summaryrefslogtreecommitdiff
path: root/vm/compiler/Frontend.c
diff options
context:
space:
mode:
Diffstat (limited to 'vm/compiler/Frontend.c')
-rw-r--r--vm/compiler/Frontend.c1313
1 files changed, 1313 insertions, 0 deletions
diff --git a/vm/compiler/Frontend.c b/vm/compiler/Frontend.c
new file mode 100644
index 0000000..525ec72
--- /dev/null
+++ b/vm/compiler/Frontend.c
@@ -0,0 +1,1313 @@
+/*
+ * Copyright (C) 2009 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "Dalvik.h"
+#include "libdex/OpCode.h"
+#include "interp/Jit.h"
+#include "CompilerInternals.h"
+#include "Dataflow.h"
+
+/*
+ * Parse an instruction, return the length of the instruction
+ */
+static inline int parseInsn(const u2 *codePtr, DecodedInstruction *decInsn,
+ bool printMe)
+{
+ u2 instr = *codePtr;
+ OpCode opcode = instr & 0xff;
+ int insnWidth;
+
+ // Don't parse instruction data
+ if (opcode == OP_NOP && instr != 0) {
+ return 0;
+ } else {
+ insnWidth = gDvm.instrWidth[opcode];
+ if (insnWidth < 0) {
+ insnWidth = -insnWidth;
+ }
+ }
+
+ dexDecodeInstruction(gDvm.instrFormat, codePtr, decInsn);
+ if (printMe) {
+ char *decodedString = dvmCompilerGetDalvikDisassembly(decInsn, NULL);
+ LOGD("%p: %#06x %s\n", codePtr, opcode, decodedString);
+ }
+ return insnWidth;
+}
+
+#define UNKNOWN_TARGET 0xffffffff
+
+/*
+ * Identify block-ending instructions and collect supplemental information
+ * regarding the following instructions.
+ */
+static inline bool findBlockBoundary(const Method *caller, MIR *insn,
+ unsigned int curOffset,
+ unsigned int *target, bool *isInvoke,
+ const Method **callee)
+{
+ switch (insn->dalvikInsn.opCode) {
+ /* Target is not compile-time constant */
+ case OP_RETURN_VOID:
+ case OP_RETURN:
+ case OP_RETURN_WIDE:
+ case OP_RETURN_OBJECT:
+ case OP_THROW:
+ *target = UNKNOWN_TARGET;
+ break;
+ case OP_INVOKE_VIRTUAL:
+ case OP_INVOKE_VIRTUAL_RANGE:
+ case OP_INVOKE_INTERFACE:
+ case OP_INVOKE_INTERFACE_RANGE:
+ case OP_INVOKE_VIRTUAL_QUICK:
+ case OP_INVOKE_VIRTUAL_QUICK_RANGE:
+ *isInvoke = true;
+ break;
+ case OP_INVOKE_SUPER:
+ case OP_INVOKE_SUPER_RANGE: {
+ int mIndex = caller->clazz->pDvmDex->
+ pResMethods[insn->dalvikInsn.vB]->methodIndex;
+ const Method *calleeMethod =
+ caller->clazz->super->vtable[mIndex];
+
+ if (calleeMethod && !dvmIsNativeMethod(calleeMethod)) {
+ *target = (unsigned int) calleeMethod->insns;
+ }
+ *isInvoke = true;
+ *callee = calleeMethod;
+ break;
+ }
+ case OP_INVOKE_STATIC:
+ case OP_INVOKE_STATIC_RANGE: {
+ const Method *calleeMethod =
+ caller->clazz->pDvmDex->pResMethods[insn->dalvikInsn.vB];
+
+ if (calleeMethod && !dvmIsNativeMethod(calleeMethod)) {
+ *target = (unsigned int) calleeMethod->insns;
+ }
+ *isInvoke = true;
+ *callee = calleeMethod;
+ break;
+ }
+ case OP_INVOKE_SUPER_QUICK:
+ case OP_INVOKE_SUPER_QUICK_RANGE: {
+ const Method *calleeMethod =
+ caller->clazz->super->vtable[insn->dalvikInsn.vB];
+
+ if (calleeMethod && !dvmIsNativeMethod(calleeMethod)) {
+ *target = (unsigned int) calleeMethod->insns;
+ }
+ *isInvoke = true;
+ *callee = calleeMethod;
+ break;
+ }
+ case OP_INVOKE_DIRECT:
+ case OP_INVOKE_DIRECT_RANGE: {
+ const Method *calleeMethod =
+ caller->clazz->pDvmDex->pResMethods[insn->dalvikInsn.vB];
+ if (calleeMethod && !dvmIsNativeMethod(calleeMethod)) {
+ *target = (unsigned int) calleeMethod->insns;
+ }
+ *isInvoke = true;
+ *callee = calleeMethod;
+ break;
+ }
+ case OP_GOTO:
+ case OP_GOTO_16:
+ case OP_GOTO_32:
+ *target = curOffset + (int) insn->dalvikInsn.vA;
+ break;
+
+ case OP_IF_EQ:
+ case OP_IF_NE:
+ case OP_IF_LT:
+ case OP_IF_GE:
+ case OP_IF_GT:
+ case OP_IF_LE:
+ *target = curOffset + (int) insn->dalvikInsn.vC;
+ break;
+
+ case OP_IF_EQZ:
+ case OP_IF_NEZ:
+ case OP_IF_LTZ:
+ case OP_IF_GEZ:
+ case OP_IF_GTZ:
+ case OP_IF_LEZ:
+ *target = curOffset + (int) insn->dalvikInsn.vB;
+ break;
+
+ default:
+ return false;
+ }
+ return true;
+}
+
+static inline bool isGoto(MIR *insn)
+{
+ switch (insn->dalvikInsn.opCode) {
+ case OP_GOTO:
+ case OP_GOTO_16:
+ case OP_GOTO_32:
+ return true;
+ default:
+ return false;
+ }
+}
+
+/*
+ * Identify unconditional branch instructions
+ */
+static inline bool isUnconditionalBranch(MIR *insn)
+{
+ switch (insn->dalvikInsn.opCode) {
+ case OP_RETURN_VOID:
+ case OP_RETURN:
+ case OP_RETURN_WIDE:
+ case OP_RETURN_OBJECT:
+ return true;
+ default:
+ return isGoto(insn);
+ }
+}
+
+/*
+ * dvmHashTableLookup() callback
+ */
+static int compareMethod(const CompilerMethodStats *m1,
+ const CompilerMethodStats *m2)
+{
+ return (int) m1->method - (int) m2->method;
+}
+
+/*
+ * Analyze the body of the method to collect high-level information regarding
+ * inlining:
+ * - is empty method?
+ * - is getter/setter?
+ * - can throw exception?
+ *
+ * Currently the inliner only handles getters and setters. When its capability
+ * becomes more sophisticated more information will be retrieved here.
+ */
+static int analyzeInlineTarget(DecodedInstruction *dalvikInsn, int attributes,
+ int offset)
+{
+ int flags = dexGetInstrFlags(gDvm.instrFlags, dalvikInsn->opCode);
+ int dalvikOpCode = dalvikInsn->opCode;
+
+ if ((flags & kInstrInvoke) &&
+ (dalvikOpCode != OP_INVOKE_DIRECT_EMPTY)) {
+ attributes &= ~METHOD_IS_LEAF;
+ }
+
+ if (!(flags & kInstrCanReturn)) {
+ if (!(dvmCompilerDataFlowAttributes[dalvikOpCode] &
+ DF_IS_GETTER)) {
+ attributes &= ~METHOD_IS_GETTER;
+ }
+ if (!(dvmCompilerDataFlowAttributes[dalvikOpCode] &
+ DF_IS_SETTER)) {
+ attributes &= ~METHOD_IS_SETTER;
+ }
+ }
+
+ /*
+ * The expected instruction sequence is setter will never return value and
+ * getter will also do. Clear the bits if the behavior is discovered
+ * otherwise.
+ */
+ if (flags & kInstrCanReturn) {
+ if (dalvikOpCode == OP_RETURN_VOID) {
+ attributes &= ~METHOD_IS_GETTER;
+ }
+ else {
+ attributes &= ~METHOD_IS_SETTER;
+ }
+ }
+
+ if (flags & kInstrCanThrow) {
+ attributes &= ~METHOD_IS_THROW_FREE;
+ }
+
+ if (offset == 0 && dalvikOpCode == OP_RETURN_VOID) {
+ attributes |= METHOD_IS_EMPTY;
+ }
+
+ /*
+ * Check if this opcode is selected for single stepping.
+ * If so, don't inline the callee as there is no stack frame for the
+ * interpreter to single-step through the instruction.
+ */
+ if (SINGLE_STEP_OP(dalvikOpCode)) {
+ attributes &= ~(METHOD_IS_GETTER | METHOD_IS_SETTER);
+ }
+
+ return attributes;
+}
+
+/*
+ * Analyze each method whose traces are ever compiled. Collect a variety of
+ * statistics like the ratio of exercised vs overall code and code bloat
+ * ratios. If isCallee is true, also analyze each instruction in more details
+ * to see if it is suitable for inlining.
+ */
+CompilerMethodStats *dvmCompilerAnalyzeMethodBody(const Method *method,
+ bool isCallee)
+{
+ const DexCode *dexCode = dvmGetMethodCode(method);
+ const u2 *codePtr = dexCode->insns;
+ const u2 *codeEnd = dexCode->insns + dexCode->insnsSize;
+ int insnSize = 0;
+ int hashValue = dvmComputeUtf8Hash(method->name);
+
+ CompilerMethodStats dummyMethodEntry; // For hash table lookup
+ CompilerMethodStats *realMethodEntry; // For hash table storage
+
+ /* For lookup only */
+ dummyMethodEntry.method = method;
+ realMethodEntry = dvmHashTableLookup(gDvmJit.methodStatsTable, hashValue,
+ &dummyMethodEntry,
+ (HashCompareFunc) compareMethod,
+ false);
+
+ /* This method has never been analyzed before - create an entry */
+ if (realMethodEntry == NULL) {
+ realMethodEntry =
+ (CompilerMethodStats *) calloc(1, sizeof(CompilerMethodStats));
+ realMethodEntry->method = method;
+
+ dvmHashTableLookup(gDvmJit.methodStatsTable, hashValue,
+ realMethodEntry,
+ (HashCompareFunc) compareMethod,
+ true);
+ }
+
+ /* This method is invoked as a callee and has been analyzed - just return */
+ if ((isCallee == true) && (realMethodEntry->attributes & METHOD_IS_CALLEE))
+ return realMethodEntry;
+
+ /*
+ * Similarly, return if this method has been compiled before as a hot
+ * method already.
+ */
+ if ((isCallee == false) &&
+ (realMethodEntry->attributes & METHOD_IS_HOT))
+ return realMethodEntry;
+
+ int attributes;
+
+ /* Method hasn't been analyzed for the desired purpose yet */
+ if (isCallee) {
+ /* Aggressively set the attributes until proven otherwise */
+ attributes = METHOD_IS_LEAF | METHOD_IS_THROW_FREE | METHOD_IS_CALLEE |
+ METHOD_IS_GETTER | METHOD_IS_SETTER;
+ } else {
+ attributes = METHOD_IS_HOT;
+ }
+
+ /* Count the number of instructions */
+ while (codePtr < codeEnd) {
+ DecodedInstruction dalvikInsn;
+ int width = parseInsn(codePtr, &dalvikInsn, false);
+
+ /* Terminate when the data section is seen */
+ if (width == 0)
+ break;
+
+ if (isCallee) {
+ attributes = analyzeInlineTarget(&dalvikInsn, attributes, insnSize);
+ }
+
+ insnSize += width;
+ codePtr += width;
+ }
+
+ /*
+ * Only handle simple getters/setters with one instruction followed by
+ * return
+ */
+ if ((attributes & (METHOD_IS_GETTER | METHOD_IS_SETTER)) &&
+ (insnSize != 3)) {
+ attributes &= ~(METHOD_IS_GETTER | METHOD_IS_SETTER);
+ }
+
+ realMethodEntry->dalvikSize = insnSize * 2;
+ realMethodEntry->attributes |= attributes;
+
+#if 0
+ /* Uncomment the following to explore various callee patterns */
+ if (attributes & METHOD_IS_THROW_FREE) {
+ LOGE("%s%s is inlinable%s", method->clazz->descriptor, method->name,
+ (attributes & METHOD_IS_EMPTY) ? " empty" : "");
+ }
+
+ if (attributes & METHOD_IS_LEAF) {
+ LOGE("%s%s is leaf %d%s", method->clazz->descriptor, method->name,
+ insnSize, insnSize < 5 ? " (small)" : "");
+ }
+
+ if (attributes & (METHOD_IS_GETTER | METHOD_IS_SETTER)) {
+ LOGE("%s%s is %s", method->clazz->descriptor, method->name,
+ attributes & METHOD_IS_GETTER ? "getter": "setter");
+ }
+ if (attributes ==
+ (METHOD_IS_LEAF | METHOD_IS_THROW_FREE | METHOD_IS_CALLEE)) {
+ LOGE("%s%s is inlinable non setter/getter", method->clazz->descriptor,
+ method->name);
+ }
+#endif
+
+ return realMethodEntry;
+}
+
+/*
+ * Crawl the stack of the thread that requesed compilation to see if any of the
+ * ancestors are on the blacklist.
+ */
+bool filterMethodByCallGraph(Thread *thread, const char *curMethodName)
+{
+ /* Crawl the Dalvik stack frames and compare the method name*/
+ StackSaveArea *ssaPtr = ((StackSaveArea *) thread->curFrame) - 1;
+ while (ssaPtr != ((StackSaveArea *) NULL) - 1) {
+ const Method *method = ssaPtr->method;
+ if (method) {
+ int hashValue = dvmComputeUtf8Hash(method->name);
+ bool found =
+ dvmHashTableLookup(gDvmJit.methodTable, hashValue,
+ (char *) method->name,
+ (HashCompareFunc) strcmp, false) !=
+ NULL;
+ if (found) {
+ LOGD("Method %s (--> %s) found on the JIT %s list",
+ method->name, curMethodName,
+ gDvmJit.includeSelectedMethod ? "white" : "black");
+ return true;
+ }
+
+ }
+ ssaPtr = ((StackSaveArea *) ssaPtr->prevFrame) - 1;
+ };
+ return false;
+}
+
+/*
+ * Main entry point to start trace compilation. Basic blocks are constructed
+ * first and they will be passed to the codegen routines to convert Dalvik
+ * bytecode into machine code.
+ */
+bool dvmCompileTrace(JitTraceDescription *desc, int numMaxInsts,
+ JitTranslationInfo *info, jmp_buf *bailPtr,
+ int optHints)
+{
+ const DexCode *dexCode = dvmGetMethodCode(desc->method);
+ const JitTraceRun* currRun = &desc->trace[0];
+ unsigned int curOffset = currRun->frag.startOffset;
+ unsigned int numInsts = currRun->frag.numInsts;
+ const u2 *codePtr = dexCode->insns + curOffset;
+ int traceSize = 0; // # of half-words
+ const u2 *startCodePtr = codePtr;
+ BasicBlock *startBB, *curBB, *lastBB;
+ int numBlocks = 0;
+ static int compilationId;
+ CompilationUnit cUnit;
+#if defined(WITH_JIT_TUNING)
+ CompilerMethodStats *methodStats;
+#endif
+
+ /* If we've already compiled this trace, just return success */
+ if (dvmJitGetCodeAddr(startCodePtr) && !info->discardResult) {
+ /*
+ * Make sure the codeAddress is NULL so that it won't clobber the
+ * existing entry.
+ */
+ info->codeAddress = NULL;
+ return true;
+ }
+
+ compilationId++;
+ memset(&cUnit, 0, sizeof(CompilationUnit));
+
+#if defined(WITH_JIT_TUNING)
+ /* Locate the entry to store compilation statistics for this method */
+ methodStats = dvmCompilerAnalyzeMethodBody(desc->method, false);
+#endif
+
+ /* Set the recover buffer pointer */
+ cUnit.bailPtr = bailPtr;
+
+ /* Initialize the printMe flag */
+ cUnit.printMe = gDvmJit.printMe;
+
+ /* Initialize the profile flag */
+ cUnit.executionCount = gDvmJit.profile;
+
+ /* Setup the method */
+ cUnit.method = desc->method;
+
+ /* Initialize the PC reconstruction list */
+ dvmInitGrowableList(&cUnit.pcReconstructionList, 8);
+
+ /* Identify traces that we don't want to compile */
+ if (gDvmJit.methodTable) {
+ int len = strlen(desc->method->clazz->descriptor) +
+ strlen(desc->method->name) + 1;
+ char *fullSignature = dvmCompilerNew(len, true);
+ strcpy(fullSignature, desc->method->clazz->descriptor);
+ strcat(fullSignature, desc->method->name);
+
+ int hashValue = dvmComputeUtf8Hash(fullSignature);
+
+ /*
+ * Doing three levels of screening to see whether we want to skip
+ * compiling this method
+ */
+
+ /* First, check the full "class;method" signature */
+ bool methodFound =
+ dvmHashTableLookup(gDvmJit.methodTable, hashValue,
+ fullSignature, (HashCompareFunc) strcmp,
+ false) !=
+ NULL;
+
+ /* Full signature not found - check the enclosing class */
+ if (methodFound == false) {
+ int hashValue = dvmComputeUtf8Hash(desc->method->clazz->descriptor);
+ methodFound =
+ dvmHashTableLookup(gDvmJit.methodTable, hashValue,
+ (char *) desc->method->clazz->descriptor,
+ (HashCompareFunc) strcmp, false) !=
+ NULL;
+ /* Enclosing class not found - check the method name */
+ if (methodFound == false) {
+ int hashValue = dvmComputeUtf8Hash(desc->method->name);
+ methodFound =
+ dvmHashTableLookup(gDvmJit.methodTable, hashValue,
+ (char *) desc->method->name,
+ (HashCompareFunc) strcmp, false) !=
+ NULL;
+
+ /*
+ * Debug by call-graph is enabled. Check if the debug list
+ * covers any methods on the VM stack.
+ */
+ if (methodFound == false && gDvmJit.checkCallGraph == true) {
+ methodFound =
+ filterMethodByCallGraph(info->requestingThread,
+ desc->method->name);
+ }
+ }
+ }
+
+ /*
+ * Under the following conditions, the trace will be *conservatively*
+ * compiled by only containing single-step instructions to and from the
+ * interpreter.
+ * 1) If includeSelectedMethod == false, the method matches the full or
+ * partial signature stored in the hash table.
+ *
+ * 2) If includeSelectedMethod == true, the method does not match the
+ * full and partial signature stored in the hash table.
+ */
+ if (gDvmJit.includeSelectedMethod != methodFound) {
+ cUnit.allSingleStep = true;
+ } else {
+ /* Compile the trace as normal */
+
+ /* Print the method we cherry picked */
+ if (gDvmJit.includeSelectedMethod == true) {
+ cUnit.printMe = true;
+ }
+ }
+ }
+
+ /* Allocate the entry block */
+ lastBB = startBB = curBB = dvmCompilerNewBB(kTraceEntryBlock);
+ curBB->startOffset = curOffset;
+ curBB->id = numBlocks++;
+
+ curBB = dvmCompilerNewBB(kDalvikByteCode);
+ curBB->startOffset = curOffset;
+ curBB->id = numBlocks++;
+
+ /* Make the first real dalvik block the fallthrough of the entry block */
+ startBB->fallThrough = curBB;
+ lastBB->next = curBB;
+ lastBB = curBB;
+
+ if (cUnit.printMe) {
+ LOGD("--------\nCompiler: Building trace for %s, offset 0x%x\n",
+ desc->method->name, curOffset);
+ }
+
+ /*
+ * Analyze the trace descriptor and include up to the maximal number
+ * of Dalvik instructions into the IR.
+ */
+ while (1) {
+ MIR *insn;
+ int width;
+ insn = dvmCompilerNew(sizeof(MIR), true);
+ insn->offset = curOffset;
+ width = parseInsn(codePtr, &insn->dalvikInsn, cUnit.printMe);
+
+ /* The trace should never incude instruction data */
+ assert(width);
+ insn->width = width;
+ traceSize += width;
+ dvmCompilerAppendMIR(curBB, insn);
+ cUnit.numInsts++;
+
+ int flags = dexGetInstrFlags(gDvm.instrFlags, insn->dalvikInsn.opCode);
+
+ if ((flags & kInstrInvoke) &&
+ (insn->dalvikInsn.opCode != OP_INVOKE_DIRECT_EMPTY)) {
+ assert(numInsts == 1);
+ CallsiteInfo *callsiteInfo =
+ dvmCompilerNew(sizeof(CallsiteInfo), true);
+ callsiteInfo->clazz = currRun[1].meta;
+ callsiteInfo->method = currRun[2].meta;
+ insn->meta.callsiteInfo = callsiteInfo;
+ }
+
+ /* Instruction limit reached - terminate the trace here */
+ if (cUnit.numInsts >= numMaxInsts) {
+ break;
+ }
+ if (--numInsts == 0) {
+ if (currRun->frag.runEnd) {
+ break;
+ } else {
+ /* Advance to the next trace description (ie non-meta info) */
+ do {
+ currRun++;
+ } while (!currRun->frag.isCode);
+
+ /* Dummy end-of-run marker seen */
+ if (currRun->frag.numInsts == 0) {
+ break;
+ }
+
+ curBB = dvmCompilerNewBB(kDalvikByteCode);
+ lastBB->next = curBB;
+ lastBB = curBB;
+ curBB->id = numBlocks++;
+ curOffset = currRun->frag.startOffset;
+ numInsts = currRun->frag.numInsts;
+ curBB->startOffset = curOffset;
+ codePtr = dexCode->insns + curOffset;
+ }
+ } else {
+ curOffset += width;
+ codePtr += width;
+ }
+ }
+
+#if defined(WITH_JIT_TUNING)
+ /* Convert # of half-word to bytes */
+ methodStats->compiledDalvikSize += traceSize * 2;
+#endif
+
+ /*
+ * Now scan basic blocks containing real code to connect the
+ * taken/fallthrough links. Also create chaining cells for code not included
+ * in the trace.
+ */
+ for (curBB = startBB; curBB; curBB = curBB->next) {
+ MIR *lastInsn = curBB->lastMIRInsn;
+ /* Skip empty blocks */
+ if (lastInsn == NULL) {
+ continue;
+ }
+ curOffset = lastInsn->offset;
+ unsigned int targetOffset = curOffset;
+ unsigned int fallThroughOffset = curOffset + lastInsn->width;
+ bool isInvoke = false;
+ const Method *callee = NULL;
+
+ findBlockBoundary(desc->method, curBB->lastMIRInsn, curOffset,
+ &targetOffset, &isInvoke, &callee);
+
+ /* Link the taken and fallthrough blocks */
+ BasicBlock *searchBB;
+
+ int flags = dexGetInstrFlags(gDvm.instrFlags,
+ lastInsn->dalvikInsn.opCode);
+
+ if (flags & kInstrInvoke) {
+ cUnit.hasInvoke = true;
+ }
+
+ /* No backward branch in the trace - start searching the next BB */
+ for (searchBB = curBB->next; searchBB; searchBB = searchBB->next) {
+ if (targetOffset == searchBB->startOffset) {
+ curBB->taken = searchBB;
+ }
+ if (fallThroughOffset == searchBB->startOffset) {
+ curBB->fallThrough = searchBB;
+
+ /*
+ * Fallthrough block of an invoke instruction needs to be
+ * aligned to 4-byte boundary (alignment instruction to be
+ * inserted later.
+ */
+ if (flags & kInstrInvoke) {
+ searchBB->isFallThroughFromInvoke = true;
+ }
+ }
+ }
+
+ /*
+ * Some blocks are ended by non-control-flow-change instructions,
+ * currently only due to trace length constraint. In this case we need
+ * to generate an explicit branch at the end of the block to jump to
+ * the chaining cell.
+ *
+ * NOTE: INVOKE_DIRECT_EMPTY is actually not an invoke but a nop
+ */
+ curBB->needFallThroughBranch =
+ ((flags & (kInstrCanBranch | kInstrCanSwitch | kInstrCanReturn |
+ kInstrInvoke)) == 0) ||
+ (lastInsn->dalvikInsn.opCode == OP_INVOKE_DIRECT_EMPTY);
+
+ /* Only form a loop if JIT_OPT_NO_LOOP is not set */
+ if (curBB->taken == NULL &&
+ curBB->fallThrough == NULL &&
+ flags == (kInstrCanBranch | kInstrCanContinue) &&
+ fallThroughOffset == startBB->startOffset &&
+ JIT_OPT_NO_LOOP != (optHints & JIT_OPT_NO_LOOP)) {
+ BasicBlock *loopBranch = curBB;
+ BasicBlock *exitBB;
+ BasicBlock *exitChainingCell;
+
+ if (cUnit.printMe) {
+ LOGD("Natural loop detected!");
+ }
+ exitBB = dvmCompilerNewBB(kTraceExitBlock);
+ lastBB->next = exitBB;
+ lastBB = exitBB;
+
+ exitBB->startOffset = targetOffset;
+ exitBB->id = numBlocks++;
+ exitBB->needFallThroughBranch = true;
+
+ loopBranch->taken = exitBB;
+#if defined(WITH_SELF_VERIFICATION)
+ BasicBlock *backwardCell =
+ dvmCompilerNewBB(kChainingCellBackwardBranch);
+ lastBB->next = backwardCell;
+ lastBB = backwardCell;
+
+ backwardCell->startOffset = startBB->startOffset;
+ backwardCell->id = numBlocks++;
+ loopBranch->fallThrough = backwardCell;
+#elif defined(WITH_JIT_TUNING)
+ if (gDvmJit.profile) {
+ BasicBlock *backwardCell =
+ dvmCompilerNewBB(kChainingCellBackwardBranch);
+ lastBB->next = backwardCell;
+ lastBB = backwardCell;
+
+ backwardCell->startOffset = startBB->startOffset;
+ backwardCell->id = numBlocks++;
+ loopBranch->fallThrough = backwardCell;
+ } else {
+ loopBranch->fallThrough = startBB->next;
+ }
+#else
+ loopBranch->fallThrough = startBB->next;
+#endif
+
+ /* Create the chaining cell as the fallthrough of the exit block */
+ exitChainingCell = dvmCompilerNewBB(kChainingCellNormal);
+ lastBB->next = exitChainingCell;
+ lastBB = exitChainingCell;
+
+ exitChainingCell->startOffset = targetOffset;
+ exitChainingCell->id = numBlocks++;
+
+ exitBB->fallThrough = exitChainingCell;
+
+ cUnit.hasLoop = true;
+ }
+
+ if (lastInsn->dalvikInsn.opCode == OP_PACKED_SWITCH ||
+ lastInsn->dalvikInsn.opCode == OP_SPARSE_SWITCH) {
+ int i;
+ const u2 *switchData = desc->method->insns + lastInsn->offset +
+ lastInsn->dalvikInsn.vB;
+ int size = switchData[1];
+ int maxChains = MIN(size, MAX_CHAINED_SWITCH_CASES);
+
+ /*
+ * Generate the landing pad for cases whose ranks are higher than
+ * MAX_CHAINED_SWITCH_CASES. The code will re-enter the interpreter
+ * through the NoChain point.
+ */
+ if (maxChains != size) {
+ cUnit.switchOverflowPad =
+ desc->method->insns + lastInsn->offset;
+ }
+
+ s4 *targets = (s4 *) (switchData + 2 +
+ (lastInsn->dalvikInsn.opCode == OP_PACKED_SWITCH ?
+ 2 : size * 2));
+
+ /* One chaining cell for the first MAX_CHAINED_SWITCH_CASES cases */
+ for (i = 0; i < maxChains; i++) {
+ BasicBlock *caseChain = dvmCompilerNewBB(kChainingCellNormal);
+ lastBB->next = caseChain;
+ lastBB = caseChain;
+
+ caseChain->startOffset = lastInsn->offset + targets[i];
+ caseChain->id = numBlocks++;
+ }
+
+ /* One more chaining cell for the default case */
+ BasicBlock *caseChain = dvmCompilerNewBB(kChainingCellNormal);
+ lastBB->next = caseChain;
+ lastBB = caseChain;
+
+ caseChain->startOffset = lastInsn->offset + lastInsn->width;
+ caseChain->id = numBlocks++;
+ /* Fallthrough block not included in the trace */
+ } else if (!isUnconditionalBranch(lastInsn) &&
+ curBB->fallThrough == NULL) {
+ /*
+ * If the chaining cell is after an invoke or
+ * instruction that cannot change the control flow, request a hot
+ * chaining cell.
+ */
+ if (isInvoke || curBB->needFallThroughBranch) {
+ lastBB->next = dvmCompilerNewBB(kChainingCellHot);
+ } else {
+ lastBB->next = dvmCompilerNewBB(kChainingCellNormal);
+ }
+ lastBB = lastBB->next;
+ lastBB->id = numBlocks++;
+ lastBB->startOffset = fallThroughOffset;
+ curBB->fallThrough = lastBB;
+ }
+ /* Target block not included in the trace */
+ if (curBB->taken == NULL &&
+ (isGoto(lastInsn) || isInvoke ||
+ (targetOffset != UNKNOWN_TARGET && targetOffset != curOffset))) {
+ BasicBlock *newBB;
+ if (isInvoke) {
+ /* Monomorphic callee */
+ if (callee) {
+ newBB = dvmCompilerNewBB(kChainingCellInvokeSingleton);
+ newBB->startOffset = 0;
+ newBB->containingMethod = callee;
+ /* Will resolve at runtime */
+ } else {
+ newBB = dvmCompilerNewBB(kChainingCellInvokePredicted);
+ newBB->startOffset = 0;
+ }
+ /* For unconditional branches, request a hot chaining cell */
+ } else {
+#if !defined(WITH_SELF_VERIFICATION)
+ newBB = dvmCompilerNewBB(flags & kInstrUnconditional ?
+ kChainingCellHot :
+ kChainingCellNormal);
+ newBB->startOffset = targetOffset;
+#else
+ /* Handle branches that branch back into the block */
+ if (targetOffset >= curBB->firstMIRInsn->offset &&
+ targetOffset <= curBB->lastMIRInsn->offset) {
+ newBB = dvmCompilerNewBB(kChainingCellBackwardBranch);
+ } else {
+ newBB = dvmCompilerNewBB(flags & kInstrUnconditional ?
+ kChainingCellHot :
+ kChainingCellNormal);
+ }
+ newBB->startOffset = targetOffset;
+#endif
+ }
+ newBB->id = numBlocks++;
+ curBB->taken = newBB;
+ lastBB->next = newBB;
+ lastBB = newBB;
+ }
+ }
+
+ /* Now create a special block to host PC reconstruction code */
+ lastBB->next = dvmCompilerNewBB(kPCReconstruction);
+ lastBB = lastBB->next;
+ lastBB->id = numBlocks++;
+
+ /* And one final block that publishes the PC and raise the exception */
+ lastBB->next = dvmCompilerNewBB(kExceptionHandling);
+ lastBB = lastBB->next;
+ lastBB->id = numBlocks++;
+
+ if (cUnit.printMe) {
+ char* signature = dexProtoCopyMethodDescriptor(&desc->method->prototype);
+ LOGD("TRACEINFO (%d): 0x%08x %s%s.%s 0x%x %d of %d, %d blocks",
+ compilationId,
+ (intptr_t) desc->method->insns,
+ desc->method->clazz->descriptor,
+ desc->method->name,
+ signature,
+ desc->trace[0].frag.startOffset,
+ traceSize,
+ dexCode->insnsSize,
+ numBlocks);
+ free(signature);
+ }
+
+ BasicBlock **blockList;
+
+ cUnit.traceDesc = desc;
+ cUnit.numBlocks = numBlocks;
+ blockList = cUnit.blockList =
+ dvmCompilerNew(sizeof(BasicBlock *) * numBlocks, true);
+
+ int i;
+
+ for (i = 0, curBB = startBB; i < numBlocks; i++) {
+ blockList[i] = curBB;
+ curBB = curBB->next;
+ }
+ /* Make sure all blocks are added to the cUnit */
+ assert(curBB == NULL);
+
+ /* Set the instruction set to use (NOTE: later components may change it) */
+ cUnit.instructionSet = dvmCompilerInstructionSet();
+
+ /* Inline transformation @ the MIR level */
+ if (cUnit.hasInvoke && !(gDvmJit.disableOpt & (1 << kMethodInlining))) {
+ dvmCompilerInlineMIR(&cUnit);
+ }
+
+ /* Preparation for SSA conversion */
+ dvmInitializeSSAConversion(&cUnit);
+
+ if (cUnit.hasLoop) {
+ /*
+ * Loop is not optimizable (for example lack of a single induction
+ * variable), punt and recompile the trace with loop optimization
+ * disabled.
+ */
+ bool loopOpt = dvmCompilerLoopOpt(&cUnit);
+ if (loopOpt == false) {
+ if (cUnit.printMe) {
+ LOGD("Loop is not optimizable - retry codegen");
+ }
+ /* Reset the compiler resource pool */
+ dvmCompilerArenaReset();
+ return dvmCompileTrace(desc, cUnit.numInsts, info, bailPtr,
+ optHints | JIT_OPT_NO_LOOP);
+ }
+ }
+ else {
+ dvmCompilerNonLoopAnalysis(&cUnit);
+ }
+
+ dvmCompilerInitializeRegAlloc(&cUnit); // Needs to happen after SSA naming
+
+ if (cUnit.printMe) {
+ dvmCompilerDumpCompilationUnit(&cUnit);
+ }
+
+ /* Allocate Registers */
+ dvmCompilerRegAlloc(&cUnit);
+
+ /* Convert MIR to LIR, etc. */
+ dvmCompilerMIR2LIR(&cUnit);
+
+ /* Convert LIR into machine code. Loop for recoverable retries */
+ do {
+ dvmCompilerAssembleLIR(&cUnit, info);
+ cUnit.assemblerRetries++;
+ if (cUnit.printMe && cUnit.assemblerStatus != kSuccess)
+ LOGD("Assembler abort #%d on %d",cUnit.assemblerRetries,
+ cUnit.assemblerStatus);
+ } while (cUnit.assemblerStatus == kRetryAll);
+
+ if (cUnit.printMe) {
+ dvmCompilerCodegenDump(&cUnit);
+ LOGD("End %s%s, %d Dalvik instructions",
+ desc->method->clazz->descriptor, desc->method->name,
+ cUnit.numInsts);
+ }
+
+ /* Reset the compiler resource pool */
+ dvmCompilerArenaReset();
+
+ if (cUnit.assemblerStatus == kRetryHalve) {
+ /* Halve the instruction count and start from the top */
+ return dvmCompileTrace(desc, cUnit.numInsts / 2, info, bailPtr,
+ optHints);
+ }
+
+ assert(cUnit.assemblerStatus == kSuccess);
+#if defined(WITH_JIT_TUNING)
+ methodStats->nativeSize += cUnit.totalSize;
+#endif
+ return info->codeAddress != NULL;
+}
+
+/*
+ * Since we are including instructions from possibly a cold method into the
+ * current trace, we need to make sure that all the associated information
+ * with the callee is properly initialized. If not, we punt on this inline
+ * target.
+ *
+ * TODO: volatile instructions will be handled later.
+ */
+bool dvmCompilerCanIncludeThisInstruction(const Method *method,
+ const DecodedInstruction *insn)
+{
+ switch (insn->opCode) {
+ case OP_NEW_INSTANCE:
+ case OP_CHECK_CAST: {
+ ClassObject *classPtr = (void*)
+ (method->clazz->pDvmDex->pResClasses[insn->vB]);
+
+ /* Class hasn't been initialized yet */
+ if (classPtr == NULL) {
+ return false;
+ }
+ return true;
+ }
+ case OP_SGET_OBJECT:
+ case OP_SGET_BOOLEAN:
+ case OP_SGET_CHAR:
+ case OP_SGET_BYTE:
+ case OP_SGET_SHORT:
+ case OP_SGET:
+ case OP_SGET_WIDE:
+ case OP_SPUT_OBJECT:
+ case OP_SPUT_BOOLEAN:
+ case OP_SPUT_CHAR:
+ case OP_SPUT_BYTE:
+ case OP_SPUT_SHORT:
+ case OP_SPUT:
+ case OP_SPUT_WIDE: {
+ void *fieldPtr = (void*)
+ (method->clazz->pDvmDex->pResFields[insn->vB]);
+
+ if (fieldPtr == NULL) {
+ return false;
+ }
+ return true;
+ }
+ case OP_INVOKE_SUPER:
+ case OP_INVOKE_SUPER_RANGE: {
+ int mIndex = method->clazz->pDvmDex->
+ pResMethods[insn->vB]->methodIndex;
+ const Method *calleeMethod = method->clazz->super->vtable[mIndex];
+ if (calleeMethod == NULL) {
+ return false;
+ }
+ return true;
+ }
+ case OP_INVOKE_SUPER_QUICK:
+ case OP_INVOKE_SUPER_QUICK_RANGE: {
+ const Method *calleeMethod = method->clazz->super->vtable[insn->vB];
+ if (calleeMethod == NULL) {
+ return false;
+ }
+ return true;
+ }
+ case OP_INVOKE_STATIC:
+ case OP_INVOKE_STATIC_RANGE:
+ case OP_INVOKE_DIRECT:
+ case OP_INVOKE_DIRECT_RANGE: {
+ const Method *calleeMethod =
+ method->clazz->pDvmDex->pResMethods[insn->vB];
+ if (calleeMethod == NULL) {
+ return false;
+ }
+ return true;
+ }
+ case OP_CONST_CLASS: {
+ void *classPtr = (void*)
+ (method->clazz->pDvmDex->pResClasses[insn->vB]);
+
+ if (classPtr == NULL) {
+ return false;
+ }
+ return true;
+ }
+ case OP_CONST_STRING_JUMBO:
+ case OP_CONST_STRING: {
+ void *strPtr = (void*)
+ (method->clazz->pDvmDex->pResStrings[insn->vB]);
+
+ if (strPtr == NULL) {
+ return false;
+ }
+ return true;
+ }
+ default:
+ return true;
+ }
+}
+
+/*
+ * Similar to dvmCompileTrace, but the entity processed here is the whole
+ * method.
+ *
+ * TODO: implementation will be revisited when the trace builder can provide
+ * whole-method traces.
+ */
+bool dvmCompileMethod(CompilationUnit *cUnit, const Method *method,
+ JitTranslationInfo *info)
+{
+ const DexCode *dexCode = dvmGetMethodCode(method);
+ const u2 *codePtr = dexCode->insns;
+ const u2 *codeEnd = dexCode->insns + dexCode->insnsSize;
+ int blockID = 0;
+ unsigned int curOffset = 0;
+
+ /* If we've already compiled this trace, just return success */
+ if (dvmJitGetCodeAddr(codePtr) && !info->discardResult) {
+ return true;
+ }
+
+ /* Doing method-based compilation */
+ cUnit->wholeMethod = true;
+
+ BasicBlock *firstBlock = dvmCompilerNewBB(kDalvikByteCode);
+ firstBlock->id = blockID++;
+
+ /* Allocate the bit-vector to track the beginning of basic blocks */
+ BitVector *bbStartAddr = dvmCompilerAllocBitVector(dexCode->insnsSize+1,
+ false);
+ dvmCompilerSetBit(bbStartAddr, 0);
+
+ int numInvokeTargets = 0;
+
+ /*
+ * Sequentially go through every instruction first and put them in a single
+ * basic block. Identify block boundaries at the mean time.
+ */
+ while (codePtr < codeEnd) {
+ MIR *insn = dvmCompilerNew(sizeof(MIR), true);
+ insn->offset = curOffset;
+ int width = parseInsn(codePtr, &insn->dalvikInsn, false);
+ bool isInvoke = false;
+ const Method *callee;
+ insn->width = width;
+
+ /* Terminate when the data section is seen */
+ if (width == 0)
+ break;
+
+ if (!dvmCompilerCanIncludeThisInstruction(cUnit->method,
+ &insn->dalvikInsn)) {
+ return false;
+ }
+
+ dvmCompilerAppendMIR(firstBlock, insn);
+ /*
+ * Check whether this is a block ending instruction and whether it
+ * suggests the start of a new block
+ */
+ unsigned int target = curOffset;
+
+ /*
+ * If findBlockBoundary returns true, it means the current instruction
+ * is terminating the current block. If it is a branch, the target
+ * address will be recorded in target.
+ */
+ if (findBlockBoundary(method, insn, curOffset, &target, &isInvoke,
+ &callee)) {
+ dvmCompilerSetBit(bbStartAddr, curOffset + width);
+ /* Each invoke needs a chaining cell block */
+ if (isInvoke) {
+ numInvokeTargets++;
+ }
+ /* A branch will end the current block */
+ else if (target != curOffset && target != UNKNOWN_TARGET) {
+ dvmCompilerSetBit(bbStartAddr, target);
+ }
+ }
+
+ codePtr += width;
+ /* each bit represents 16-bit quantity */
+ curOffset += width;
+ }
+
+ /*
+ * The number of blocks will be equal to the number of bits set to 1 in the
+ * bit vector minus 1, because the bit representing the location after the
+ * last instruction is set to one.
+ *
+ * We also add additional blocks for invoke chaining and the number is
+ * denoted by numInvokeTargets.
+ */
+ int numBlocks = dvmCountSetBits(bbStartAddr);
+ if (dvmIsBitSet(bbStartAddr, dexCode->insnsSize)) {
+ numBlocks--;
+ }
+
+ BasicBlock **blockList;
+ blockList = cUnit->blockList =
+ dvmCompilerNew(sizeof(BasicBlock *) * (numBlocks + numInvokeTargets),
+ true);
+
+ /*
+ * Register the first block onto the list and start splitting it into
+ * sub-blocks.
+ */
+ blockList[0] = firstBlock;
+ cUnit->numBlocks = 1;
+
+ int i;
+ for (i = 0; i < numBlocks; i++) {
+ MIR *insn;
+ BasicBlock *curBB = blockList[i];
+ curOffset = curBB->lastMIRInsn->offset;
+
+ for (insn = curBB->firstMIRInsn->next; insn; insn = insn->next) {
+ /* Found the beginning of a new block, see if it is created yet */
+ if (dvmIsBitSet(bbStartAddr, insn->offset)) {
+ int j;
+ for (j = 0; j < cUnit->numBlocks; j++) {
+ if (blockList[j]->firstMIRInsn->offset == insn->offset)
+ break;
+ }
+
+ /* Block not split yet - do it now */
+ if (j == cUnit->numBlocks) {
+ BasicBlock *newBB = dvmCompilerNewBB(kDalvikByteCode);
+ newBB->id = blockID++;
+ newBB->firstMIRInsn = insn;
+ newBB->startOffset = insn->offset;
+ newBB->lastMIRInsn = curBB->lastMIRInsn;
+ curBB->lastMIRInsn = insn->prev;
+ insn->prev->next = NULL;
+ insn->prev = NULL;
+
+ /*
+ * If the insn is not an unconditional branch, set up the
+ * fallthrough link.
+ */
+ if (!isUnconditionalBranch(curBB->lastMIRInsn)) {
+ curBB->fallThrough = newBB;
+ }
+
+ /*
+ * Fallthrough block of an invoke instruction needs to be
+ * aligned to 4-byte boundary (alignment instruction to be
+ * inserted later.
+ */
+ if (dexGetInstrFlags(gDvm.instrFlags,
+ curBB->lastMIRInsn->dalvikInsn.opCode) &
+ kInstrInvoke) {
+ newBB->isFallThroughFromInvoke = true;
+ }
+
+ /* enqueue the new block */
+ blockList[cUnit->numBlocks++] = newBB;
+ break;
+ }
+ }
+ }
+ }
+
+ if (numBlocks != cUnit->numBlocks) {
+ LOGE("Expect %d vs %d basic blocks\n", numBlocks, cUnit->numBlocks);
+ dvmCompilerAbort(cUnit);
+ }
+
+ /* Connect the basic blocks through the taken links */
+ for (i = 0; i < numBlocks; i++) {
+ BasicBlock *curBB = blockList[i];
+ MIR *insn = curBB->lastMIRInsn;
+ unsigned int target = insn->offset;
+ bool isInvoke = false;
+ const Method *callee = NULL;
+
+ findBlockBoundary(method, insn, target, &target, &isInvoke, &callee);
+
+ /* Found a block ended on a branch (not invoke) */
+ if (isInvoke == false && target != insn->offset) {
+ int j;
+ /* Forward branch */
+ if (target > insn->offset) {
+ j = i + 1;
+ } else {
+ /* Backward branch */
+ j = 0;
+ }
+ for (; j < numBlocks; j++) {
+ if (blockList[j]->firstMIRInsn->offset == target) {
+ curBB->taken = blockList[j];
+ break;
+ }
+ }
+ }
+
+ if (isInvoke) {
+ BasicBlock *newBB;
+ /* Monomorphic callee */
+ if (callee) {
+ newBB = dvmCompilerNewBB(kChainingCellInvokeSingleton);
+ newBB->startOffset = 0;
+ newBB->containingMethod = callee;
+ /* Will resolve at runtime */
+ } else {
+ newBB = dvmCompilerNewBB(kChainingCellInvokePredicted);
+ newBB->startOffset = 0;
+ }
+ newBB->id = blockID++;
+ curBB->taken = newBB;
+ /* enqueue the new block */
+ blockList[cUnit->numBlocks++] = newBB;
+ }
+ }
+
+ if (cUnit->numBlocks != numBlocks + numInvokeTargets) {
+ LOGE("Expect %d vs %d total blocks\n", numBlocks + numInvokeTargets,
+ cUnit->numBlocks);
+ dvmCompilerDumpCompilationUnit(cUnit);
+ dvmCompilerAbort(cUnit);
+ }
+
+ /* Set the instruction set to use (NOTE: later components may change it) */
+ cUnit->instructionSet = dvmCompilerInstructionSet();
+
+ /* Preparation for SSA conversion */
+ dvmInitializeSSAConversion(cUnit);
+
+ /* SSA analysis */
+ dvmCompilerNonLoopAnalysis(cUnit);
+
+ /* Needs to happen after SSA naming */
+ dvmCompilerInitializeRegAlloc(cUnit);
+
+ /* Allocate Registers */
+ dvmCompilerRegAlloc(cUnit);
+
+ /* Convert MIR to LIR, etc. */
+ dvmCompilerMIR2LIR(cUnit);
+
+ /* Convert LIR into machine code. */
+ dvmCompilerAssembleLIR(cUnit, info);
+
+ if (cUnit->assemblerStatus != kSuccess) {
+ return false;
+ }
+
+ dvmCompilerDumpCompilationUnit(cUnit);
+
+ dvmCompilerArenaReset();
+
+ return info->codeAddress != NULL;
+}