = 1;
+ for (int i = 0; i < order; ++i) {
+ sizes[parameters][i + 1] = sizes[parameters][i] + sizes[parameters - 1][i + 1];
+ }
+ }
+
+ return sizes;
+
+ }
+
+ /** Compile the derivatives indirection array.
+ * @param parameters number of free parameters
+ * @param order derivation order
+ * @param valueCompiler compiler for the value part
+ * @param derivativeCompiler compiler for the derivative part
+ * @return derivatives indirection array
+ */
+ private static int[][] compileDerivativesIndirection(final int parameters, final int order,
+ final DSCompiler valueCompiler,
+ final DSCompiler derivativeCompiler) {
+
+ if (parameters == 0 || order == 0) {
+ return new int[1][parameters];
+ }
+
+ final int vSize = valueCompiler.derivativesIndirection.length;
+ final int dSize = derivativeCompiler.derivativesIndirection.length;
+ final int[][] derivativesIndirection = new int[vSize + dSize][parameters];
+
+ // set up the indices for the value part
+ for (int i = 0; i < vSize; ++i) {
+ // copy the first indices, the last one remaining set to 0
+ System.arraycopy(valueCompiler.derivativesIndirection[i], 0,
+ derivativesIndirection[i], 0,
+ parameters - 1);
+ }
+
+ // set up the indices for the derivative part
+ for (int i = 0; i < dSize; ++i) {
+
+ // copy the indices
+ System.arraycopy(derivativeCompiler.derivativesIndirection[i], 0,
+ derivativesIndirection[vSize + i], 0,
+ parameters);
+
+ // increment the derivation order for the last parameter
+ derivativesIndirection[vSize + i][parameters - 1]++;
+
+ }
+
+ return derivativesIndirection;
+
+ }
+
+ /** Compile the lower derivatives indirection array.
+ * <p>
+ * This indirection array contains the indices of all elements
+ * except derivatives for last derivation order.
+ * </p>
+ * @param parameters number of free parameters
+ * @param order derivation order
+ * @param valueCompiler compiler for the value part
+ * @param derivativeCompiler compiler for the derivative part
+ * @return lower derivatives indirection array
+ */
+ private static int[] compileLowerIndirection(final int parameters, final int order,
+ final DSCompiler valueCompiler,
+ final DSCompiler derivativeCompiler) {
+
+ if (parameters == 0 || order <= 1) {
+ return new int[] { 0 };
+ }
+
+ // this is an implementation of definition 6 in Dan Kalman's paper.
+ final int vSize = valueCompiler.lowerIndirection.length;
+ final int dSize = derivativeCompiler.lowerIndirection.length;
+ final int[] lowerIndirection = new int[vSize + dSize];
+ System.arraycopy(valueCompiler.lowerIndirection, 0, lowerIndirection, 0, vSize);
+ for (int i = 0; i < dSize; ++i) {
+ lowerIndirection[vSize + i] = valueCompiler.getSize() + derivativeCompiler.lowerIndirection[i];
+ }
+
+ return lowerIndirection;
+
+ }
+
+ /** Compile the multiplication indirection array.
+ * <p>
+ * This indirection array contains the indices of all pairs of elements
+ * involved when computing a multiplication. This allows a straightforward
+ * loop-based multiplication (see {@link #multiply(double[], int, double[], int, double[], int)}).
+ * </p>
+ * @param parameters number of free parameters
+ * @param order derivation order
+ * @param valueCompiler compiler for the value part
+ * @param derivativeCompiler compiler for the derivative part
+ * @param lowerIndirection lower derivatives indirection array
+ * @return multiplication indirection array
+ */
+ private static int[][][] compileMultiplicationIndirection(final int parameters, final int order,
+ final DSCompiler valueCompiler,
+ final DSCompiler derivativeCompiler,
+ final int[] lowerIndirection) {
+
+ if ((parameters == 0) || (order == 0)) {
+ return new int[][][] { { { 1, 0, 0 } } };
+ }
+
+ // this is an implementation of definition 3 in Dan Kalman's paper.
+ final int vSize = valueCompiler.multIndirection.length;
+ final int dSize = derivativeCompiler.multIndirection.length;
+ final int[][][] multIndirection = new int[vSize + dSize][][];
+
+ System.arraycopy(valueCompiler.multIndirection, 0, multIndirection, 0, vSize);
+
+ for (int i = 0; i < dSize; ++i) {
+ final int[][] dRow = derivativeCompiler.multIndirection[i];
+ List<int[]> row = new ArrayList<int[]>(dRow.length * 2);
+ for (int j = 0; j < dRow.length; ++j) {
+ row.add(new int[] { dRow[j][0], lowerIndirection[dRow[j][1]], vSize + dRow[j][2] });
+ row.add(new int[] { dRow[j][0], vSize + dRow[j][1], lowerIndirection[dRow[j][2]] });
+ }
+
+ // combine terms with similar derivation orders
+ final List<int[]> combined = new ArrayList<int[]>(row.size());
+ for (int j = 0; j < row.size(); ++j) {
+ final int[] termJ = row.get(j);
+ if (termJ[0] > 0) {
+ for (int k = j + 1; k < row.size(); ++k) {
+ final int[] termK = row.get(k);
+ if (termJ[1] == termK[1] && termJ[2] == termK[2]) {
+ // combine termJ and termK
+ termJ[0] += termK[0];
+ // make sure we will skip termK later on in the outer loop
+ termK[0] = 0;
+ }
+ }
+ combined.add(termJ);
+ }
+ }
+
+ multIndirection[vSize + i] = combined.toArray(new int[combined.size()][]);
+
+ }
+
+ return multIndirection;
+
+ }
+
+ /** Compile the function composition indirection array.
+ * <p>
+ * This indirection array contains the indices of all sets of elements
+ * involved when computing a composition. This allows a straightforward
+ * loop-based composition (see {@link #compose(double[], int, double[], double[], int)}).
+ * </p>
+ * @param parameters number of free parameters
+ * @param order derivation order
+ * @param valueCompiler compiler for the value part
+ * @param derivativeCompiler compiler for the derivative part
+ * @param sizes sizes array
+ * @param derivativesIndirection derivatives indirection array
+ * @return multiplication indirection array
+ * @throws NumberIsTooLargeException if order is too large
+ */
+ private static int[][][] compileCompositionIndirection(final int parameters, final int order,
+ final DSCompiler valueCompiler,
+ final DSCompiler derivativeCompiler,
+ final int[][] sizes,
+ final int[][] derivativesIndirection)
+ throws NumberIsTooLargeException {
+
+ if ((parameters == 0) || (order == 0)) {
+ return new int[][][] { { { 1, 0 } } };
+ }
+
+ final int vSize = valueCompiler.compIndirection.length;
+ final int dSize = derivativeCompiler.compIndirection.length;
+ final int[][][] compIndirection = new int[vSize + dSize][][];
+
+ // the composition rules from the value part can be reused as is
+ System.arraycopy(valueCompiler.compIndirection, 0, compIndirection, 0, vSize);
+
+ // the composition rules for the derivative part are deduced by
+ // differentiation the rules from the underlying compiler once
+ // with respect to the parameter this compiler handles and the
+ // underlying one did not handle
+ for (int i = 0; i < dSize; ++i) {
+ List<int[]> row = new ArrayList<int[]>();
+ for (int[] term : derivativeCompiler.compIndirection[i]) {
+
+ // handle term p * f_k(g(x)) * g_l1(x) * g_l2(x) * ... * g_lp(x)
+
+ // derive the first factor in the term: f_k with respect to new parameter
+ int[] derivedTermF = new int[term.length + 1];
+ derivedTermF[0] = term[0]; // p
+ derivedTermF[1] = term[1] + 1; // f_(k+1)
+ int[] orders = new int[parameters];
+ orders[parameters - 1] = 1;
+ derivedTermF[term.length] = getPartialDerivativeIndex(parameters, order, sizes, orders); // g_1
+ for (int j = 2; j < term.length; ++j) {
+ // convert the indices as the mapping for the current order
+ // is different from the mapping with one less order
+ derivedTermF[j] = convertIndex(term[j], parameters,
+ derivativeCompiler.derivativesIndirection,
+ parameters, order, sizes);
+ }
+ Arrays.sort(derivedTermF, 2, derivedTermF.length);
+ row.add(derivedTermF);
+
+ // derive the various g_l
+ for (int l = 2; l < term.length; ++l) {
+ int[] derivedTermG = new int[term.length];
+ derivedTermG[0] = term[0];
+ derivedTermG[1] = term[1];
+ for (int j = 2; j < term.length; ++j) {
+ // convert the indices as the mapping for the current order
+ // is different from the mapping with one less order
+ derivedTermG[j] = convertIndex(term[j], parameters,
+ derivativeCompiler.derivativesIndirection,
+ parameters, order, sizes);
+ if (j == l) {
+ // derive this term
+ System.arraycopy(derivativesIndirection[derivedTermG[j]], 0, orders, 0, parameters);
+ orders[parameters - 1]++;
+ derivedTermG[j] = getPartialDerivativeIndex(parameters, order, sizes, orders);
+ }
+ }
+ Arrays.sort(derivedTermG, 2, derivedTermG.length);
+ row.add(derivedTermG);
+ }
+
+ }
+
+ // combine terms with similar derivation orders
+ final List<int[]> combined = new ArrayList<int[]>(row.size());
+ for (int j = 0; j < row.size(); ++j) {
+ final int[] termJ = row.get(j);
+ if (termJ[0] > 0) {
+ for (int k = j + 1; k < row.size(); ++k) {
+ final int[] termK = row.get(k);
+ boolean equals = termJ.length == termK.length;
+ for (int l = 1; equals && l < termJ.length; ++l) {
+ equals &= termJ[l] == termK[l];
+ }
+ if (equals) {
+ // combine termJ and termK
+ termJ[0] += termK[0];
+ // make sure we will skip termK later on in the outer loop
+ termK[0] = 0;
+ }
+ }
+ combined.add(termJ);
+ }
+ }
+
+ compIndirection[vSize + i] = combined.toArray(new int[combined.size()][]);
+
+ }
+
+ return compIndirection;
+
+ }
+
+ /** Get the index of a partial derivative in the array.
+ * <p>
+ * If all orders are set to 0, then the 0<sup>th</sup> order derivative
+ * is returned, which is the value of the function.
+ * </p>
+ * <p>The indices of derivatives are between 0 and {@link #getSize() getSize()} - 1.
+ * Their specific order is fixed for a given compiler, but otherwise not
+ * publicly specified. There are however some simple cases which have guaranteed
+ * indices:
+ * </p>
+ * <ul>
+ * <li>the index of 0<sup>th</sup> order derivative is always 0</li>
+ * <li>if there is only 1 {@link #getFreeParameters() free parameter}, then the
+ * derivatives are sorted in increasing derivation order (i.e. f at index 0, df/dp
+ * at index 1, d<sup>2</sup>f/dp<sup>2</sup> at index 2 ...
+ * d<sup>k</sup>f/dp<sup>k</sup> at index k),</li>
+ * <li>if the {@link #getOrder() derivation order} is 1, then the derivatives
+ * are sorted in increasing free parameter order (i.e. f at index 0, df/dx<sub>1</sub>
+ * at index 1, df/dx<sub>2</sub> at index 2 ... df/dx<sub>k</sub> at index k),</li>
+ * <li>all other cases are not publicly specified</li>
+ * </ul>
+ * <p>
+ * This method is the inverse of method {@link #getPartialDerivativeOrders(int)}
+ * </p>
+ * @param orders derivation orders with respect to each parameter
+ * @return index of the partial derivative
+ * @exception DimensionMismatchException if the numbers of parameters does not
+ * match the instance
+ * @exception NumberIsTooLargeException if sum of derivation orders is larger
+ * than the instance limits
+ * @see #getPartialDerivativeOrders(int)
+ */
+ public int getPartialDerivativeIndex(final int ... orders)
+ throws DimensionMismatchException, NumberIsTooLargeException {
+
+ // safety check
+ if (orders.length != getFreeParameters()) {
+ throw new DimensionMismatchException(orders.length, getFreeParameters());
+ }
+
+ return getPartialDerivativeIndex(parameters, order, sizes, orders);
+
+ }
+
+ /** Get the index of a partial derivative in an array.
+ * @param parameters number of free parameters
+ * @param order derivation order
+ * @param sizes sizes array
+ * @param orders derivation orders with respect to each parameter
+ * (the lenght of this array must match the number of parameters)
+ * @return index of the partial derivative
+ * @exception NumberIsTooLargeException if sum of derivation orders is larger
+ * than the instance limits
+ */
+ private static int getPartialDerivativeIndex(final int parameters, final int order,
+ final int[][] sizes, final int ... orders)
+ throws NumberIsTooLargeException {
+
+ // the value is obtained by diving into the recursive Dan Kalman's structure
+ // this is theorem 2 of his paper, with recursion replaced by iteration
+ int index = 0;
+ int m = order;
+ int ordersSum = 0;
+ for (int i = parameters - 1; i >= 0; --i) {
+
+ // derivative order for current free parameter
+ int derivativeOrder = orders[i];
+
+ // safety check
+ ordersSum += derivativeOrder;
+ if (ordersSum > order) {
+ throw new NumberIsTooLargeException(ordersSum, order, true);
+ }
+
+ while (derivativeOrder-- > 0) {
+ // as long as we differentiate according to current free parameter,
+ // we have to skip the value part and dive into the derivative part
+ // so we add the size of the value part to the base index
+ index += sizes[i][m--];
+ }
+
+ }
+
+ return index;
+
+ }
+
+ /** Convert an index from one (parameters, order) structure to another.
+ * @param index index of a partial derivative in source derivative structure
+ * @param srcP number of free parameters in source derivative structure
+ * @param srcDerivativesIndirection derivatives indirection array for the source
+ * derivative structure
+ * @param destP number of free parameters in destination derivative structure
+ * @param destO derivation order in destination derivative structure
+ * @param destSizes sizes array for the destination derivative structure
+ * @return index of the partial derivative with the <em>same</em> characteristics
+ * in destination derivative structure
+ * @throws NumberIsTooLargeException if order is too large
+ */
+ private static int convertIndex(final int index,
+ final int srcP, final int[][] srcDerivativesIndirection,
+ final int destP, final int destO, final int[][] destSizes)
+ throws NumberIsTooLargeException {
+ int[] orders = new int[destP];
+ System.arraycopy(srcDerivativesIndirection[index], 0, orders, 0, FastMath.min(srcP, destP));
+ return getPartialDerivativeIndex(destP, destO, destSizes, orders);
+ }
+
+ /** Get the derivation orders for a specific index in the array.
+ * <p>
+ * This method is the inverse of {@link #getPartialDerivativeIndex(int...)}.
+ * </p>
+ * @param index of the partial derivative
+ * @return orders derivation orders with respect to each parameter
+ * @see #getPartialDerivativeIndex(int...)
+ */
+ public int[] getPartialDerivativeOrders(final int index) {
+ return derivativesIndirection[index];
+ }
+
+ /** Get the number of free parameters.
+ * @return number of free parameters
+ */
+ public int getFreeParameters() {
+ return parameters;
+ }
+
+ /** Get the derivation order.
+ * @return derivation order
+ */
+ public int getOrder() {
+ return order;
+ }
+
+ /** Get the array size required for holding partial derivatives data.
+ * <p>
+ * This number includes the single 0 order derivative element, which is
+ * guaranteed to be stored in the first element of the array.
+ * </p>
+ * @return array size required for holding partial derivatives data
+ */
+ public int getSize() {
+ return sizes[parameters][order];
+ }
+
+ /** Compute linear combination.
+ * The derivative structure built will be a1 * ds1 + a2 * ds2
+ * @param a1 first scale factor
+ * @param c1 first base (unscaled) component
+ * @param offset1 offset of first operand in its array
+ * @param a2 second scale factor
+ * @param c2 second base (unscaled) component
+ * @param offset2 offset of second operand in its array
+ * @param result array where result must be stored (it may be
+ * one of the input arrays)
+ * @param resultOffset offset of the result in its array
+ */
+ public void linearCombination(final double a1, final double[] c1, final int offset1,
+ final double a2, final double[] c2, final int offset2,
+ final double[] result, final int resultOffset) {
+ for (int i = 0; i < getSize(); ++i) {
+ result[resultOffset + i] =
+ MathArrays.linearCombination(a1, c1[offset1 + i], a2, c2[offset2 + i]);
+ }
+ }
+
+ /** Compute linear combination.
+ * The derivative structure built will be a1 * ds1 + a2 * ds2 + a3 * ds3 + a4 * ds4
+ * @param a1 first scale factor
+ * @param c1 first base (unscaled) component
+ * @param offset1 offset of first operand in its array
+ * @param a2 second scale factor
+ * @param c2 second base (unscaled) component
+ * @param offset2 offset of second operand in its array
+ * @param a3 third scale factor
+ * @param c3 third base (unscaled) component
+ * @param offset3 offset of third operand in its array
+ * @param result array where result must be stored (it may be
+ * one of the input arrays)
+ * @param resultOffset offset of the result in its array
+ */
+ public void linearCombination(final double a1, final double[] c1, final int offset1,
+ final double a2, final double[] c2, final int offset2,
+ final double a3, final double[] c3, final int offset3,
+ final double[] result, final int resultOffset) {
+ for (int i = 0; i < getSize(); ++i) {
+ result[resultOffset + i] =
+ MathArrays.linearCombination(a1, c1[offset1 + i],
+ a2, c2[offset2 + i],
+ a3, c3[offset3 + i]);
+ }
+ }
+
+ /** Compute linear combination.
+ * The derivative structure built will be a1 * ds1 + a2 * ds2 + a3 * ds3 + a4 * ds4
+ * @param a1 first scale factor
+ * @param c1 first base (unscaled) component
+ * @param offset1 offset of first operand in its array
+ * @param a2 second scale factor
+ * @param c2 second base (unscaled) component
+ * @param offset2 offset of second operand in its array
+ * @param a3 third scale factor
+ * @param c3 third base (unscaled) component
+ * @param offset3 offset of third operand in its array
+ * @param a4 fourth scale factor
+ * @param c4 fourth base (unscaled) component
+ * @param offset4 offset of fourth operand in its array
+ * @param result array where result must be stored (it may be
+ * one of the input arrays)
+ * @param resultOffset offset of the result in its array
+ */
+ public void linearCombination(final double a1, final double[] c1, final int offset1,
+ final double a2, final double[] c2, final int offset2,
+ final double a3, final double[] c3, final int offset3,
+ final double a4, final double[] c4, final int offset4,
+ final double[] result, final int resultOffset) {
+ for (int i = 0; i < getSize(); ++i) {
+ result[resultOffset + i] =
+ MathArrays.linearCombination(a1, c1[offset1 + i],
+ a2, c2[offset2 + i],
+ a3, c3[offset3 + i],
+ a4, c4[offset4 + i]);
+ }
+ }
+
+ /** Perform addition of two derivative structures.
+ * @param lhs array holding left hand side of addition
+ * @param lhsOffset offset of the left hand side in its array
+ * @param rhs array right hand side of addition
+ * @param rhsOffset offset of the right hand side in its array
+ * @param result array where result must be stored (it may be
+ * one of the input arrays)
+ * @param resultOffset offset of the result in its array
+ */
+ public void add(final double[] lhs, final int lhsOffset,
+ final double[] rhs, final int rhsOffset,
+ final double[] result, final int resultOffset) {
+ for (int i = 0; i < getSize(); ++i) {
+ result[resultOffset + i] = lhs[lhsOffset + i] + rhs[rhsOffset + i];
+ }
+ }
+ /** Perform subtraction of two derivative structures.
+ * @param lhs array holding left hand side of subtraction
+ * @param lhsOffset offset of the left hand side in its array
+ * @param rhs array right hand side of subtraction
+ * @param rhsOffset offset of the right hand side in its array
+ * @param result array where result must be stored (it may be
+ * one of the input arrays)
+ * @param resultOffset offset of the result in its array
+ */
+ public void subtract(final double[] lhs, final int lhsOffset,
+ final double[] rhs, final int rhsOffset,
+ final double[] result, final int resultOffset) {
+ for (int i = 0; i < getSize(); ++i) {
+ result[resultOffset + i] = lhs[lhsOffset + i] - rhs[rhsOffset + i];
+ }
+ }
+
+ /** Perform multiplication of two derivative structures.
+ * @param lhs array holding left hand side of multiplication
+ * @param lhsOffset offset of the left hand side in its array
+ * @param rhs array right hand side of multiplication
+ * @param rhsOffset offset of the right hand side in its array
+ * @param result array where result must be stored (for
+ * multiplication the result array <em>cannot</em> be one of
+ * the input arrays)
+ * @param resultOffset offset of the result in its array
+ */
+ public void multiply(final double[] lhs, final int lhsOffset,
+ final double[] rhs, final int rhsOffset,
+ final double[] result, final int resultOffset) {
+ for (int i = 0; i < multIndirection.length; ++i) {
+ final int[][] mappingI = multIndirection[i];
+ double r = 0;
+ for (int j = 0; j < mappingI.length; ++j) {
+ r += mappingI[j][0] *
+ lhs[lhsOffset + mappingI[j][1]] *
+ rhs[rhsOffset + mappingI[j][2]];
+ }
+ result[resultOffset + i] = r;
+ }
+ }
+
+ /** Perform division of two derivative structures.
+ * @param lhs array holding left hand side of division
+ * @param lhsOffset offset of the left hand side in its array
+ * @param rhs array right hand side of division
+ * @param rhsOffset offset of the right hand side in its array
+ * @param result array where result must be stored (for
+ * division the result array <em>cannot</em> be one of
+ * the input arrays)
+ * @param resultOffset offset of the result in its array
+ */
+ public void divide(final double[] lhs, final int lhsOffset,
+ final double[] rhs, final int rhsOffset,
+ final double[] result, final int resultOffset) {
+ final double[] reciprocal = new double[getSize()];
+ pow(rhs, lhsOffset, -1, reciprocal, 0);
+ multiply(lhs, lhsOffset, reciprocal, 0, result, resultOffset);
+ }
+
+ /** Perform remainder of two derivative structures.
+ * @param lhs array holding left hand side of remainder
+ * @param lhsOffset offset of the left hand side in its array
+ * @param rhs array right hand side of remainder
+ * @param rhsOffset offset of the right hand side in its array
+ * @param result array where result must be stored (it may be
+ * one of the input arrays)
+ * @param resultOffset offset of the result in its array
+ */
+ public void remainder(final double[] lhs, final int lhsOffset,
+ final double[] rhs, final int rhsOffset,
+ final double[] result, final int resultOffset) {
+
+ // compute k such that lhs % rhs = lhs - k rhs
+ final double rem = FastMath.IEEEremainder(lhs[lhsOffset], rhs[rhsOffset]);
+ final double k = FastMath.rint((lhs[lhsOffset] - rem) / rhs[rhsOffset]);
+
+ // set up value
+ result[resultOffset] = rem;
+
+ // set up partial derivatives
+ for (int i = 1; i < getSize(); ++i) {
+ result[resultOffset + i] = lhs[lhsOffset + i] - k * rhs[rhsOffset + i];
+ }
+
+ }
+
+ /** Compute power of a double to a derivative structure.
+ * @param a number to exponentiate
+ * @param operand array holding the power
+ * @param operandOffset offset of the power in its array
+ * @param result array where result must be stored (for
+ * power the result array <em>cannot</em> be the input
+ * array)
+ * @param resultOffset offset of the result in its array
+ * @since 3.3
+ */
+ public void pow(final double a,
+ final double[] operand, final int operandOffset,
+ final double[] result, final int resultOffset) {
+
+ // create the function value and derivatives
+ // [a^x, ln(a) a^x, ln(a)^2 a^x,, ln(a)^3 a^x, ... ]
+ final double[] function = new double[1 + order];
+ if (a == 0) {
+ if (operand[operandOffset] == 0) {
+ function[0] = 1;
+ double infinity = Double.POSITIVE_INFINITY;
+ for (int i = 1; i < function.length; ++i) {
+ infinity = -infinity;
+ function[i] = infinity;
+ }
+ } else if (operand[operandOffset] < 0) {
+ Arrays.fill(function, Double.NaN);
+ }
+ } else {
+ function[0] = FastMath.pow(a, operand[operandOffset]);
+ final double lnA = FastMath.log(a);
+ for (int i = 1; i < function.length; ++i) {
+ function[i] = lnA * function[i - 1];
+ }
+ }
+
+
+ // apply function composition
+ compose(operand, operandOffset, function, result, resultOffset);
+
+ }
+
+ /** Compute power of a derivative structure.
+ * @param operand array holding the operand
+ * @param operandOffset offset of the operand in its array
+ * @param p power to apply
+ * @param result array where result must be stored (for
+ * power the result array <em>cannot</em> be the input
+ * array)
+ * @param resultOffset offset of the result in its array
+ */
+ public void pow(final double[] operand, final int operandOffset, final double p,
+ final double[] result, final int resultOffset) {
+
+ // create the function value and derivatives
+ // [x^p, px^(p-1), p(p-1)x^(p-2), ... ]
+ double[] function = new double[1 + order];
+ double xk = FastMath.pow(operand[operandOffset], p - order);
+ for (int i = order; i > 0; --i) {
+ function[i] = xk;
+ xk *= operand[operandOffset];
+ }
+ function[0] = xk;
+ double coefficient = p;
+ for (int i = 1; i <= order; ++i) {
+ function[i] *= coefficient;
+ coefficient *= p - i;
+ }
+
+ // apply function composition
+ compose(operand, operandOffset, function, result, resultOffset);
+
+ }
+
+ /** Compute integer power of a derivative structure.
+ * @param operand array holding the operand
+ * @param operandOffset offset of the operand in its array
+ * @param n power to apply
+ * @param result array where result must be stored (for
+ * power the result array <em>cannot</em> be the input
+ * array)
+ * @param resultOffset offset of the result in its array
+ */
+ public void pow(final double[] operand, final int operandOffset, final int n,
+ final double[] result, final int resultOffset) {
+
+ if (n == 0) {
+ // special case, x^0 = 1 for all x
+ result[resultOffset] = 1.0;
+ Arrays.fill(result, resultOffset + 1, resultOffset + getSize(), 0);
+ return;
+ }
+
+ // create the power function value and derivatives
+ // [x^n, nx^(n-1), n(n-1)x^(n-2), ... ]
+ double[] function = new double[1 + order];
+
+ if (n > 0) {
+ // strictly positive power
+ final int maxOrder = FastMath.min(order, n);
+ double xk = FastMath.pow(operand[operandOffset], n - maxOrder);
+ for (int i = maxOrder; i > 0; --i) {
+ function[i] = xk;
+ xk *= operand[operandOffset];
+ }
+ function[0] = xk;
+ } else {
+ // strictly negative power
+ final double inv = 1.0 / operand[operandOffset];
+ double xk = FastMath.pow(inv, -n);
+ for (int i = 0; i <= order; ++i) {
+ function[i] = xk;
+ xk *= inv;
+ }
+ }
+
+ double coefficient = n;
+ for (int i = 1; i <= order; ++i) {
+ function[i] *= coefficient;
+ coefficient *= n - i;
+ }
+
+ // apply function composition
+ compose(operand, operandOffset, function, result, resultOffset);
+
+ }
+
+ /** Compute power of a derivative structure.
+ * @param x array holding the base
+ * @param xOffset offset of the base in its array
+ * @param y array holding the exponent
+ * @param yOffset offset of the exponent in its array
+ * @param result array where result must be stored (for
+ * power the result array <em>cannot</em> be the input
+ * array)
+ * @param resultOffset offset of the result in its array
+ */
+ public void pow(final double[] x, final int xOffset,
+ final double[] y, final int yOffset,
+ final double[] result, final int resultOffset) {
+ final double[] logX = new double[getSize()];
+ log(x, xOffset, logX, 0);
+ final double[] yLogX = new double[getSize()];
+ multiply(logX, 0, y, yOffset, yLogX, 0);
+ exp(yLogX, 0, result, resultOffset);
+ }
+
+ /** Compute n<sup>th</sup> root of a derivative structure.
+ * @param operand array holding the operand
+ * @param operandOffset offset of the operand in its array
+ * @param n order of the root
+ * @param result array where result must be stored (for
+ * n<sup>th</sup> root the result array <em>cannot</em> be the input
+ * array)
+ * @param resultOffset offset of the result in its array
+ */
+ public void rootN(final double[] operand, final int operandOffset, final int n,
+ final double[] result, final int resultOffset) {
+
+ // create the function value and derivatives
+ // [x^(1/n), (1/n)x^((1/n)-1), (1-n)/n^2x^((1/n)-2), ... ]
+ double[] function = new double[1 + order];
+ double xk;
+ if (n == 2) {
+ function[0] = FastMath.sqrt(operand[operandOffset]);
+ xk = 0.5 / function[0];
+ } else if (n == 3) {
+ function[0] = FastMath.cbrt(operand[operandOffset]);
+ xk = 1.0 / (3.0 * function[0] * function[0]);
+ } else {
+ function[0] = FastMath.pow(operand[operandOffset], 1.0 / n);
+ xk = 1.0 / (n * FastMath.pow(function[0], n - 1));
+ }
+ final double nReciprocal = 1.0 / n;
+ final double xReciprocal = 1.0 / operand[operandOffset];
+ for (int i = 1; i <= order; ++i) {
+ function[i] = xk;
+ xk *= xReciprocal * (nReciprocal - i);
+ }
+
+ // apply function composition
+ compose(operand, operandOffset, function, result, resultOffset);
+
+ }
+
+ /** Compute exponential of a derivative structure.
+ * @param operand array holding the operand
+ * @param operandOffset offset of the operand in its array
+ * @param result array where result must be stored (for
+ * exponential the result array <em>cannot</em> be the input
+ * array)
+ * @param resultOffset offset of the result in its array
+ */
+ public void exp(final double[] operand, final int operandOffset,
+ final double[] result, final int resultOffset) {
+
+ // create the function value and derivatives
+ double[] function = new double[1 + order];
+ Arrays.fill(function, FastMath.exp(operand[operandOffset]));
+
+ // apply function composition
+ compose(operand, operandOffset, function, result, resultOffset);
+
+ }
+
+ /** Compute exp(x) - 1 of a derivative structure.
+ * @param operand array holding the operand
+ * @param operandOffset offset of the operand in its array
+ * @param result array where result must be stored (for
+ * exponential the result array <em>cannot</em> be the input
+ * array)
+ * @param resultOffset offset of the result in its array
+ */
+ public void expm1(final double[] operand, final int operandOffset,
+ final double[] result, final int resultOffset) {
+
+ // create the function value and derivatives
+ double[] function = new double[1 + order];
+ function[0] = FastMath.expm1(operand[operandOffset]);
+ Arrays.fill(function, 1, 1 + order, FastMath.exp(operand[operandOffset]));
+
+ // apply function composition
+ compose(operand, operandOffset, function, result, resultOffset);
+
+ }
+
+ /** Compute natural logarithm of a derivative structure.
+ * @param operand array holding the operand
+ * @param operandOffset offset of the operand in its array
+ * @param result array where result must be stored (for
+ * logarithm the result array <em>cannot</em> be the input
+ * array)
+ * @param resultOffset offset of the result in its array
+ */
+ public void log(final double[] operand, final int operandOffset,
+ final double[] result, final int resultOffset) {
+
+ // create the function value and derivatives
+ double[] function = new double[1 + order];
+ function[0] = FastMath.log(operand[operandOffset]);
+ if (order > 0) {
+ double inv = 1.0 / operand[operandOffset];
+ double xk = inv;
+ for (int i = 1; i <= order; ++i) {
+ function[i] = xk;
+ xk *= -i * inv;
+ }
+ }
+
+ // apply function composition
+ compose(operand, operandOffset, function, result, resultOffset);
+
+ }
+
+ /** Computes shifted logarithm of a derivative structure.
+ * @param operand array holding the operand
+ * @param operandOffset offset of the operand in its array
+ * @param result array where result must be stored (for
+ * shifted logarithm the result array <em>cannot</em> be the input array)
+ * @param resultOffset offset of the result in its array
+ */
+ public void log1p(final double[] operand, final int operandOffset,
+ final double[] result, final int resultOffset) {
+
+ // create the function value and derivatives
+ double[] function = new double[1 + order];
+ function[0] = FastMath.log1p(operand[operandOffset]);
+ if (order > 0) {
+ double inv = 1.0 / (1.0 + operand[operandOffset]);
+ double xk = inv;
+ for (int i = 1; i <= order; ++i) {
+ function[i] = xk;
+ xk *= -i * inv;
+ }
+ }
+
+ // apply function composition
+ compose(operand, operandOffset, function, result, resultOffset);
+
+ }
+
+ /** Computes base 10 logarithm of a derivative structure.
+ * @param operand array holding the operand
+ * @param operandOffset offset of the operand in its array
+ * @param result array where result must be stored (for
+ * base 10 logarithm the result array <em>cannot</em> be the input array)
+ * @param resultOffset offset of the result in its array
+ */
+ public void log10(final double[] operand, final int operandOffset,
+ final double[] result, final int resultOffset) {
+
+ // create the function value and derivatives
+ double[] function = new double[1 + order];
+ function[0] = FastMath.log10(operand[operandOffset]);
+ if (order > 0) {
+ double inv = 1.0 / operand[operandOffset];
+ double xk = inv / FastMath.log(10.0);
+ for (int i = 1; i <= order; ++i) {
+ function[i] = xk;
+ xk *= -i * inv;
+ }
+ }
+
+ // apply function composition
+ compose(operand, operandOffset, function, result, resultOffset);
+
+ }
+
+ /** Compute cosine of a derivative structure.
+ * @param operand array holding the operand
+ * @param operandOffset offset of the operand in its array
+ * @param result array where result must be stored (for
+ * cosine the result array <em>cannot</em> be the input
+ * array)
+ * @param resultOffset offset of the result in its array
+ */
+ public void cos(final double[] operand, final int operandOffset,
+ final double[] result, final int resultOffset) {
+
+ // create the function value and derivatives
+ double[] function = new double[1 + order];
+ function[0] = FastMath.cos(operand[operandOffset]);
+ if (order > 0) {
+ function[1] = -FastMath.sin(operand[operandOffset]);
+ for (int i = 2; i <= order; ++i) {
+ function[i] = -function[i - 2];
+ }
+ }
+
+ // apply function composition
+ compose(operand, operandOffset, function, result, resultOffset);
+
+ }
+
+ /** Compute sine of a derivative structure.
+ * @param operand array holding the operand
+ * @param operandOffset offset of the operand in its array
+ * @param result array where result must be stored (for
+ * sine the result array <em>cannot</em> be the input
+ * array)
+ * @param resultOffset offset of the result in its array
+ */
+ public void sin(final double[] operand, final int operandOffset,
+ final double[] result, final int resultOffset) {
+
+ // create the function value and derivatives
+ double[] function = new double[1 + order];
+ function[0] = FastMath.sin(operand[operandOffset]);
+ if (order > 0) {
+ function[1] = FastMath.cos(operand[operandOffset]);
+ for (int i = 2; i <= order; ++i) {
+ function[i] = -function[i - 2];
+ }
+ }
+
+ // apply function composition
+ compose(operand, operandOffset, function, result, resultOffset);
+
+ }
+
+ /** Compute tangent of a derivative structure.
+ * @param operand array holding the operand
+ * @param operandOffset offset of the operand in its array
+ * @param result array where result must be stored (for
+ * tangent the result array <em>cannot</em> be the input
+ * array)
+ * @param resultOffset offset of the result in its array
+ */
+ public void tan(final double[] operand, final int operandOffset,
+ final double[] result, final int resultOffset) {
+
+ // create the function value and derivatives
+ final double[] function = new double[1 + order];
+ final double t = FastMath.tan(operand[operandOffset]);
+ function[0] = t;
+
+ if (order > 0) {
+
+ // the nth order derivative of tan has the form:
+ // dn(tan(x)/dxn = P_n(tan(x))
+ // where P_n(t) is a degree n+1 polynomial with same parity as n+1
+ // P_0(t) = t, P_1(t) = 1 + t^2, P_2(t) = 2 t (1 + t^2) ...
+ // the general recurrence relation for P_n is:
+ // P_n(x) = (1+t^2) P_(n-1)'(t)
+ // as per polynomial parity, we can store coefficients of both P_(n-1) and P_n in the same array
+ final double[] p = new double[order + 2];
+ p[1] = 1;
+ final double t2 = t * t;
+ for (int n = 1; n <= order; ++n) {
+
+ // update and evaluate polynomial P_n(t)
+ double v = 0;
+ p[n + 1] = n * p[n];
+ for (int k = n + 1; k >= 0; k -= 2) {
+ v = v * t2 + p[k];
+ if (k > 2) {
+ p[k - 2] = (k - 1) * p[k - 1] + (k - 3) * p[k - 3];
+ } else if (k == 2) {
+ p[0] = p[1];
+ }
+ }
+ if ((n & 0x1) == 0) {
+ v *= t;
+ }
+
+ function[n] = v;
+
+ }
+ }
+
+ // apply function composition
+ compose(operand, operandOffset, function, result, resultOffset);
+
+ }
+
+ /** Compute arc cosine of a derivative structure.
+ * @param operand array holding the operand
+ * @param operandOffset offset of the operand in its array
+ * @param result array where result must be stored (for
+ * arc cosine the result array <em>cannot</em> be the input
+ * array)
+ * @param resultOffset offset of the result in its array
+ */
+ public void acos(final double[] operand, final int operandOffset,
+ final double[] result, final int resultOffset) {
+
+ // create the function value and derivatives
+ double[] function = new double[1 + order];
+ final double x = operand[operandOffset];
+ function[0] = FastMath.acos(x);
+ if (order > 0) {
+ // the nth order derivative of acos has the form:
+ // dn(acos(x)/dxn = P_n(x) / [1 - x^2]^((2n-1)/2)
+ // where P_n(x) is a degree n-1 polynomial with same parity as n-1
+ // P_1(x) = -1, P_2(x) = -x, P_3(x) = -2x^2 - 1 ...
+ // the general recurrence relation for P_n is:
+ // P_n(x) = (1-x^2) P_(n-1)'(x) + (2n-3) x P_(n-1)(x)
+ // as per polynomial parity, we can store coefficients of both P_(n-1) and P_n in the same array
+ final double[] p = new double[order];
+ p[0] = -1;
+ final double x2 = x * x;
+ final double f = 1.0 / (1 - x2);
+ double coeff = FastMath.sqrt(f);
+ function[1] = coeff * p[0];
+ for (int n = 2; n <= order; ++n) {
+
+ // update and evaluate polynomial P_n(x)
+ double v = 0;
+ p[n - 1] = (n - 1) * p[n - 2];
+ for (int k = n - 1; k >= 0; k -= 2) {
+ v = v * x2 + p[k];
+ if (k > 2) {
+ p[k - 2] = (k - 1) * p[k - 1] + (2 * n - k) * p[k - 3];
+ } else if (k == 2) {
+ p[0] = p[1];
+ }
+ }
+ if ((n & 0x1) == 0) {
+ v *= x;
+ }
+
+ coeff *= f;
+ function[n] = coeff * v;
+
+ }
+ }
+
+ // apply function composition
+ compose(operand, operandOffset, function, result, resultOffset);
+
+ }
+
+ /** Compute arc sine of a derivative structure.
+ * @param operand array holding the operand
+ * @param operandOffset offset of the operand in its array
+ * @param result array where result must be stored (for
+ * arc sine the result array <em>cannot</em> be the input
+ * array)
+ * @param resultOffset offset of the result in its array
+ */
+ public void asin(final double[] operand, final int operandOffset,
+ final double[] result, final int resultOffset) {
+
+ // create the function value and derivatives
+ double[] function = new double[1 + order];
+ final double x = operand[operandOffset];
+ function[0] = FastMath.asin(x);
+ if (order > 0) {
+ // the nth order derivative of asin has the form:
+ // dn(asin(x)/dxn = P_n(x) / [1 - x^2]^((2n-1)/2)
+ // where P_n(x) is a degree n-1 polynomial with same parity as n-1
+ // P_1(x) = 1, P_2(x) = x, P_3(x) = 2x^2 + 1 ...
+ // the general recurrence relation for P_n is:
+ // P_n(x) = (1-x^2) P_(n-1)'(x) + (2n-3) x P_(n-1)(x)
+ // as per polynomial parity, we can store coefficients of both P_(n-1) and P_n in the same array
+ final double[] p = new double[order];
+ p[0] = 1;
+ final double x2 = x * x;
+ final double f = 1.0 / (1 - x2);
+ double coeff = FastMath.sqrt(f);
+ function[1] = coeff * p[0];
+ for (int n = 2; n <= order; ++n) {
+
+ // update and evaluate polynomial P_n(x)
+ double v = 0;
+ p[n - 1] = (n - 1) * p[n - 2];
+ for (int k = n - 1; k >= 0; k -= 2) {
+ v = v * x2 + p[k];
+ if (k > 2) {
+ p[k - 2] = (k - 1) * p[k - 1] + (2 * n - k) * p[k - 3];
+ } else if (k == 2) {
+ p[0] = p[1];
+ }
+ }
+ if ((n & 0x1) == 0) {
+ v *= x;
+ }
+
+ coeff *= f;
+ function[n] = coeff * v;
+
+ }
+ }
+
+ // apply function composition
+ compose(operand, operandOffset, function, result, resultOffset);
+
+ }
+
+ /** Compute arc tangent of a derivative structure.
+ * @param operand array holding the operand
+ * @param operandOffset offset of the operand in its array
+ * @param result array where result must be stored (for
+ * arc tangent the result array <em>cannot</em> be the input
+ * array)
+ * @param resultOffset offset of the result in its array
+ */
+ public void atan(final double[] operand, final int operandOffset,
+ final double[] result, final int resultOffset) {
+
+ // create the function value and derivatives
+ double[] function = new double[1 + order];
+ final double x = operand[operandOffset];
+ function[0] = FastMath.atan(x);
+ if (order > 0) {
+ // the nth order derivative of atan has the form:
+ // dn(atan(x)/dxn = Q_n(x) / (1 + x^2)^n
+ // where Q_n(x) is a degree n-1 polynomial with same parity as n-1
+ // Q_1(x) = 1, Q_2(x) = -2x, Q_3(x) = 6x^2 - 2 ...
+ // the general recurrence relation for Q_n is:
+ // Q_n(x) = (1+x^2) Q_(n-1)'(x) - 2(n-1) x Q_(n-1)(x)
+ // as per polynomial parity, we can store coefficients of both Q_(n-1) and Q_n in the same array
+ final double[] q = new double[order];
+ q[0] = 1;
+ final double x2 = x * x;
+ final double f = 1.0 / (1 + x2);
+ double coeff = f;
+ function[1] = coeff * q[0];
+ for (int n = 2; n <= order; ++n) {
+
+ // update and evaluate polynomial Q_n(x)
+ double v = 0;
+ q[n - 1] = -n * q[n - 2];
+ for (int k = n - 1; k >= 0; k -= 2) {
+ v = v * x2 + q[k];
+ if (k > 2) {
+ q[k - 2] = (k - 1) * q[k - 1] + (k - 1 - 2 * n) * q[k - 3];
+ } else if (k == 2) {
+ q[0] = q[1];
+ }
+ }
+ if ((n & 0x1) == 0) {
+ v *= x;
+ }
+
+ coeff *= f;
+ function[n] = coeff * v;
+
+ }
+ }
+
+ // apply function composition
+ compose(operand, operandOffset, function, result, resultOffset);
+
+ }
+
+ /** Compute two arguments arc tangent of a derivative structure.
+ * @param y array holding the first operand
+ * @param yOffset offset of the first operand in its array
+ * @param x array holding the second operand
+ * @param xOffset offset of the second operand in its array
+ * @param result array where result must be stored (for
+ * two arguments arc tangent the result array <em>cannot</em>
+ * be the input array)
+ * @param resultOffset offset of the result in its array
+ */
+ public void atan2(final double[] y, final int yOffset,
+ final double[] x, final int xOffset,
+ final double[] result, final int resultOffset) {
+
+ // compute r = sqrt(x^2+y^2)
+ double[] tmp1 = new double[getSize()];
+ multiply(x, xOffset, x, xOffset, tmp1, 0); // x^2
+ double[] tmp2 = new double[getSize()];
+ multiply(y, yOffset, y, yOffset, tmp2, 0); // y^2
+ add(tmp1, 0, tmp2, 0, tmp2, 0); // x^2 + y^2
+ rootN(tmp2, 0, 2, tmp1, 0); // r = sqrt(x^2 + y^2)
+
+ if (x[xOffset] >= 0) {
+
+ // compute atan2(y, x) = 2 atan(y / (r + x))
+ add(tmp1, 0, x, xOffset, tmp2, 0); // r + x
+ divide(y, yOffset, tmp2, 0, tmp1, 0); // y /(r + x)
+ atan(tmp1, 0, tmp2, 0); // atan(y / (r + x))
+ for (int i = 0; i < tmp2.length; ++i) {
+ result[resultOffset + i] = 2 * tmp2[i]; // 2 * atan(y / (r + x))
+ }
+
+ } else {
+
+ // compute atan2(y, x) = +/- pi - 2 atan(y / (r - x))
+ subtract(tmp1, 0, x, xOffset, tmp2, 0); // r - x
+ divide(y, yOffset, tmp2, 0, tmp1, 0); // y /(r - x)
+ atan(tmp1, 0, tmp2, 0); // atan(y / (r - x))
+ result[resultOffset] =
+ ((tmp2[0] <= 0) ? -FastMath.PI : FastMath.PI) - 2 * tmp2[0]; // +/-pi - 2 * atan(y / (r - x))
+ for (int i = 1; i < tmp2.length; ++i) {
+ result[resultOffset + i] = -2 * tmp2[i]; // +/-pi - 2 * atan(y / (r - x))
+ }
+
+ }
+
+ // fix value to take special cases (+0/+0, +0/-0, -0/+0, -0/-0, +/-infinity) correctly
+ result[resultOffset] = FastMath.atan2(y[yOffset], x[xOffset]);
+
+ }
+
+ /** Compute hyperbolic cosine of a derivative structure.
+ * @param operand array holding the operand
+ * @param operandOffset offset of the operand in its array
+ * @param result array where result must be stored (for
+ * hyperbolic cosine the result array <em>cannot</em> be the input
+ * array)
+ * @param resultOffset offset of the result in its array
+ */
+ public void cosh(final double[] operand, final int operandOffset,
+ final double[] result, final int resultOffset) {
+
+ // create the function value and derivatives
+ double[] function = new double[1 + order];
+ function[0] = FastMath.cosh(operand[operandOffset]);
+ if (order > 0) {
+ function[1] = FastMath.sinh(operand[operandOffset]);
+ for (int i = 2; i <= order; ++i) {
+ function[i] = function[i - 2];
+ }
+ }
+
+ // apply function composition
+ compose(operand, operandOffset, function, result, resultOffset);
+
+ }
+
+ /** Compute hyperbolic sine of a derivative structure.
+ * @param operand array holding the operand
+ * @param operandOffset offset of the operand in its array
+ * @param result array where result must be stored (for
+ * hyperbolic sine the result array <em>cannot</em> be the input
+ * array)
+ * @param resultOffset offset of the result in its array
+ */
+ public void sinh(final double[] operand, final int operandOffset,
+ final double[] result, final int resultOffset) {
+
+ // create the function value and derivatives
+ double[] function = new double[1 + order];
+ function[0] = FastMath.sinh(operand[operandOffset]);
+ if (order > 0) {
+ function[1] = FastMath.cosh(operand[operandOffset]);
+ for (int i = 2; i <= order; ++i) {
+ function[i] = function[i - 2];
+ }
+ }
+
+ // apply function composition
+ compose(operand, operandOffset, function, result, resultOffset);
+
+ }
+
+ /** Compute hyperbolic tangent of a derivative structure.
+ * @param operand array holding the operand
+ * @param operandOffset offset of the operand in its array
+ * @param result array where result must be stored (for
+ * hyperbolic tangent the result array <em>cannot</em> be the input
+ * array)
+ * @param resultOffset offset of the result in its array
+ */
+ public void tanh(final double[] operand, final int operandOffset,
+ final double[] result, final int resultOffset) {
+
+ // create the function value and derivatives
+ final double[] function = new double[1 + order];
+ final double t = FastMath.tanh(operand[operandOffset]);
+ function[0] = t;
+
+ if (order > 0) {
+
+ // the nth order derivative of tanh has the form:
+ // dn(tanh(x)/dxn = P_n(tanh(x))
+ // where P_n(t) is a degree n+1 polynomial with same parity as n+1
+ // P_0(t) = t, P_1(t) = 1 - t^2, P_2(t) = -2 t (1 - t^2) ...
+ // the general recurrence relation for P_n is:
+ // P_n(x) = (1-t^2) P_(n-1)'(t)
+ // as per polynomial parity, we can store coefficients of both P_(n-1) and P_n in the same array
+ final double[] p = new double[order + 2];
+ p[1] = 1;
+ final double t2 = t * t;
+ for (int n = 1; n <= order; ++n) {
+
+ // update and evaluate polynomial P_n(t)
+ double v = 0;
+ p[n + 1] = -n * p[n];
+ for (int k = n + 1; k >= 0; k -= 2) {
+ v = v * t2 + p[k];
+ if (k > 2) {
+ p[k - 2] = (k - 1) * p[k - 1] - (k - 3) * p[k - 3];
+ } else if (k == 2) {
+ p[0] = p[1];
+ }
+ }
+ if ((n & 0x1) == 0) {
+ v *= t;
+ }
+
+ function[n] = v;
+
+ }
+ }
+
+ // apply function composition
+ compose(operand, operandOffset, function, result, resultOffset);
+
+ }
+
+ /** Compute inverse hyperbolic cosine of a derivative structure.
+ * @param operand array holding the operand
+ * @param operandOffset offset of the operand in its array
+ * @param result array where result must be stored (for
+ * inverse hyperbolic cosine the result array <em>cannot</em> be the input
+ * array)
+ * @param resultOffset offset of the result in its array
+ */
+ public void acosh(final double[] operand, final int operandOffset,
+ final double[] result, final int resultOffset) {
+
+ // create the function value and derivatives
+ double[] function = new double[1 + order];
+ final double x = operand[operandOffset];
+ function[0] = FastMath.acosh(x);
+ if (order > 0) {
+ // the nth order derivative of acosh has the form:
+ // dn(acosh(x)/dxn = P_n(x) / [x^2 - 1]^((2n-1)/2)
+ // where P_n(x) is a degree n-1 polynomial with same parity as n-1
+ // P_1(x) = 1, P_2(x) = -x, P_3(x) = 2x^2 + 1 ...
+ // the general recurrence relation for P_n is:
+ // P_n(x) = (x^2-1) P_(n-1)'(x) - (2n-3) x P_(n-1)(x)
+ // as per polynomial parity, we can store coefficients of both P_(n-1) and P_n in the same array
+ final double[] p = new double[order];
+ p[0] = 1;
+ final double x2 = x * x;
+ final double f = 1.0 / (x2 - 1);
+ double coeff = FastMath.sqrt(f);
+ function[1] = coeff * p[0];
+ for (int n = 2; n <= order; ++n) {
+
+ // update and evaluate polynomial P_n(x)
+ double v = 0;
+ p[n - 1] = (1 - n) * p[n - 2];
+ for (int k = n - 1; k >= 0; k -= 2) {
+ v = v * x2 + p[k];
+ if (k > 2) {
+ p[k - 2] = (1 - k) * p[k - 1] + (k - 2 * n) * p[k - 3];
+ } else if (k == 2) {
+ p[0] = -p[1];
+ }
+ }
+ if ((n & 0x1) == 0) {
+ v *= x;
+ }
+
+ coeff *= f;
+ function[n] = coeff * v;
+
+ }
+ }
+
+ // apply function composition
+ compose(operand, operandOffset, function, result, resultOffset);
+
+ }
+
+ /** Compute inverse hyperbolic sine of a derivative structure.
+ * @param operand array holding the operand
+ * @param operandOffset offset of the operand in its array
+ * @param result array where result must be stored (for
+ * inverse hyperbolic sine the result array <em>cannot</em> be the input
+ * array)
+ * @param resultOffset offset of the result in its array
+ */
+ public void asinh(final double[] operand, final int operandOffset,
+ final double[] result, final int resultOffset) {
+
+ // create the function value and derivatives
+ double[] function = new double[1 + order];
+ final double x = operand[operandOffset];
+ function[0] = FastMath.asinh(x);
+ if (order > 0) {
+ // the nth order derivative of asinh has the form:
+ // dn(asinh(x)/dxn = P_n(x) / [x^2 + 1]^((2n-1)/2)
+ // where P_n(x) is a degree n-1 polynomial with same parity as n-1
+ // P_1(x) = 1, P_2(x) = -x, P_3(x) = 2x^2 - 1 ...
+ // the general recurrence relation for P_n is:
+ // P_n(x) = (x^2+1) P_(n-1)'(x) - (2n-3) x P_(n-1)(x)
+ // as per polynomial parity, we can store coefficients of both P_(n-1) and P_n in the same array
+ final double[] p = new double[order];
+ p[0] = 1;
+ final double x2 = x * x;
+ final double f = 1.0 / (1 + x2);
+ double coeff = FastMath.sqrt(f);
+ function[1] = coeff * p[0];
+ for (int n = 2; n <= order; ++n) {
+
+ // update and evaluate polynomial P_n(x)
+ double v = 0;
+ p[n - 1] = (1 - n) * p[n - 2];
+ for (int k = n - 1; k >= 0; k -= 2) {
+ v = v * x2 + p[k];
+ if (k > 2) {
+ p[k - 2] = (k - 1) * p[k - 1] + (k - 2 * n) * p[k - 3];
+ } else if (k == 2) {
+ p[0] = p[1];
+ }
+ }
+ if ((n & 0x1) == 0) {
+ v *= x;
+ }
+
+ coeff *= f;
+ function[n] = coeff * v;
+
+ }
+ }
+
+ // apply function composition
+ compose(operand, operandOffset, function, result, resultOffset);
+
+ }
+
+ /** Compute inverse hyperbolic tangent of a derivative structure.
+ * @param operand array holding the operand
+ * @param operandOffset offset of the operand in its array
+ * @param result array where result must be stored (for
+ * inverse hyperbolic tangent the result array <em>cannot</em> be the input
+ * array)
+ * @param resultOffset offset of the result in its array
+ */
+ public void atanh(final double[] operand, final int operandOffset,
+ final double[] result, final int resultOffset) {
+
+ // create the function value and derivatives
+ double[] function = new double[1 + order];
+ final double x = operand[operandOffset];
+ function[0] = FastMath.atanh(x);
+ if (order > 0) {
+ // the nth order derivative of atanh has the form:
+ // dn(atanh(x)/dxn = Q_n(x) / (1 - x^2)^n
+ // where Q_n(x) is a degree n-1 polynomial with same parity as n-1
+ // Q_1(x) = 1, Q_2(x) = 2x, Q_3(x) = 6x^2 + 2 ...
+ // the general recurrence relation for Q_n is:
+ // Q_n(x) = (1-x^2) Q_(n-1)'(x) + 2(n-1) x Q_(n-1)(x)
+ // as per polynomial parity, we can store coefficients of both Q_(n-1) and Q_n in the same array
+ final double[] q = new double[order];
+ q[0] = 1;
+ final double x2 = x * x;
+ final double f = 1.0 / (1 - x2);
+ double coeff = f;
+ function[1] = coeff * q[0];
+ for (int n = 2; n <= order; ++n) {
+
+ // update and evaluate polynomial Q_n(x)
+ double v = 0;
+ q[n - 1] = n * q[n - 2];
+ for (int k = n - 1; k >= 0; k -= 2) {
+ v = v * x2 + q[k];
+ if (k > 2) {
+ q[k - 2] = (k - 1) * q[k - 1] + (2 * n - k + 1) * q[k - 3];
+ } else if (k == 2) {
+ q[0] = q[1];
+ }
+ }
+ if ((n & 0x1) == 0) {
+ v *= x;
+ }
+
+ coeff *= f;
+ function[n] = coeff * v;
+
+ }
+ }
+
+ // apply function composition
+ compose(operand, operandOffset, function, result, resultOffset);
+
+ }
+
+ /** Compute composition of a derivative structure by a function.
+ * @param operand array holding the operand
+ * @param operandOffset offset of the operand in its array
+ * @param f array of value and derivatives of the function at
+ * the current point (i.e. at {@code operand[operandOffset]}).
+ * @param result array where result must be stored (for
+ * composition the result array <em>cannot</em> be the input
+ * array)
+ * @param resultOffset offset of the result in its array
+ */
+ public void compose(final double[] operand, final int operandOffset, final double[] f,
+ final double[] result, final int resultOffset) {
+ for (int i = 0; i < compIndirection.length; ++i) {
+ final int[][] mappingI = compIndirection[i];
+ double r = 0;
+ for (int j = 0; j < mappingI.length; ++j) {
+ final int[] mappingIJ = mappingI[j];
+ double product = mappingIJ[0] * f[mappingIJ[1]];
+ for (int k = 2; k < mappingIJ.length; ++k) {
+ product *= operand[operandOffset + mappingIJ[k]];
+ }
+ r += product;
+ }
+ result[resultOffset + i] = r;
+ }
+ }
+
+ /** Evaluate Taylor expansion of a derivative structure.
+ * @param ds array holding the derivative structure
+ * @param dsOffset offset of the derivative structure in its array
+ * @param delta parameters offsets (&Delta;x, &Delta;y, ...)
+ * @return value of the Taylor expansion at x + &Delta;x, y + &Delta;y, ...
+ * @throws MathArithmeticException if factorials becomes too large
+ */
+ public double taylor(final double[] ds, final int dsOffset, final double ... delta)
+ throws MathArithmeticException {
+ double value = 0;
+ for (int i = getSize() - 1; i >= 0; --i) {
+ final int[] orders = getPartialDerivativeOrders(i);
+ double term = ds[dsOffset + i];
+ for (int k = 0; k < orders.length; ++k) {
+ if (orders[k] > 0) {
+ try {
+ term *= FastMath.pow(delta[k], orders[k]) /
+ CombinatoricsUtils.factorial(orders[k]);
+ } catch (NotPositiveException e) {
+ // this cannot happen
+ throw new MathInternalError(e);
+ }
+ }
+ }
+ value += term;
+ }
+ return value;
+ }
+
+ /** Check rules set compatibility.
+ * @param compiler other compiler to check against instance
+ * @exception DimensionMismatchException if number of free parameters or orders are inconsistent
+ */
+ public void checkCompatibility(final DSCompiler compiler)
+ throws DimensionMismatchException {
+ if (parameters != compiler.parameters) {
+ throw new DimensionMismatchException(parameters, compiler.parameters);
+ }
+ if (order != compiler.order) {
+ throw new DimensionMismatchException(order, compiler.order);
+ }
+ }
+
+}