aboutsummaryrefslogtreecommitdiff
path: root/test_conformance/math_brute_force/macro_unary_float.cpp
blob: 5367978869d4136c501e60f05b6ae58edbbad077 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
//
// Copyright (c) 2017 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//    http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//

#include "common.h"
#include "function_list.h"
#include "test_functions.h"
#include "utility.h"

#include <cstring>

namespace {

cl_int BuildKernelFn(cl_uint job_id, cl_uint thread_id UNUSED, void *p)
{
    BuildKernelInfo &info = *(BuildKernelInfo *)p;
    auto generator = [](const std::string &kernel_name, const char *builtin,
                        cl_uint vector_size_index) {
        return GetUnaryKernel(kernel_name, builtin, ParameterType::Int,
                              ParameterType::Float, vector_size_index);
    };
    return BuildKernels(info, job_id, generator);
}

// Thread specific data for a worker thread
struct ThreadInfo
{
    // Input and output buffers for the thread
    clMemWrapper inBuf;
    Buffers outBuf;

    // Per thread command queue to improve performance
    clCommandQueueWrapper tQueue;
};

struct TestInfo
{
    size_t subBufferSize; // Size of the sub-buffer in elements
    const Func *f; // A pointer to the function info

    // Programs for various vector sizes.
    Programs programs;

    // Thread-specific kernels for each vector size:
    // k[vector_size][thread_id]
    KernelMatrix k;

    // Array of thread specific information
    std::vector<ThreadInfo> tinfo;

    cl_uint threadCount; // Number of worker threads
    cl_uint jobCount; // Number of jobs
    cl_uint step; // step between each chunk and the next.
    cl_uint scale; // stride between individual test values
    int ftz; // non-zero if running in flush to zero mode
    bool relaxedMode; // True if test is running in relaxed mode, false
                      // otherwise.
};

cl_int Test(cl_uint job_id, cl_uint thread_id, void *data)
{
    TestInfo *job = (TestInfo *)data;
    size_t buffer_elements = job->subBufferSize;
    size_t buffer_size = buffer_elements * sizeof(cl_float);
    cl_uint scale = job->scale;
    cl_uint base = job_id * (cl_uint)job->step;
    ThreadInfo *tinfo = &(job->tinfo[thread_id]);
    fptr func = job->f->func;
    int ftz = job->ftz;
    bool relaxedMode = job->relaxedMode;
    cl_int error = CL_SUCCESS;
    cl_int ret = CL_SUCCESS;
    const char *name = job->f->name;

    int signbit_test = 0;
    if (!strcmp(name, "signbit")) signbit_test = 1;

#define ref_func(s) (signbit_test ? func.i_f_f(s) : func.i_f(s))

    cl_event e[VECTOR_SIZE_COUNT];
    cl_int *out[VECTOR_SIZE_COUNT];
    if (gHostFill)
    {
        // start the map of the output arrays
        for (auto j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
        {
            out[j] = (cl_int *)clEnqueueMapBuffer(
                tinfo->tQueue, tinfo->outBuf[j], CL_FALSE, CL_MAP_WRITE, 0,
                buffer_size, 0, NULL, e + j, &error);
            if (error || NULL == out[j])
            {
                vlog_error("Error: clEnqueueMapBuffer %d failed! err: %d\n", j,
                           error);
                return error;
            }
        }

        // Get that moving
        if ((error = clFlush(tinfo->tQueue))) vlog("clFlush failed\n");
    }

    // Init input array
    cl_uint *p = (cl_uint *)gIn + thread_id * buffer_elements;
    for (size_t j = 0; j < buffer_elements; j++) p[j] = base + j * scale;

    if ((error = clEnqueueWriteBuffer(tinfo->tQueue, tinfo->inBuf, CL_FALSE, 0,
                                      buffer_size, p, 0, NULL, NULL)))
    {
        vlog_error("Error: clEnqueueWriteBuffer failed! err: %d\n", error);
        return error;
    }

    for (auto j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
    {
        if (gHostFill)
        {
            // Wait for the map to finish
            if ((error = clWaitForEvents(1, e + j)))
            {
                vlog_error("Error: clWaitForEvents failed! err: %d\n", error);
                return error;
            }
            if ((error = clReleaseEvent(e[j])))
            {
                vlog_error("Error: clReleaseEvent failed! err: %d\n", error);
                return error;
            }
        }

        // Fill the result buffer with garbage, so that old results don't carry
        // over
        uint32_t pattern = 0xffffdead;
        if (gHostFill)
        {
            memset_pattern4(out[j], &pattern, buffer_size);
            if ((error = clEnqueueUnmapMemObject(
                     tinfo->tQueue, tinfo->outBuf[j], out[j], 0, NULL, NULL)))
            {
                vlog_error("Error: clEnqueueUnmapMemObject failed! err: %d\n",
                           error);
                return error;
            }
        }
        else
        {
            if ((error = clEnqueueFillBuffer(tinfo->tQueue, tinfo->outBuf[j],
                                             &pattern, sizeof(pattern), 0,
                                             buffer_size, 0, NULL, NULL)))
            {
                vlog_error("Error: clEnqueueFillBuffer failed! err: %d\n",
                           error);
                return error;
            }
        }

        // Run the kernel
        size_t vectorCount =
            (buffer_elements + sizeValues[j] - 1) / sizeValues[j];
        cl_kernel kernel = job->k[j][thread_id]; // each worker thread has its
                                                 // own copy of the cl_kernel
        cl_program program = job->programs[j];

        if ((error = clSetKernelArg(kernel, 0, sizeof(tinfo->outBuf[j]),
                                    &tinfo->outBuf[j])))
        {
            LogBuildError(program);
            return error;
        }
        if ((error = clSetKernelArg(kernel, 1, sizeof(tinfo->inBuf),
                                    &tinfo->inBuf)))
        {
            LogBuildError(program);
            return error;
        }

        if ((error = clEnqueueNDRangeKernel(tinfo->tQueue, kernel, 1, NULL,
                                            &vectorCount, NULL, 0, NULL, NULL)))
        {
            vlog_error("FAILED -- could not execute kernel\n");
            return error;
        }
    }

    // Get that moving
    if ((error = clFlush(tinfo->tQueue))) vlog("clFlush 2 failed\n");

    if (gSkipCorrectnessTesting) return CL_SUCCESS;

    // Calculate the correctly rounded reference result
    cl_int *r = (cl_int *)gOut_Ref + thread_id * buffer_elements;
    float *s = (float *)p;
    for (size_t j = 0; j < buffer_elements; j++) r[j] = ref_func(s[j]);

    // Read the data back -- no need to wait for the first N-1 buffers but wait
    // for the last buffer. This is an in order queue.
    for (auto j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
    {
        cl_bool blocking = (j + 1 < gMaxVectorSizeIndex) ? CL_FALSE : CL_TRUE;
        out[j] = (cl_int *)clEnqueueMapBuffer(
            tinfo->tQueue, tinfo->outBuf[j], blocking, CL_MAP_READ, 0,
            buffer_size, 0, NULL, NULL, &error);
        if (error || NULL == out[j])
        {
            vlog_error("Error: clEnqueueMapBuffer %d failed! err: %d\n", j,
                       error);
            return error;
        }
    }

    // Verify data
    cl_int *t = (cl_int *)r;
    for (size_t j = 0; j < buffer_elements; j++)
    {
        for (auto k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++)
        {
            cl_int *q = out[0];

            // If we aren't getting the correctly rounded result
            if (gMinVectorSizeIndex == 0 && t[j] != q[j])
            {
                // If we aren't getting the correctly rounded result
                if (ftz || relaxedMode)
                {
                    if (IsFloatSubnormal(s[j]))
                    {
                        int correct = ref_func(+0.0f);
                        int correct2 = ref_func(-0.0f);
                        if (correct == q[j] || correct2 == q[j]) continue;
                    }
                }

                uint32_t err = t[j] - q[j];
                if (q[j] > t[j]) err = q[j] - t[j];
                vlog_error("\nERROR: %s: %d ulp error at %a: *%d vs. %d\n",
                           name, err, ((float *)s)[j], t[j], q[j]);
                error = -1;
                goto exit;
            }


            for (auto k = std::max(1U, gMinVectorSizeIndex);
                 k < gMaxVectorSizeIndex; k++)
            {
                q = out[k];
                // If we aren't getting the correctly rounded result
                if (-t[j] != q[j])
                {
                    if (ftz || relaxedMode)
                    {
                        if (IsFloatSubnormal(s[j]))
                        {
                            int correct = -ref_func(+0.0f);
                            int correct2 = -ref_func(-0.0f);
                            if (correct == q[j] || correct2 == q[j]) continue;
                        }
                    }

                    uint32_t err = -t[j] - q[j];
                    if (q[j] > -t[j]) err = q[j] + t[j];
                    vlog_error(
                        "\nERROR: %s%s: %d ulp error at %a: *%d vs. %d\n", name,
                        sizeNames[k], err, ((float *)s)[j], -t[j], q[j]);
                    error = -1;
                    goto exit;
                }
            }
        }
    }

exit:
    ret = error;
    for (auto j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
    {
        if ((error = clEnqueueUnmapMemObject(tinfo->tQueue, tinfo->outBuf[j],
                                             out[j], 0, NULL, NULL)))
        {
            vlog_error("Error: clEnqueueUnmapMemObject %d failed 2! err: %d\n",
                       j, error);
            return error;
        }
    }

    if ((error = clFlush(tinfo->tQueue)))
    {
        vlog("clFlush 3 failed\n");
        return error;
    }


    if (0 == (base & 0x0fffffff))
    {
        if (gVerboseBruteForce)
        {
            vlog("base:%14u step:%10u scale:%10u buf_elements:%10zd "
                 "ThreadCount:%2u\n",
                 base, job->step, job->scale, buffer_elements,
                 job->threadCount);
        }
        else
        {
            vlog(".");
        }
        fflush(stdout);
    }

    return ret;
}

} // anonymous namespace

int TestMacro_Int_Float(const Func *f, MTdata d, bool relaxedMode)
{
    TestInfo test_info{};
    cl_int error;

    logFunctionInfo(f->name, sizeof(cl_float), relaxedMode);

    // Init test_info
    test_info.threadCount = GetThreadCount();
    test_info.subBufferSize = BUFFER_SIZE
        / (sizeof(cl_float) * RoundUpToNextPowerOfTwo(test_info.threadCount));
    test_info.scale = getTestScale(sizeof(cl_float));

    test_info.step = (cl_uint)test_info.subBufferSize * test_info.scale;
    if (test_info.step / test_info.subBufferSize != test_info.scale)
    {
        // there was overflow
        test_info.jobCount = 1;
    }
    else
    {
        test_info.jobCount = (cl_uint)((1ULL << 32) / test_info.step);
    }

    test_info.f = f;
    test_info.ftz =
        f->ftz || gForceFTZ || 0 == (CL_FP_DENORM & gFloatCapabilities);
    test_info.relaxedMode = relaxedMode;

    test_info.tinfo.resize(test_info.threadCount);
    for (cl_uint i = 0; i < test_info.threadCount; i++)
    {
        cl_buffer_region region = {
            i * test_info.subBufferSize * sizeof(cl_float),
            test_info.subBufferSize * sizeof(cl_float)
        };
        test_info.tinfo[i].inBuf =
            clCreateSubBuffer(gInBuffer, CL_MEM_READ_ONLY,
                              CL_BUFFER_CREATE_TYPE_REGION, &region, &error);
        if (error || NULL == test_info.tinfo[i].inBuf)
        {
            vlog_error("Error: Unable to create sub-buffer of gInBuffer for "
                       "region {%zd, %zd}\n",
                       region.origin, region.size);
            return error;
        }

        for (auto j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
        {
            test_info.tinfo[i].outBuf[j] = clCreateSubBuffer(
                gOutBuffer[j], CL_MEM_WRITE_ONLY, CL_BUFFER_CREATE_TYPE_REGION,
                &region, &error);
            if (error || NULL == test_info.tinfo[i].outBuf[j])
            {
                vlog_error("Error: Unable to create sub-buffer of "
                           "gOutBuffer[%d] for region {%zd, %zd}\n",
                           (int)j, region.origin, region.size);
                return error;
            }
        }
        test_info.tinfo[i].tQueue =
            clCreateCommandQueue(gContext, gDevice, 0, &error);
        if (NULL == test_info.tinfo[i].tQueue || error)
        {
            vlog_error("clCreateCommandQueue failed. (%d)\n", error);
            return error;
        }
    }

    // Init the kernels
    BuildKernelInfo build_info{ test_info.threadCount, test_info.k,
                                test_info.programs, f->nameInCode,
                                relaxedMode };
    if ((error = ThreadPool_Do(BuildKernelFn,
                               gMaxVectorSizeIndex - gMinVectorSizeIndex,
                               &build_info)))
        return error;

    // Run the kernels
    if (!gSkipCorrectnessTesting)
    {
        error = ThreadPool_Do(Test, test_info.jobCount, &test_info);
        if (error) return error;

        if (gWimpyMode)
            vlog("Wimp pass");
        else
            vlog("passed");
    }

    vlog("\n");

    return CL_SUCCESS;
}