summaryrefslogtreecommitdiff
path: root/cras/src/tests/dsp_core_unittest.cc
blob: 82c7957b4a609df7ced85b60d316bcd8e842d35e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
// Copyright (c) 2013 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <gtest/gtest.h>
#include <math.h>

#include "crossover.h"
#include "crossover2.h"
#include "drc.h"
#include "dsp_util.h"
#include "eq.h"
#include "eq2.h"

namespace {

/* Adds amplitude * sin(pi*freq*i + offset) to the data array. */
static void add_sine(float* data,
                     size_t len,
                     float freq,
                     float offset,
                     float amplitude) {
  for (size_t i = 0; i < len; i++)
    data[i] += amplitude * sinf((float)M_PI * freq * i + offset);
}

/* Calculates the magnitude at normalized frequency f. The output is
 * the result of DFT, multiplied by 2/len. */
static float magnitude_at(float* data, size_t len, float f) {
  double re = 0, im = 0;
  f *= (float)M_PI;
  for (size_t i = 0; i < len; i++) {
    re += data[i] * cos(i * f);
    im += data[i] * sin(i * f);
  }
  return sqrt(re * re + im * im) * (2.0 / len);
}

TEST(InterleaveTest, All) {
  const int FRAMES = 12;
  const int SAMPLES = FRAMES * 2;

  /* Repeat the same data twice, so it will exercise neon/sse
   * optimized functions. */
  int16_t input[SAMPLES] = {
      -32768, -32767, -32766, -2, -1, 0, 1, 2, 3, 32765, 32766, 32767,
      -32768, -32767, -32766, -2, -1, 0, 1, 2, 3, 32765, 32766, 32767};

  float answer[SAMPLES] = {-1,
                           -32766 / 32768.0f,
                           -1 / 32768.0f,
                           1 / 32768.0f,
                           3 / 32768.0f,
                           32766 / 32768.0f,
                           -1,
                           -32766 / 32768.0f,
                           -1 / 32768.0f,
                           1 / 32768.0f,
                           3 / 32768.0f,
                           32766 / 32768.0f,
                           -32767 / 32768.0f,
                           -2 / 32768.0f,
                           0,
                           2 / 32768.0f,
                           32765 / 32768.0f,
                           32767 / 32768.0f,
                           -32767 / 32768.0f,
                           -2 / 32768.0f,
                           0,
                           2 / 32768.0f,
                           32765 / 32768.0f,
                           32767 / 32768.0f};

  float output[SAMPLES];
  float* out_ptr[] = {output, output + FRAMES};

  dsp_util_deinterleave((uint8_t*)input, out_ptr, 2, SND_PCM_FORMAT_S16_LE,
                        FRAMES);

  for (int i = 0; i < SAMPLES; i++) {
    EXPECT_EQ(answer[i], output[i]);
  }

  /* dsp_util_interleave() should round to nearest number. */
  for (int i = 0; i < SAMPLES; i += 2) {
    output[i] += 0.499 / 32768.0f;
    output[i + 1] -= 0.499 / 32768.0f;
  }

  int16_t output2[SAMPLES];
  dsp_util_interleave(out_ptr, (uint8_t*)output2, 2, SND_PCM_FORMAT_S16_LE,
                      FRAMES);
  for (int i = 0; i < SAMPLES; i++) {
    EXPECT_EQ(input[i], output2[i]);
  }
}

TEST(EqTest, All) {
  struct eq* eq;
  size_t len = 44100;
  float NQ = len / 2;
  float f_low = 10 / NQ;
  float f_mid = 100 / NQ;
  float f_high = 1000 / NQ;
  float* data = (float*)malloc(sizeof(float) * len);

  dsp_enable_flush_denormal_to_zero();
  /* low pass */
  memset(data, 0, sizeof(float) * len);
  add_sine(data, len, f_low, 0, 1);  // 10Hz sine, magnitude = 1
  EXPECT_FLOAT_EQ(1, magnitude_at(data, len, f_low));
  add_sine(data, len, f_high, 0, 1);  // 1000Hz sine, magnitude = 1
  EXPECT_FLOAT_EQ(1, magnitude_at(data, len, f_low));
  EXPECT_FLOAT_EQ(1, magnitude_at(data, len, f_high));

  eq = eq_new();
  EXPECT_EQ(0, eq_append_biquad(eq, BQ_LOWPASS, f_mid, 0, 0));
  eq_process(eq, data, len);
  EXPECT_NEAR(1, magnitude_at(data, len, f_low), 0.01);
  EXPECT_NEAR(0, magnitude_at(data, len, f_high), 0.01);

  /* Test for empty input */
  eq_process(eq, NULL, 0);

  eq_free(eq);

  /* high pass */
  memset(data, 0, sizeof(float) * len);
  add_sine(data, len, f_low, 0, 1);
  add_sine(data, len, f_high, 0, 1);

  eq = eq_new();
  EXPECT_EQ(0, eq_append_biquad(eq, BQ_HIGHPASS, f_mid, 0, 0));
  eq_process(eq, data, len);
  EXPECT_NEAR(0, magnitude_at(data, len, f_low), 0.01);
  EXPECT_NEAR(1, magnitude_at(data, len, f_high), 0.01);
  eq_free(eq);

  /* peaking */
  memset(data, 0, sizeof(float) * len);
  add_sine(data, len, f_low, 0, 1);
  add_sine(data, len, f_high, 0, 1);

  eq = eq_new();
  EXPECT_EQ(0,
            eq_append_biquad(eq, BQ_PEAKING, f_high, 5, 6));  // Q=5, 6dB gain
  eq_process(eq, data, len);
  EXPECT_NEAR(1, magnitude_at(data, len, f_low), 0.01);
  EXPECT_NEAR(2, magnitude_at(data, len, f_high), 0.01);
  eq_free(eq);

  free(data);

  /* Too many biquads */
  eq = eq_new();
  for (int i = 0; i < MAX_BIQUADS_PER_EQ; i++) {
    EXPECT_EQ(0, eq_append_biquad(eq, BQ_PEAKING, f_high, 5, 6));
  }
  EXPECT_EQ(-1, eq_append_biquad(eq, BQ_PEAKING, f_high, 5, 6));
  eq_free(eq);
}

TEST(Eq2Test, All) {
  struct eq2* eq2;
  size_t len = 44100;
  float NQ = len / 2;
  float f_low = 10 / NQ;
  float f_mid = 100 / NQ;
  float f_high = 1000 / NQ;
  float* data0 = (float*)malloc(sizeof(float) * len);
  float* data1 = (float*)malloc(sizeof(float) * len);

  dsp_enable_flush_denormal_to_zero();

  /* a mixture of 10Hz an 1000Hz sine */
  memset(data0, 0, sizeof(float) * len);
  memset(data1, 0, sizeof(float) * len);
  add_sine(data0, len, f_low, 0, 1);   // 10Hz sine, magnitude = 1
  add_sine(data0, len, f_high, 0, 1);  // 1000Hz sine, magnitude = 1
  add_sine(data1, len, f_low, 0, 1);   // 10Hz sine, magnitude = 1
  add_sine(data1, len, f_high, 0, 1);  // 1000Hz sine, magnitude = 1

  /* low pass at left and high pass at right */
  eq2 = eq2_new();
  EXPECT_EQ(0, eq2_append_biquad(eq2, 0, BQ_LOWPASS, f_mid, 0, 0));
  EXPECT_EQ(0, eq2_append_biquad(eq2, 1, BQ_HIGHPASS, f_mid, 0, 0));
  eq2_process(eq2, data0, data1, len);
  EXPECT_NEAR(1, magnitude_at(data0, len, f_low), 0.01);
  EXPECT_NEAR(0, magnitude_at(data0, len, f_high), 0.01);
  EXPECT_NEAR(0, magnitude_at(data1, len, f_low), 0.01);
  EXPECT_NEAR(1, magnitude_at(data1, len, f_high), 0.01);

  /* Test for empty input */
  eq2_process(eq2, NULL, NULL, 0);
  eq2_free(eq2);

  /* a mixture of 10Hz and 1000Hz sine */
  memset(data0, 0, sizeof(float) * len);
  memset(data1, 0, sizeof(float) * len);
  add_sine(data0, len, f_low, 0, 1);
  add_sine(data0, len, f_high, 0, 1);
  add_sine(data1, len, f_low, 0, 1);
  add_sine(data1, len, f_high, 0, 1);

  /* one high-shelving biquad at left and two low-shelving biquads at right */
  eq2 = eq2_new();
  EXPECT_EQ(0, eq2_append_biquad(eq2, 0, BQ_HIGHSHELF, f_mid, 5, 6));
  EXPECT_EQ(0, eq2_append_biquad(eq2, 1, BQ_LOWSHELF, f_mid, 0, -6));
  EXPECT_EQ(0, eq2_append_biquad(eq2, 1, BQ_LOWSHELF, f_mid, 0, -6));

  eq2_process(eq2, data0, data1, len);
  EXPECT_NEAR(1, magnitude_at(data0, len, f_low), 0.01);
  EXPECT_NEAR(2, magnitude_at(data0, len, f_high), 0.01);
  EXPECT_NEAR(0.25, magnitude_at(data1, len, f_low), 0.01);
  EXPECT_NEAR(1, magnitude_at(data1, len, f_high), 0.01);
  eq2_free(eq2);

  free(data0);
  free(data1);

  /* Too many biquads */
  eq2 = eq2_new();
  for (int i = 0; i < MAX_BIQUADS_PER_EQ2; i++) {
    EXPECT_EQ(0, eq2_append_biquad(eq2, 0, BQ_PEAKING, f_high, 5, 6));
    EXPECT_EQ(0, eq2_append_biquad(eq2, 1, BQ_PEAKING, f_high, 5, 6));
  }
  EXPECT_EQ(-1, eq2_append_biquad(eq2, 0, BQ_PEAKING, f_high, 5, 6));
  EXPECT_EQ(-1, eq2_append_biquad(eq2, 1, BQ_PEAKING, f_high, 5, 6));
  eq2_free(eq2);
}

TEST(CrossoverTest, All) {
  struct crossover xo;
  size_t len = 44100;
  float NQ = len / 2;
  float f0 = 62.5 / NQ;
  float f1 = 250 / NQ;
  float f2 = 1000 / NQ;
  float f3 = 4000 / NQ;
  float f4 = 16000 / NQ;
  float* data = (float*)malloc(sizeof(float) * len);
  float* data1 = (float*)malloc(sizeof(float) * len);
  float* data2 = (float*)malloc(sizeof(float) * len);

  dsp_enable_flush_denormal_to_zero();
  crossover_init(&xo, f1, f3);
  memset(data, 0, sizeof(float) * len);
  add_sine(data, len, f0, 0, 1);
  add_sine(data, len, f2, 0, 1);
  add_sine(data, len, f4, 0, 1);

  crossover_process(&xo, len, data, data1, data2);

  // low band
  EXPECT_NEAR(1, magnitude_at(data, len, f0), 0.01);
  EXPECT_NEAR(0, magnitude_at(data, len, f2), 0.01);
  EXPECT_NEAR(0, magnitude_at(data, len, f4), 0.01);

  // mid band
  EXPECT_NEAR(0, magnitude_at(data1, len, f0), 0.01);
  EXPECT_NEAR(1, magnitude_at(data1, len, f2), 0.01);
  EXPECT_NEAR(0, magnitude_at(data1, len, f4), 0.01);

  // high band
  EXPECT_NEAR(0, magnitude_at(data2, len, f0), 0.01);
  EXPECT_NEAR(0, magnitude_at(data2, len, f2), 0.01);
  EXPECT_NEAR(1, magnitude_at(data2, len, f4), 0.01);

  /* Test for empty input */
  crossover_process(&xo, 0, NULL, NULL, NULL);

  free(data);
  free(data1);
  free(data2);
}

TEST(Crossover2Test, All) {
  struct crossover2 xo2;
  size_t len = 44100;
  float NQ = len / 2;
  float f0 = 62.5 / NQ;
  float f1 = 250 / NQ;
  float f2 = 1000 / NQ;
  float f3 = 4000 / NQ;
  float f4 = 16000 / NQ;
  float* data0L = (float*)malloc(sizeof(float) * len);
  float* data1L = (float*)malloc(sizeof(float) * len);
  float* data2L = (float*)malloc(sizeof(float) * len);
  float* data0R = (float*)malloc(sizeof(float) * len);
  float* data1R = (float*)malloc(sizeof(float) * len);
  float* data2R = (float*)malloc(sizeof(float) * len);

  dsp_enable_flush_denormal_to_zero();
  crossover2_init(&xo2, f1, f3);
  memset(data0L, 0, sizeof(float) * len);
  memset(data0R, 0, sizeof(float) * len);

  add_sine(data0L, len, f0, 0, 1);
  add_sine(data0L, len, f2, 0, 1);
  add_sine(data0L, len, f4, 0, 1);

  add_sine(data0R, len, f0, 0, 0.5);
  add_sine(data0R, len, f2, 0, 0.5);
  add_sine(data0R, len, f4, 0, 0.5);

  crossover2_process(&xo2, len, data0L, data0R, data1L, data1R, data2L, data2R);

  // left low band
  EXPECT_NEAR(1, magnitude_at(data0L, len, f0), 0.01);
  EXPECT_NEAR(0, magnitude_at(data0L, len, f2), 0.01);
  EXPECT_NEAR(0, magnitude_at(data0L, len, f4), 0.01);

  // left mid band
  EXPECT_NEAR(0, magnitude_at(data1L, len, f0), 0.01);
  EXPECT_NEAR(1, magnitude_at(data1L, len, f2), 0.01);
  EXPECT_NEAR(0, magnitude_at(data1L, len, f4), 0.01);

  // left high band
  EXPECT_NEAR(0, magnitude_at(data2L, len, f0), 0.01);
  EXPECT_NEAR(0, magnitude_at(data2L, len, f2), 0.01);
  EXPECT_NEAR(1, magnitude_at(data2L, len, f4), 0.01);

  // right low band
  EXPECT_NEAR(0.5, magnitude_at(data0R, len, f0), 0.005);
  EXPECT_NEAR(0, magnitude_at(data0R, len, f2), 0.005);
  EXPECT_NEAR(0, magnitude_at(data0R, len, f4), 0.005);

  // right mid band
  EXPECT_NEAR(0, magnitude_at(data1R, len, f0), 0.005);
  EXPECT_NEAR(0.5, magnitude_at(data1R, len, f2), 0.005);
  EXPECT_NEAR(0, magnitude_at(data1R, len, f4), 0.005);

  // right high band
  EXPECT_NEAR(0, magnitude_at(data2R, len, f0), 0.005);
  EXPECT_NEAR(0, magnitude_at(data2R, len, f2), 0.005);
  EXPECT_NEAR(0.5, magnitude_at(data2R, len, f4), 0.005);

  /* Test for empty input */
  crossover2_process(&xo2, 0, NULL, NULL, NULL, NULL, NULL, NULL);

  free(data0L);
  free(data1L);
  free(data2L);
  free(data0R);
  free(data1R);
  free(data2R);
}

TEST(DrcTest, All) {
  size_t len = 44100;
  float NQ = len / 2;
  float f0 = 62.5 / NQ;
  float f1 = 250 / NQ;
  float f2 = 1000 / NQ;
  float f3 = 4000 / NQ;
  float f4 = 16000 / NQ;
  float* data_left = (float*)malloc(sizeof(float) * len);
  float* data_right = (float*)malloc(sizeof(float) * len);
  float* data[] = {data_left, data_right};
  float* data_empty[] = {NULL, NULL};
  struct drc* drc;

  dsp_enable_flush_denormal_to_zero();
  drc = drc_new(44100);

  drc_set_param(drc, 0, PARAM_CROSSOVER_LOWER_FREQ, 0);
  drc_set_param(drc, 0, PARAM_ENABLED, 1);
  drc_set_param(drc, 0, PARAM_THRESHOLD, -30);
  drc_set_param(drc, 0, PARAM_KNEE, 0);
  drc_set_param(drc, 0, PARAM_RATIO, 3);
  drc_set_param(drc, 0, PARAM_ATTACK, 0.02);
  drc_set_param(drc, 0, PARAM_RELEASE, 0.2);
  drc_set_param(drc, 0, PARAM_POST_GAIN, 0);

  drc_set_param(drc, 1, PARAM_CROSSOVER_LOWER_FREQ, f1);
  drc_set_param(drc, 1, PARAM_ENABLED, 0);
  drc_set_param(drc, 1, PARAM_THRESHOLD, -30);
  drc_set_param(drc, 1, PARAM_KNEE, 0);
  drc_set_param(drc, 1, PARAM_RATIO, 3);
  drc_set_param(drc, 1, PARAM_ATTACK, 0.02);
  drc_set_param(drc, 1, PARAM_RELEASE, 0.2);
  drc_set_param(drc, 1, PARAM_POST_GAIN, 0);

  drc_set_param(drc, 2, PARAM_CROSSOVER_LOWER_FREQ, f3);
  drc_set_param(drc, 2, PARAM_ENABLED, 1);
  drc_set_param(drc, 2, PARAM_THRESHOLD, -30);
  drc_set_param(drc, 2, PARAM_KNEE, 0);
  drc_set_param(drc, 2, PARAM_RATIO, 1);
  drc_set_param(drc, 2, PARAM_ATTACK, 0.02);
  drc_set_param(drc, 2, PARAM_RELEASE, 0.2);
  drc_set_param(drc, 2, PARAM_POST_GAIN, 20);

  drc_init(drc);

  memset(data_left, 0, sizeof(float) * len);
  memset(data_right, 0, sizeof(float) * len);
  add_sine(data_left, len, f0, 0, 1);
  add_sine(data_left, len, f2, 0, 1);
  add_sine(data_left, len, f4, 0, 1);
  add_sine(data_right, len, f0, 0, 1);
  add_sine(data_right, len, f2, 0, 1);
  add_sine(data_right, len, f4, 0, 1);

  for (size_t start = 0; start < len; start += DRC_PROCESS_MAX_FRAMES) {
    int chunk = std::min(len - start, (size_t)DRC_PROCESS_MAX_FRAMES);
    drc_process(drc, data, chunk);
    data[0] += chunk;
    data[1] += chunk;
  }

  /* This is -8dB because there is a 12dB makeup (20dB^0.6) inside the DRC */
  EXPECT_NEAR(0.4, magnitude_at(data_right, len, f0), 0.1);

  /* This is 0dB because the DRC is disabled */
  EXPECT_NEAR(1, magnitude_at(data_right, len, f2), 0.1);

  /* This is 20dB because of the post gain */
  EXPECT_NEAR(10, magnitude_at(data_right, len, f4), 1);

  /* Test for empty input */
  drc_process(drc, data_empty, 0);

  drc_free(drc);
  free(data_left);
  free(data_right);
}

}  //  namespace

int main(int argc, char** argv) {
  ::testing::InitGoogleTest(&argc, argv);
  return RUN_ALL_TESTS();
}