summaryrefslogtreecommitdiff
path: root/vm/analysis/CodeVerify.c
diff options
context:
space:
mode:
Diffstat (limited to 'vm/analysis/CodeVerify.c')
-rw-r--r--vm/analysis/CodeVerify.c5782
1 files changed, 5782 insertions, 0 deletions
diff --git a/vm/analysis/CodeVerify.c b/vm/analysis/CodeVerify.c
new file mode 100644
index 0000000..a7d634e
--- /dev/null
+++ b/vm/analysis/CodeVerify.c
@@ -0,0 +1,5782 @@
+/*
+ * Copyright (C) 2008 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/*
+ * Dalvik bytecode structural verifier. The only public entry point
+ * (except for a few shared utility functions) is dvmVerifyCodeFlow().
+ *
+ * TODO: might benefit from a signature-->class lookup cache. Could avoid
+ * some string-peeling and wouldn't need to compute hashes.
+ *
+ * TODO: we do too much stuff in here that could be done in the static
+ * verification pass. It's convenient, because we have all of the
+ * necessary information, but it's more efficient to do it over in
+ * DexVerify.c because in here we may have to process instructions
+ * multiple times.
+ */
+#include "Dalvik.h"
+#include "analysis/CodeVerify.h"
+#include "analysis/Optimize.h"
+#include "analysis/RegisterMap.h"
+#include "libdex/DexCatch.h"
+#include "libdex/InstrUtils.h"
+
+#include <stddef.h>
+
+
+/*
+ * We don't need to store the register data for many instructions, because
+ * we either only need it at branch points (for verification) or GC points
+ * and branches (for verification + type-precise register analysis).
+ */
+typedef enum RegisterTrackingMode {
+ kTrackRegsBranches,
+ kTrackRegsGcPoints,
+ kTrackRegsAll
+} RegisterTrackingMode;
+
+/*
+ * Set this to enable dead code scanning. This is not required, but it's
+ * very useful when testing changes to the verifier (to make sure we're not
+ * skipping over stuff) and for checking the optimized output from "dx".
+ * The only reason not to do it is that it slightly increases the time
+ * required to perform verification.
+ */
+#define DEAD_CODE_SCAN true
+
+static bool gDebugVerbose = false; // TODO: remove this
+
+#if 0
+int gDvm__totalInstr = 0;
+int gDvm__gcInstr = 0;
+int gDvm__gcData = 0;
+int gDvm__gcSimpleData = 0;
+#endif
+
+/*
+ * Selectively enable verbose debug logging -- use this to activate
+ * dumpRegTypes() calls for all instructions in the specified method.
+ */
+static inline bool doVerboseLogging(const Method* meth) {
+ return false; /* COMMENT OUT to enable verbose debugging */
+
+ const char* cd = "Landroid/net/http/Request;";
+ const char* mn = "readResponse";
+ const char* sg = "(Landroid/net/http/AndroidHttpClientConnection;)V";
+ return (strcmp(meth->clazz->descriptor, cd) == 0 &&
+ dvmCompareNameDescriptorAndMethod(mn, sg, meth) == 0);
+}
+
+#define SHOW_REG_DETAILS (0 /*| DRT_SHOW_REF_TYPES | DRT_SHOW_LOCALS*/)
+
+/*
+ * We need an extra "pseudo register" to hold the return type briefly. It
+ * can be category 1 or 2, so we need two slots.
+ */
+#define kExtraRegs 2
+#define RESULT_REGISTER(_insnRegCount) (_insnRegCount)
+
+/*
+ * Big fat collection of registers.
+ */
+typedef struct RegisterTable {
+ /*
+ * Array of RegType arrays, one per address in the method. We only
+ * set the pointers for certain addresses, based on what we're trying
+ * to accomplish.
+ */
+ RegType** addrRegs;
+
+ /*
+ * Number of registers we track for each instruction. This is equal
+ * to the method's declared "registersSize" plus kExtraRegs.
+ */
+ int insnRegCountPlus;
+
+ /*
+ * A single large alloc, with all of the storage needed for addrRegs.
+ */
+ RegType* regAlloc;
+} RegisterTable;
+
+
+/* fwd */
+#ifndef NDEBUG
+static void checkMergeTab(void);
+#endif
+static bool isInitMethod(const Method* meth);
+static RegType getInvocationThis(const RegType* insnRegs,\
+ const int insnRegCount, const DecodedInstruction* pDecInsn,
+ VerifyError* pFailure);
+static void verifyRegisterType(const RegType* insnRegs, const int insnRegCount,\
+ u4 vsrc, RegType checkType, VerifyError* pFailure);
+static bool doCodeVerification(const Method* meth, InsnFlags* insnFlags,\
+ RegisterTable* regTable, UninitInstanceMap* uninitMap);
+static bool verifyInstruction(const Method* meth, InsnFlags* insnFlags,\
+ RegisterTable* regTable, RegType* workRegs, int insnIdx,
+ UninitInstanceMap* uninitMap, int* pStartGuess);
+static ClassObject* findCommonSuperclass(ClassObject* c1, ClassObject* c2);
+static void dumpRegTypes(const Method* meth, const InsnFlags* insnFlags,\
+ const RegType* addrRegs, int addr, const char* addrName,
+ const UninitInstanceMap* uninitMap, int displayFlags);
+
+/* bit values for dumpRegTypes() "displayFlags" */
+enum {
+ DRT_SIMPLE = 0,
+ DRT_SHOW_REF_TYPES = 0x01,
+ DRT_SHOW_LOCALS = 0x02,
+};
+
+
+/*
+ * ===========================================================================
+ * RegType and UninitInstanceMap utility functions
+ * ===========================================================================
+ */
+
+#define __ kRegTypeUnknown
+#define _U kRegTypeUninit
+#define _X kRegTypeConflict
+#define _F kRegTypeFloat
+#define _0 kRegTypeZero
+#define _1 kRegTypeOne
+#define _Z kRegTypeBoolean
+#define _b kRegTypePosByte
+#define _B kRegTypeByte
+#define _s kRegTypePosShort
+#define _S kRegTypeShort
+#define _C kRegTypeChar
+#define _I kRegTypeInteger
+#define _J kRegTypeLongLo
+#define _j kRegTypeLongHi
+#define _D kRegTypeDoubleLo
+#define _d kRegTypeDoubleHi
+
+/*
+ * Merge result table for primitive values. The table is symmetric along
+ * the diagonal.
+ *
+ * Note that 32-bit int/float do not merge into 64-bit long/double. This
+ * is a register merge, not a widening conversion. Only the "implicit"
+ * widening within a category, e.g. byte to short, is allowed.
+ *
+ * Because Dalvik does not draw a distinction between int and float, we
+ * have to allow free exchange between 32-bit int/float and 64-bit
+ * long/double.
+ *
+ * Note that Uninit+Uninit=Uninit. This holds true because we only
+ * use this when the RegType value is exactly equal to kRegTypeUninit, which
+ * can only happen for the zeroeth entry in the table.
+ *
+ * "Unknown" never merges with anything known. The only time a register
+ * transitions from "unknown" to "known" is when we're executing code
+ * for the first time, and we handle that with a simple copy.
+ */
+const char gDvmMergeTab[kRegTypeMAX][kRegTypeMAX] =
+{
+ /* chk: _ U X F 0 1 Z b B s S C I J j D d */
+ { /*_*/ __,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X },
+ { /*U*/ _X,_U,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X },
+ { /*X*/ _X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X },
+ { /*F*/ _X,_X,_X,_F,_F,_F,_F,_F,_F,_F,_F,_F,_F,_X,_X,_X,_X },
+ { /*0*/ _X,_X,_X,_F,_0,_Z,_Z,_b,_B,_s,_S,_C,_I,_X,_X,_X,_X },
+ { /*1*/ _X,_X,_X,_F,_Z,_1,_Z,_b,_B,_s,_S,_C,_I,_X,_X,_X,_X },
+ { /*Z*/ _X,_X,_X,_F,_Z,_Z,_Z,_b,_B,_s,_S,_C,_I,_X,_X,_X,_X },
+ { /*b*/ _X,_X,_X,_F,_b,_b,_b,_b,_B,_s,_S,_C,_I,_X,_X,_X,_X },
+ { /*B*/ _X,_X,_X,_F,_B,_B,_B,_B,_B,_S,_S,_I,_I,_X,_X,_X,_X },
+ { /*s*/ _X,_X,_X,_F,_s,_s,_s,_s,_S,_s,_S,_C,_I,_X,_X,_X,_X },
+ { /*S*/ _X,_X,_X,_F,_S,_S,_S,_S,_S,_S,_S,_I,_I,_X,_X,_X,_X },
+ { /*C*/ _X,_X,_X,_F,_C,_C,_C,_C,_I,_C,_I,_C,_I,_X,_X,_X,_X },
+ { /*I*/ _X,_X,_X,_F,_I,_I,_I,_I,_I,_I,_I,_I,_I,_X,_X,_X,_X },
+ { /*J*/ _X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_J,_X,_J,_X },
+ { /*j*/ _X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_j,_X,_j },
+ { /*D*/ _X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_J,_X,_D,_X },
+ { /*d*/ _X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_X,_j,_X,_d },
+};
+
+#undef __
+#undef _U
+#undef _X
+#undef _F
+#undef _0
+#undef _1
+#undef _Z
+#undef _b
+#undef _B
+#undef _s
+#undef _S
+#undef _C
+#undef _I
+#undef _J
+#undef _j
+#undef _D
+#undef _d
+
+#ifndef NDEBUG
+/*
+ * Verify symmetry in the conversion table.
+ */
+static void checkMergeTab(void)
+{
+ int i, j;
+
+ for (i = 0; i < kRegTypeMAX; i++) {
+ for (j = i; j < kRegTypeMAX; j++) {
+ if (gDvmMergeTab[i][j] != gDvmMergeTab[j][i]) {
+ LOGE("Symmetry violation: %d,%d vs %d,%d\n", i, j, j, i);
+ dvmAbort();
+ }
+ }
+ }
+}
+#endif
+
+/*
+ * Determine whether we can convert "srcType" to "checkType", where
+ * "checkType" is one of the category-1 non-reference types.
+ *
+ * 32-bit int and float are interchangeable.
+ */
+static bool canConvertTo1nr(RegType srcType, RegType checkType)
+{
+ static const char convTab
+ [kRegType1nrEND-kRegType1nrSTART+1][kRegType1nrEND-kRegType1nrSTART+1] =
+ {
+ /* chk: F 0 1 Z b B s S C I */
+ { /*F*/ 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 },
+ { /*0*/ 1, 1, 0, 1, 1, 1, 1, 1, 1, 1 },
+ { /*1*/ 1, 0, 1, 1, 1, 1, 1, 1, 1, 1 },
+ { /*Z*/ 1, 0, 0, 1, 1, 1, 1, 1, 1, 1 },
+ { /*b*/ 1, 0, 0, 0, 1, 1, 1, 1, 1, 1 },
+ { /*B*/ 1, 0, 0, 0, 0, 1, 0, 1, 0, 1 },
+ { /*s*/ 1, 0, 0, 0, 0, 0, 1, 1, 1, 1 },
+ { /*S*/ 1, 0, 0, 0, 0, 0, 0, 1, 0, 1 },
+ { /*C*/ 1, 0, 0, 0, 0, 0, 0, 0, 1, 1 },
+ { /*I*/ 1, 0, 0, 0, 0, 0, 0, 0, 0, 1 },
+ };
+
+ assert(checkType >= kRegType1nrSTART && checkType <= kRegType1nrEND);
+#if 0
+ if (checkType < kRegType1nrSTART || checkType > kRegType1nrEND) {
+ LOG_VFY("Unexpected checkType %d (srcType=%d)\n", checkType, srcType);
+ assert(false);
+ return false;
+ }
+#endif
+
+ //printf("convTab[%d][%d] = %d\n", srcType, checkType,
+ // convTab[srcType-kRegType1nrSTART][checkType-kRegType1nrSTART]);
+ if (srcType >= kRegType1nrSTART && srcType <= kRegType1nrEND)
+ return (bool) convTab[srcType-kRegType1nrSTART][checkType-kRegType1nrSTART];
+
+ return false;
+}
+
+/*
+ * Determine whether the types are compatible. In Dalvik, 64-bit doubles
+ * and longs are interchangeable.
+ */
+static bool canConvertTo2(RegType srcType, RegType checkType)
+{
+ return ((srcType == kRegTypeLongLo || srcType == kRegTypeDoubleLo) &&
+ (checkType == kRegTypeLongLo || checkType == kRegTypeDoubleLo));
+}
+
+/*
+ * Determine whether or not "instrType" and "targetType" are compatible,
+ * for purposes of getting or setting a value in a field or array. The
+ * idea is that an instruction with a category 1nr type (say, aget-short
+ * or iput-boolean) is accessing a static field, instance field, or array
+ * entry, and we want to make sure sure that the operation is legal.
+ *
+ * At a minimum, source and destination must have the same width. We
+ * further refine this to assert that "short" and "char" are not
+ * compatible, because the sign-extension is different on the "get"
+ * operations. As usual, "float" and "int" are interoperable.
+ *
+ * We're not considering the actual contents of the register, so we'll
+ * never get "pseudo-types" like kRegTypeZero or kRegTypePosShort. We
+ * could get kRegTypeUnknown in "targetType" if a field or array class
+ * lookup failed. Category 2 types and references are checked elsewhere.
+ */
+static bool checkFieldArrayStore1nr(RegType instrType, RegType targetType)
+{
+ if (instrType == targetType)
+ return true; /* quick positive; most common case */
+
+ if ((instrType == kRegTypeInteger && targetType == kRegTypeFloat) ||
+ (instrType == kRegTypeFloat && targetType == kRegTypeInteger))
+ {
+ return true;
+ }
+
+ return false;
+}
+
+/*
+ * Convert a VM PrimitiveType enum value to the equivalent RegType value.
+ */
+static RegType primitiveTypeToRegType(PrimitiveType primType)
+{
+ static const struct {
+ RegType regType; /* type equivalent */
+ PrimitiveType primType; /* verification */
+ } convTab[] = {
+ /* must match order of enum in Object.h */
+ { kRegTypeBoolean, PRIM_BOOLEAN },
+ { kRegTypeChar, PRIM_CHAR },
+ { kRegTypeFloat, PRIM_FLOAT },
+ { kRegTypeDoubleLo, PRIM_DOUBLE },
+ { kRegTypeByte, PRIM_BYTE },
+ { kRegTypeShort, PRIM_SHORT },
+ { kRegTypeInteger, PRIM_INT },
+ { kRegTypeLongLo, PRIM_LONG },
+ // PRIM_VOID
+ };
+
+ if (primType < 0 || primType > (int) (sizeof(convTab) / sizeof(convTab[0])))
+ {
+ assert(false);
+ return kRegTypeUnknown;
+ }
+
+ assert(convTab[primType].primType == primType);
+ return convTab[primType].regType;
+}
+
+/*
+ * Create a new uninitialized instance map.
+ *
+ * The map is allocated and populated with address entries. The addresses
+ * appear in ascending order to allow binary searching.
+ *
+ * Very few methods have 10 or more new-instance instructions; the
+ * majority have 0 or 1. Occasionally a static initializer will have 200+.
+ */
+UninitInstanceMap* dvmCreateUninitInstanceMap(const Method* meth,
+ const InsnFlags* insnFlags, int newInstanceCount)
+{
+ const int insnsSize = dvmGetMethodInsnsSize(meth);
+ const u2* insns = meth->insns;
+ UninitInstanceMap* uninitMap;
+ bool isInit = false;
+ int idx, addr;
+
+ if (isInitMethod(meth)) {
+ newInstanceCount++;
+ isInit = true;
+ }
+
+ /*
+ * Allocate the header and map as a single unit.
+ *
+ * TODO: consider having a static instance so we can avoid allocations.
+ * I don't think the verifier is guaranteed to be single-threaded when
+ * running in the VM (rather than dexopt), so that must be taken into
+ * account.
+ */
+ int size = offsetof(UninitInstanceMap, map) +
+ newInstanceCount * sizeof(uninitMap->map[0]);
+ uninitMap = calloc(1, size);
+ if (uninitMap == NULL)
+ return NULL;
+ uninitMap->numEntries = newInstanceCount;
+
+ idx = 0;
+ if (isInit) {
+ uninitMap->map[idx++].addr = kUninitThisArgAddr;
+ }
+
+ /*
+ * Run through and find the new-instance instructions.
+ */
+ for (addr = 0; addr < insnsSize; /**/) {
+ int width = dvmInsnGetWidth(insnFlags, addr);
+
+ if ((*insns & 0xff) == OP_NEW_INSTANCE)
+ uninitMap->map[idx++].addr = addr;
+
+ addr += width;
+ insns += width;
+ }
+
+ assert(idx == newInstanceCount);
+ return uninitMap;
+}
+
+/*
+ * Free the map.
+ */
+void dvmFreeUninitInstanceMap(UninitInstanceMap* uninitMap)
+{
+ free(uninitMap);
+}
+
+/*
+ * Set the class object associated with the instruction at "addr".
+ *
+ * Returns the map slot index, or -1 if the address isn't listed in the map
+ * (shouldn't happen) or if a class is already associated with the address
+ * (bad bytecode).
+ *
+ * Entries, once set, do not change -- a given address can only allocate
+ * one type of object.
+ */
+int dvmSetUninitInstance(UninitInstanceMap* uninitMap, int addr,
+ ClassObject* clazz)
+{
+ int idx;
+
+ assert(clazz != NULL);
+
+ /* TODO: binary search when numEntries > 8 */
+ for (idx = uninitMap->numEntries - 1; idx >= 0; idx--) {
+ if (uninitMap->map[idx].addr == addr) {
+ if (uninitMap->map[idx].clazz != NULL &&
+ uninitMap->map[idx].clazz != clazz)
+ {
+ LOG_VFY("VFY: addr %d already set to %p, not setting to %p\n",
+ addr, uninitMap->map[idx].clazz, clazz);
+ return -1; // already set to something else??
+ }
+ uninitMap->map[idx].clazz = clazz;
+ return idx;
+ }
+ }
+
+ LOG_VFY("VFY: addr %d not found in uninit map\n", addr);
+ assert(false); // shouldn't happen
+ return -1;
+}
+
+/*
+ * Get the class object at the specified index.
+ */
+ClassObject* dvmGetUninitInstance(const UninitInstanceMap* uninitMap, int idx)
+{
+ assert(idx >= 0 && idx < uninitMap->numEntries);
+ return uninitMap->map[idx].clazz;
+}
+
+/* determine if "type" is actually an object reference (init/uninit/zero) */
+static inline bool regTypeIsReference(RegType type) {
+ return (type > kRegTypeMAX || type == kRegTypeUninit ||
+ type == kRegTypeZero);
+}
+
+/* determine if "type" is an uninitialized object reference */
+static inline bool regTypeIsUninitReference(RegType type) {
+ return ((type & kRegTypeUninitMask) == kRegTypeUninit);
+}
+
+/* convert the initialized reference "type" to a ClassObject pointer */
+/* (does not expect uninit ref types or "zero") */
+static ClassObject* regTypeInitializedReferenceToClass(RegType type)
+{
+ assert(regTypeIsReference(type) && type != kRegTypeZero);
+ if ((type & 0x01) == 0) {
+ return (ClassObject*) type;
+ } else {
+ //LOG_VFY("VFY: attempted to use uninitialized reference\n");
+ return NULL;
+ }
+}
+
+/* extract the index into the uninitialized instance map table */
+static inline int regTypeToUninitIndex(RegType type) {
+ assert(regTypeIsUninitReference(type));
+ return (type & ~kRegTypeUninitMask) >> kRegTypeUninitShift;
+}
+
+/* convert the reference "type" to a ClassObject pointer */
+static ClassObject* regTypeReferenceToClass(RegType type,
+ const UninitInstanceMap* uninitMap)
+{
+ assert(regTypeIsReference(type) && type != kRegTypeZero);
+ if (regTypeIsUninitReference(type)) {
+ assert(uninitMap != NULL);
+ return dvmGetUninitInstance(uninitMap, regTypeToUninitIndex(type));
+ } else {
+ return (ClassObject*) type;
+ }
+}
+
+/* convert the ClassObject pointer to an (initialized) register type */
+static inline RegType regTypeFromClass(ClassObject* clazz) {
+ return (u4) clazz;
+}
+
+/* return the RegType for the uninitialized reference in slot "uidx" */
+static RegType regTypeFromUninitIndex(int uidx) {
+ return (u4) (kRegTypeUninit | (uidx << kRegTypeUninitShift));
+}
+
+
+/*
+ * ===========================================================================
+ * Signature operations
+ * ===========================================================================
+ */
+
+/*
+ * Is this method a constructor?
+ */
+static bool isInitMethod(const Method* meth)
+{
+ return (*meth->name == '<' && strcmp(meth->name+1, "init>") == 0);
+}
+
+/*
+ * Is this method a class initializer?
+ */
+#if 0
+static bool isClassInitMethod(const Method* meth)
+{
+ return (*meth->name == '<' && strcmp(meth->name+1, "clinit>") == 0);
+}
+#endif
+
+/*
+ * Look up a class reference given as a simple string descriptor.
+ *
+ * If we can't find it, return a generic substitute when possible.
+ */
+static ClassObject* lookupClassByDescriptor(const Method* meth,
+ const char* pDescriptor, VerifyError* pFailure)
+{
+ /*
+ * The javac compiler occasionally puts references to nonexistent
+ * classes in signatures. For example, if you have a non-static
+ * inner class with no constructor, the compiler provides
+ * a private <init> for you. Constructing the class
+ * requires <init>(parent), but the outer class can't call
+ * that because the method is private. So the compiler
+ * generates a package-scope <init>(parent,bogus) method that
+ * just calls the regular <init> (the "bogus" part being necessary
+ * to distinguish the signature of the synthetic method).
+ * Treating the bogus class as an instance of java.lang.Object
+ * allows the verifier to process the class successfully.
+ */
+
+ //LOGI("Looking up '%s'\n", typeStr);
+ ClassObject* clazz;
+ clazz = dvmFindClassNoInit(pDescriptor, meth->clazz->classLoader);
+ if (clazz == NULL) {
+ dvmClearOptException(dvmThreadSelf());
+ if (strchr(pDescriptor, '$') != NULL) {
+ LOGV("VFY: unable to find class referenced in signature (%s)\n",
+ pDescriptor);
+ } else {
+ LOG_VFY("VFY: unable to find class referenced in signature (%s)\n",
+ pDescriptor);
+ }
+
+ if (pDescriptor[0] == '[') {
+ /* We are looking at an array descriptor. */
+
+ /*
+ * There should never be a problem loading primitive arrays.
+ */
+ if (pDescriptor[1] != 'L' && pDescriptor[1] != '[') {
+ LOG_VFY("VFY: invalid char in signature in '%s'\n",
+ pDescriptor);
+ *pFailure = VERIFY_ERROR_GENERIC;
+ }
+
+ /*
+ * Try to continue with base array type. This will let
+ * us pass basic stuff (e.g. get array len) that wouldn't
+ * fly with an Object. This is NOT correct if the
+ * missing type is a primitive array, but we should never
+ * have a problem loading those. (I'm not convinced this
+ * is correct or even useful. Just use Object here?)
+ */
+ clazz = dvmFindClassNoInit("[Ljava/lang/Object;",
+ meth->clazz->classLoader);
+ } else if (pDescriptor[0] == 'L') {
+ /*
+ * We are looking at a non-array reference descriptor;
+ * try to continue with base reference type.
+ */
+ clazz = gDvm.classJavaLangObject;
+ } else {
+ /* We are looking at a primitive type. */
+ LOG_VFY("VFY: invalid char in signature in '%s'\n", pDescriptor);
+ *pFailure = VERIFY_ERROR_GENERIC;
+ }
+
+ if (clazz == NULL) {
+ *pFailure = VERIFY_ERROR_GENERIC;
+ }
+ }
+
+ if (dvmIsPrimitiveClass(clazz)) {
+ LOG_VFY("VFY: invalid use of primitive type '%s'\n", pDescriptor);
+ *pFailure = VERIFY_ERROR_GENERIC;
+ clazz = NULL;
+ }
+
+ return clazz;
+}
+
+/*
+ * Look up a class reference in a signature. Could be an arg or the
+ * return value.
+ *
+ * Advances "*pSig" to the last character in the signature (that is, to
+ * the ';').
+ *
+ * NOTE: this is also expected to verify the signature.
+ */
+static ClassObject* lookupSignatureClass(const Method* meth, const char** pSig,
+ VerifyError* pFailure)
+{
+ const char* sig = *pSig;
+ const char* endp = sig;
+
+ assert(sig != NULL && *sig == 'L');
+
+ while (*++endp != ';' && *endp != '\0')
+ ;
+ if (*endp != ';') {
+ LOG_VFY("VFY: bad signature component '%s' (missing ';')\n", sig);
+ *pFailure = VERIFY_ERROR_GENERIC;
+ return NULL;
+ }
+
+ endp++; /* Advance past the ';'. */
+ int typeLen = endp - sig;
+ char typeStr[typeLen+1]; /* +1 for the '\0' */
+ memcpy(typeStr, sig, typeLen);
+ typeStr[typeLen] = '\0';
+
+ *pSig = endp - 1; /* - 1 so that *pSig points at, not past, the ';' */
+
+ return lookupClassByDescriptor(meth, typeStr, pFailure);
+}
+
+/*
+ * Look up an array class reference in a signature. Could be an arg or the
+ * return value.
+ *
+ * Advances "*pSig" to the last character in the signature.
+ *
+ * NOTE: this is also expected to verify the signature.
+ */
+static ClassObject* lookupSignatureArrayClass(const Method* meth,
+ const char** pSig, VerifyError* pFailure)
+{
+ const char* sig = *pSig;
+ const char* endp = sig;
+
+ assert(sig != NULL && *sig == '[');
+
+ /* find the end */
+ while (*++endp == '[' && *endp != '\0')
+ ;
+
+ if (*endp == 'L') {
+ while (*++endp != ';' && *endp != '\0')
+ ;
+ if (*endp != ';') {
+ LOG_VFY("VFY: bad signature component '%s' (missing ';')\n", sig);
+ *pFailure = VERIFY_ERROR_GENERIC;
+ return NULL;
+ }
+ }
+
+ int typeLen = endp - sig +1;
+ char typeStr[typeLen+1];
+ memcpy(typeStr, sig, typeLen);
+ typeStr[typeLen] = '\0';
+
+ *pSig = endp;
+
+ return lookupClassByDescriptor(meth, typeStr, pFailure);
+}
+
+/*
+ * Set the register types for the first instruction in the method based on
+ * the method signature.
+ *
+ * This has the side-effect of validating the signature.
+ *
+ * Returns "true" on success.
+ */
+static bool setTypesFromSignature(const Method* meth, RegType* regTypes,
+ UninitInstanceMap* uninitMap)
+{
+ DexParameterIterator iterator;
+ int actualArgs, expectedArgs, argStart;
+ VerifyError failure = VERIFY_ERROR_NONE;
+
+ dexParameterIteratorInit(&iterator, &meth->prototype);
+ argStart = meth->registersSize - meth->insSize;
+ expectedArgs = meth->insSize; /* long/double count as two */
+ actualArgs = 0;
+
+ assert(argStart >= 0); /* should have been verified earlier */
+
+ /*
+ * Include the "this" pointer.
+ */
+ if (!dvmIsStaticMethod(meth)) {
+ /*
+ * If this is a constructor for a class other than java.lang.Object,
+ * mark the first ("this") argument as uninitialized. This restricts
+ * field access until the superclass constructor is called.
+ */
+ if (isInitMethod(meth) && meth->clazz != gDvm.classJavaLangObject) {
+ int uidx = dvmSetUninitInstance(uninitMap, kUninitThisArgAddr,
+ meth->clazz);
+ assert(uidx == 0);
+ regTypes[argStart + actualArgs] = regTypeFromUninitIndex(uidx);
+ } else {
+ regTypes[argStart + actualArgs] = regTypeFromClass(meth->clazz);
+ }
+ actualArgs++;
+ }
+
+ for (;;) {
+ const char* descriptor = dexParameterIteratorNextDescriptor(&iterator);
+
+ if (descriptor == NULL) {
+ break;
+ }
+
+ if (actualArgs >= expectedArgs) {
+ LOG_VFY("VFY: expected %d args, found more (%s)\n",
+ expectedArgs, descriptor);
+ goto bad_sig;
+ }
+
+ switch (*descriptor) {
+ case 'L':
+ case '[':
+ /*
+ * We assume that reference arguments are initialized. The
+ * only way it could be otherwise (assuming the caller was
+ * verified) is if the current method is <init>, but in that
+ * case it's effectively considered initialized the instant
+ * we reach here (in the sense that we can return without
+ * doing anything or call virtual methods).
+ */
+ {
+ ClassObject* clazz =
+ lookupClassByDescriptor(meth, descriptor, &failure);
+ if (!VERIFY_OK(failure))
+ goto bad_sig;
+ regTypes[argStart + actualArgs] = regTypeFromClass(clazz);
+ }
+ actualArgs++;
+ break;
+ case 'Z':
+ regTypes[argStart + actualArgs] = kRegTypeBoolean;
+ actualArgs++;
+ break;
+ case 'C':
+ regTypes[argStart + actualArgs] = kRegTypeChar;
+ actualArgs++;
+ break;
+ case 'B':
+ regTypes[argStart + actualArgs] = kRegTypeByte;
+ actualArgs++;
+ break;
+ case 'I':
+ regTypes[argStart + actualArgs] = kRegTypeInteger;
+ actualArgs++;
+ break;
+ case 'S':
+ regTypes[argStart + actualArgs] = kRegTypeShort;
+ actualArgs++;
+ break;
+ case 'F':
+ regTypes[argStart + actualArgs] = kRegTypeFloat;
+ actualArgs++;
+ break;
+ case 'D':
+ regTypes[argStart + actualArgs] = kRegTypeDoubleLo;
+ regTypes[argStart + actualArgs +1] = kRegTypeDoubleHi;
+ actualArgs += 2;
+ break;
+ case 'J':
+ regTypes[argStart + actualArgs] = kRegTypeLongLo;
+ regTypes[argStart + actualArgs +1] = kRegTypeLongHi;
+ actualArgs += 2;
+ break;
+ default:
+ LOG_VFY("VFY: unexpected signature type char '%c'\n", *descriptor);
+ goto bad_sig;
+ }
+ }
+
+ if (actualArgs != expectedArgs) {
+ LOG_VFY("VFY: expected %d args, found %d\n", expectedArgs, actualArgs);
+ goto bad_sig;
+ }
+
+ const char* descriptor = dexProtoGetReturnType(&meth->prototype);
+
+ /*
+ * Validate return type. We don't do the type lookup; just want to make
+ * sure that it has the right format. Only major difference from the
+ * method argument format is that 'V' is supported.
+ */
+ switch (*descriptor) {
+ case 'I':
+ case 'C':
+ case 'S':
+ case 'B':
+ case 'Z':
+ case 'V':
+ case 'F':
+ case 'D':
+ case 'J':
+ if (*(descriptor+1) != '\0')
+ goto bad_sig;
+ break;
+ case '[':
+ /* single/multi, object/primitive */
+ while (*++descriptor == '[')
+ ;
+ if (*descriptor == 'L') {
+ while (*++descriptor != ';' && *descriptor != '\0')
+ ;
+ if (*descriptor != ';')
+ goto bad_sig;
+ } else {
+ if (*(descriptor+1) != '\0')
+ goto bad_sig;
+ }
+ break;
+ case 'L':
+ /* could be more thorough here, but shouldn't be required */
+ while (*++descriptor != ';' && *descriptor != '\0')
+ ;
+ if (*descriptor != ';')
+ goto bad_sig;
+ break;
+ default:
+ goto bad_sig;
+ }
+
+ return true;
+
+//fail:
+// LOG_VFY_METH(meth, "VFY: bad sig\n");
+// return false;
+
+bad_sig:
+ {
+ char* desc = dexProtoCopyMethodDescriptor(&meth->prototype);
+ LOG_VFY("VFY: bad signature '%s' for %s.%s\n",
+ desc, meth->clazz->descriptor, meth->name);
+ free(desc);
+ }
+ return false;
+}
+
+/*
+ * Return the register type for the method. We can't just use the
+ * already-computed DalvikJniReturnType, because if it's a reference type
+ * we need to do the class lookup.
+ *
+ * Returned references are assumed to be initialized.
+ *
+ * Returns kRegTypeUnknown for "void".
+ */
+static RegType getMethodReturnType(const Method* meth)
+{
+ RegType type;
+ const char* descriptor = dexProtoGetReturnType(&meth->prototype);
+
+ switch (*descriptor) {
+ case 'I':
+ type = kRegTypeInteger;
+ break;
+ case 'C':
+ type = kRegTypeChar;
+ break;
+ case 'S':
+ type = kRegTypeShort;
+ break;
+ case 'B':
+ type = kRegTypeByte;
+ break;
+ case 'Z':
+ type = kRegTypeBoolean;
+ break;
+ case 'V':
+ type = kRegTypeUnknown;
+ break;
+ case 'F':
+ type = kRegTypeFloat;
+ break;
+ case 'D':
+ type = kRegTypeDoubleLo;
+ break;
+ case 'J':
+ type = kRegTypeLongLo;
+ break;
+ case 'L':
+ case '[':
+ {
+ VerifyError failure = VERIFY_ERROR_NONE;
+ ClassObject* clazz =
+ lookupClassByDescriptor(meth, descriptor, &failure);
+ assert(VERIFY_OK(failure));
+ type = regTypeFromClass(clazz);
+ }
+ break;
+ default:
+ /* we verified signature return type earlier, so this is impossible */
+ assert(false);
+ type = kRegTypeConflict;
+ break;
+ }
+
+ return type;
+}
+
+/*
+ * Convert a single-character signature value (i.e. a primitive type) to
+ * the corresponding RegType. This is intended for access to object fields
+ * holding primitive types.
+ *
+ * Returns kRegTypeUnknown for objects, arrays, and void.
+ */
+static RegType primSigCharToRegType(char sigChar)
+{
+ RegType type;
+
+ switch (sigChar) {
+ case 'I':
+ type = kRegTypeInteger;
+ break;
+ case 'C':
+ type = kRegTypeChar;
+ break;
+ case 'S':
+ type = kRegTypeShort;
+ break;
+ case 'B':
+ type = kRegTypeByte;
+ break;
+ case 'Z':
+ type = kRegTypeBoolean;
+ break;
+ case 'F':
+ type = kRegTypeFloat;
+ break;
+ case 'D':
+ type = kRegTypeDoubleLo;
+ break;
+ case 'J':
+ type = kRegTypeLongLo;
+ break;
+ case 'V':
+ case 'L':
+ case '[':
+ type = kRegTypeUnknown;
+ break;
+ default:
+ assert(false);
+ type = kRegTypeUnknown;
+ break;
+ }
+
+ return type;
+}
+
+/*
+ * See if the method matches the MethodType.
+ */
+static bool isCorrectInvokeKind(MethodType methodType, Method* resMethod)
+{
+ switch (methodType) {
+ case METHOD_DIRECT:
+ return dvmIsDirectMethod(resMethod);
+ case METHOD_STATIC:
+ return dvmIsStaticMethod(resMethod);
+ case METHOD_VIRTUAL:
+ case METHOD_INTERFACE:
+ return !dvmIsDirectMethod(resMethod);
+ default:
+ return false;
+ }
+}
+
+/*
+ * Verify the arguments to a method. We're executing in "method", making
+ * a call to the method reference in vB.
+ *
+ * If this is a "direct" invoke, we allow calls to <init>. For calls to
+ * <init>, the first argument may be an uninitialized reference. Otherwise,
+ * calls to anything starting with '<' will be rejected, as will any
+ * uninitialized reference arguments.
+ *
+ * For non-static method calls, this will verify that the method call is
+ * appropriate for the "this" argument.
+ *
+ * The method reference is in vBBBB. The "isRange" parameter determines
+ * whether we use 0-4 "args" values or a range of registers defined by
+ * vAA and vCCCC.
+ *
+ * Widening conversions on integers and references are allowed, but
+ * narrowing conversions are not.
+ *
+ * Returns the resolved method on success, NULL on failure (with *pFailure
+ * set appropriately).
+ */
+static Method* verifyInvocationArgs(const Method* meth, const RegType* insnRegs,
+ const int insnRegCount, const DecodedInstruction* pDecInsn,
+ UninitInstanceMap* uninitMap, MethodType methodType, bool isRange,
+ bool isSuper, VerifyError* pFailure)
+{
+ Method* resMethod;
+ char* sigOriginal = NULL;
+
+ /*
+ * Resolve the method. This could be an abstract or concrete method
+ * depending on what sort of call we're making.
+ */
+ if (methodType == METHOD_INTERFACE) {
+ resMethod = dvmOptResolveInterfaceMethod(meth->clazz, pDecInsn->vB);
+ } else {
+ resMethod = dvmOptResolveMethod(meth->clazz, pDecInsn->vB, methodType,
+ pFailure);
+ }
+ if (resMethod == NULL) {
+ /* failed; print a meaningful failure message */
+ DexFile* pDexFile = meth->clazz->pDvmDex->pDexFile;
+ const DexMethodId* pMethodId;
+ const char* methodName;
+ char* methodDesc;
+ const char* classDescriptor;
+
+ pMethodId = dexGetMethodId(pDexFile, pDecInsn->vB);
+ methodName = dexStringById(pDexFile, pMethodId->nameIdx);
+ methodDesc = dexCopyDescriptorFromMethodId(pDexFile, pMethodId);
+ classDescriptor = dexStringByTypeIdx(pDexFile, pMethodId->classIdx);
+
+ if (!gDvm.optimizing) {
+ char* dotMissingClass = dvmDescriptorToDot(classDescriptor);
+ char* dotMethClass = dvmDescriptorToDot(meth->clazz->descriptor);
+ //char* curMethodDesc =
+ // dexProtoCopyMethodDescriptor(&meth->prototype);
+
+ LOGI("Could not find method %s.%s, referenced from method %s.%s\n",
+ dotMissingClass, methodName/*, methodDesc*/,
+ dotMethClass, meth->name/*, curMethodDesc*/);
+
+ free(dotMissingClass);
+ free(dotMethClass);
+ //free(curMethodDesc);
+ }
+
+ LOG_VFY("VFY: unable to resolve %s method %u: %s.%s %s\n",
+ dvmMethodTypeStr(methodType), pDecInsn->vB,
+ classDescriptor, methodName, methodDesc);
+ free(methodDesc);
+ if (VERIFY_OK(*pFailure)) /* not set for interface resolve */
+ *pFailure = VERIFY_ERROR_NO_METHOD;
+ goto fail;
+ }
+
+ /*
+ * Only time you can explicitly call a method starting with '<' is when
+ * making a "direct" invocation on "<init>". There are additional
+ * restrictions but we don't enforce them here.
+ */
+ if (resMethod->name[0] == '<') {
+ if (methodType != METHOD_DIRECT || !isInitMethod(resMethod)) {
+ LOG_VFY("VFY: invalid call to %s.%s\n",
+ resMethod->clazz->descriptor, resMethod->name);
+ goto bad_sig;
+ }
+ }
+
+ /*
+ * See if the method type implied by the invoke instruction matches the
+ * access flags for the target method.
+ */
+ if (!isCorrectInvokeKind(methodType, resMethod)) {
+ LOG_VFY("VFY: invoke type does not match method type of %s.%s\n",
+ resMethod->clazz->descriptor, resMethod->name);
+ goto fail;
+ }
+
+ /*
+ * If we're using invoke-super(method), make sure that the executing
+ * method's class' superclass has a vtable entry for the target method.
+ */
+ if (isSuper) {
+ assert(methodType == METHOD_VIRTUAL);
+ ClassObject* super = meth->clazz->super;
+ if (super == NULL || resMethod->methodIndex > super->vtableCount) {
+ char* desc = dexProtoCopyMethodDescriptor(&resMethod->prototype);
+ LOG_VFY("VFY: invalid invoke-super from %s.%s to super %s.%s %s\n",
+ meth->clazz->descriptor, meth->name,
+ (super == NULL) ? "-" : super->descriptor,
+ resMethod->name, desc);
+ free(desc);
+ *pFailure = VERIFY_ERROR_NO_METHOD;
+ goto fail;
+ }
+ }
+
+ /*
+ * We use vAA as our expected arg count, rather than resMethod->insSize,
+ * because we need to match the call to the signature. Also, we might
+ * might be calling through an abstract method definition (which doesn't
+ * have register count values).
+ */
+ sigOriginal = dexProtoCopyMethodDescriptor(&resMethod->prototype);
+ const char* sig = sigOriginal;
+ int expectedArgs = pDecInsn->vA;
+ int actualArgs = 0;
+
+ if (!isRange && expectedArgs > 5) {
+ LOG_VFY("VFY: invalid arg count in non-range invoke (%d)\n",
+ pDecInsn->vA);
+ goto fail;
+ }
+ if (expectedArgs > meth->outsSize) {
+ LOG_VFY("VFY: invalid arg count (%d) exceeds outsSize (%d)\n",
+ expectedArgs, meth->outsSize);
+ goto fail;
+ }
+
+ if (*sig++ != '(')
+ goto bad_sig;
+
+ /*
+ * Check the "this" argument, which must be an instance of the class
+ * that declared the method. For an interface class, we don't do the
+ * full interface merge, so we can't do a rigorous check here (which
+ * is okay since we have to do it at runtime).
+ */
+ if (!dvmIsStaticMethod(resMethod)) {
+ ClassObject* actualThisRef;
+ RegType actualArgType;
+
+ actualArgType = getInvocationThis(insnRegs, insnRegCount, pDecInsn,
+ pFailure);
+ if (!VERIFY_OK(*pFailure))
+ goto fail;
+
+ if (regTypeIsUninitReference(actualArgType) && resMethod->name[0] != '<')
+ {
+ LOG_VFY("VFY: 'this' arg must be initialized\n");
+ goto fail;
+ }
+ if (methodType != METHOD_INTERFACE && actualArgType != kRegTypeZero) {
+ actualThisRef = regTypeReferenceToClass(actualArgType, uninitMap);
+ if (!dvmInstanceof(actualThisRef, resMethod->clazz)) {
+ LOG_VFY("VFY: 'this' arg '%s' not instance of '%s'\n",
+ actualThisRef->descriptor,
+ resMethod->clazz->descriptor);
+ goto fail;
+ }
+ }
+ actualArgs++;
+ }
+
+ /*
+ * Process the target method's signature. This signature may or may not
+ * have been verified, so we can't assume it's properly formed.
+ */
+ while (*sig != '\0' && *sig != ')') {
+ if (actualArgs >= expectedArgs) {
+ LOG_VFY("VFY: expected %d args, found more (%c)\n",
+ expectedArgs, *sig);
+ goto bad_sig;
+ }
+
+ u4 getReg;
+ if (isRange)
+ getReg = pDecInsn->vC + actualArgs;
+ else
+ getReg = pDecInsn->arg[actualArgs];
+
+ switch (*sig) {
+ case 'L':
+ {
+ ClassObject* clazz = lookupSignatureClass(meth, &sig, pFailure);
+ if (!VERIFY_OK(*pFailure))
+ goto bad_sig;
+ verifyRegisterType(insnRegs, insnRegCount, getReg,
+ regTypeFromClass(clazz), pFailure);
+ if (!VERIFY_OK(*pFailure)) {
+ LOG_VFY("VFY: bad arg %d (into %s)\n",
+ actualArgs, clazz->descriptor);
+ goto bad_sig;
+ }
+ }
+ actualArgs++;
+ break;
+ case '[':
+ {
+ ClassObject* clazz =
+ lookupSignatureArrayClass(meth, &sig, pFailure);
+ if (!VERIFY_OK(*pFailure))
+ goto bad_sig;
+ verifyRegisterType(insnRegs, insnRegCount, getReg,
+ regTypeFromClass(clazz), pFailure);
+ if (!VERIFY_OK(*pFailure)) {
+ LOG_VFY("VFY: bad arg %d (into %s)\n",
+ actualArgs, clazz->descriptor);
+ goto bad_sig;
+ }
+ }
+ actualArgs++;
+ break;
+ case 'Z':
+ verifyRegisterType(insnRegs, insnRegCount, getReg,
+ kRegTypeBoolean, pFailure);
+ actualArgs++;
+ break;
+ case 'C':
+ verifyRegisterType(insnRegs, insnRegCount, getReg,
+ kRegTypeChar, pFailure);
+ actualArgs++;
+ break;
+ case 'B':
+ verifyRegisterType(insnRegs, insnRegCount, getReg,
+ kRegTypeByte, pFailure);
+ actualArgs++;
+ break;
+ case 'I':
+ verifyRegisterType(insnRegs, insnRegCount, getReg,
+ kRegTypeInteger, pFailure);
+ actualArgs++;
+ break;
+ case 'S':
+ verifyRegisterType(insnRegs, insnRegCount, getReg,
+ kRegTypeShort, pFailure);
+ actualArgs++;
+ break;
+ case 'F':
+ verifyRegisterType(insnRegs, insnRegCount, getReg,
+ kRegTypeFloat, pFailure);
+ actualArgs++;
+ break;
+ case 'D':
+ verifyRegisterType(insnRegs, insnRegCount, getReg,
+ kRegTypeDoubleLo, pFailure);
+ actualArgs += 2;
+ break;
+ case 'J':
+ verifyRegisterType(insnRegs, insnRegCount, getReg,
+ kRegTypeLongLo, pFailure);
+ actualArgs += 2;
+ break;
+ default:
+ LOG_VFY("VFY: invocation target: bad signature type char '%c'\n",
+ *sig);
+ goto bad_sig;
+ }
+
+ sig++;
+ }
+ if (*sig != ')') {
+ char* desc = dexProtoCopyMethodDescriptor(&resMethod->prototype);
+ LOG_VFY("VFY: invocation target: bad signature '%s'\n", desc);
+ free(desc);
+ goto bad_sig;
+ }
+
+ if (actualArgs != expectedArgs) {
+ LOG_VFY("VFY: expected %d args, found %d\n", expectedArgs, actualArgs);
+ goto bad_sig;
+ }
+
+ free(sigOriginal);
+ return resMethod;
+
+bad_sig:
+ if (resMethod != NULL) {
+ char* desc = dexProtoCopyMethodDescriptor(&resMethod->prototype);
+ LOG_VFY("VFY: rejecting call to %s.%s %s\n",
+ resMethod->clazz->descriptor, resMethod->name, desc);
+ free(desc);
+ }
+
+fail:
+ free(sigOriginal);
+ if (*pFailure == VERIFY_ERROR_NONE)
+ *pFailure = VERIFY_ERROR_GENERIC;
+ return NULL;
+}
+
+/*
+ * Get the class object for the type of data stored in a field. This isn't
+ * stored in the Field struct, so we have to recover it from the signature.
+ *
+ * This only works for reference types. Don't call this for primitive types.
+ *
+ * If we can't find the class, we return java.lang.Object, so that
+ * verification can continue if a field is only accessed in trivial ways.
+ */
+static ClassObject* getFieldClass(const Method* meth, const Field* field)
+{
+ ClassObject* fieldClass;
+ const char* signature = field->signature;
+
+ if ((*signature == 'L') || (*signature == '[')) {
+ fieldClass = dvmFindClassNoInit(signature,
+ meth->clazz->classLoader);
+ } else {
+ return NULL;
+ }
+
+ if (fieldClass == NULL) {
+ dvmClearOptException(dvmThreadSelf());
+ LOGV("VFY: unable to find class '%s' for field %s.%s, trying Object\n",
+ field->signature, meth->clazz->descriptor, field->name);
+ fieldClass = gDvm.classJavaLangObject;
+ } else {
+ assert(!dvmIsPrimitiveClass(fieldClass));
+ }
+ return fieldClass;
+}
+
+
+/*
+ * ===========================================================================
+ * Register operations
+ * ===========================================================================
+ */
+
+/*
+ * Get the type of register N, verifying that the register is valid.
+ *
+ * Sets "*pFailure" appropriately if the register number is out of range.
+ */
+static inline RegType getRegisterType(const RegType* insnRegs,
+ const int insnRegCount, u4 vsrc, VerifyError* pFailure)
+{
+ if (vsrc >= (u4) insnRegCount) {
+ *pFailure = VERIFY_ERROR_GENERIC;
+ return kRegTypeUnknown;
+ } else {
+ return insnRegs[vsrc];
+ }
+}
+
+/*
+ * Get the value from a register, and cast it to a ClassObject. Sets
+ * "*pFailure" if something fails.
+ *
+ * This fails if the register holds an uninitialized class.
+ *
+ * If the register holds kRegTypeZero, this returns a NULL pointer.
+ */
+static ClassObject* getClassFromRegister(const RegType* insnRegs,
+ const int insnRegCount, u4 vsrc, VerifyError* pFailure)
+{
+ ClassObject* clazz = NULL;
+ RegType type;
+
+ /* get the element type of the array held in vsrc */
+ type = getRegisterType(insnRegs, insnRegCount, vsrc, pFailure);
+ if (!VERIFY_OK(*pFailure))
+ goto bail;
+
+ /* if "always zero", we allow it to fail at runtime */
+ if (type == kRegTypeZero)
+ goto bail;
+
+ if (!regTypeIsReference(type)) {
+ LOG_VFY("VFY: tried to get class from non-ref register v%d (type=%d)\n",
+ vsrc, type);
+ *pFailure = VERIFY_ERROR_GENERIC;
+ goto bail;
+ }
+ if (regTypeIsUninitReference(type)) {
+ LOG_VFY("VFY: register %u holds uninitialized reference\n", vsrc);
+ *pFailure = VERIFY_ERROR_GENERIC;
+ goto bail;
+ }
+
+ clazz = regTypeInitializedReferenceToClass(type);
+
+bail:
+ return clazz;
+}
+
+/*
+ * Get the "this" pointer from a non-static method invocation. This
+ * returns the RegType so the caller can decide whether it needs the
+ * reference to be initialized or not. (Can also return kRegTypeZero
+ * if the reference can only be zero at this point.)
+ *
+ * The argument count is in vA, and the first argument is in vC, for both
+ * "simple" and "range" versions. We just need to make sure vA is >= 1
+ * and then return vC.
+ */
+static RegType getInvocationThis(const RegType* insnRegs,
+ const int insnRegCount, const DecodedInstruction* pDecInsn,
+ VerifyError* pFailure)
+{
+ RegType thisType = kRegTypeUnknown;
+
+ if (pDecInsn->vA < 1) {
+ LOG_VFY("VFY: invoke lacks 'this'\n");
+ *pFailure = VERIFY_ERROR_GENERIC;
+ goto bail;
+ }
+
+ /* get the element type of the array held in vsrc */
+ thisType = getRegisterType(insnRegs, insnRegCount, pDecInsn->vC, pFailure);
+ if (!VERIFY_OK(*pFailure)) {
+ LOG_VFY("VFY: failed to get 'this' from register %u\n", pDecInsn->vC);
+ goto bail;
+ }
+
+ if (!regTypeIsReference(thisType)) {
+ LOG_VFY("VFY: tried to get class from non-ref register v%d (type=%d)\n",
+ pDecInsn->vC, thisType);
+ *pFailure = VERIFY_ERROR_GENERIC;
+ goto bail;
+ }
+
+bail:
+ return thisType;
+}
+
+/*
+ * Set the type of register N, verifying that the register is valid. If
+ * "newType" is the "Lo" part of a 64-bit value, register N+1 will be
+ * set to "newType+1".
+ *
+ * Sets "*pFailure" if the register number is out of range.
+ */
+static void setRegisterType(RegType* insnRegs, const int insnRegCount,
+ u4 vdst, RegType newType, VerifyError* pFailure)
+{
+ //LOGD("set-reg v%u = %d\n", vdst, newType);
+ switch (newType) {
+ case kRegTypeUnknown:
+ case kRegTypeBoolean:
+ case kRegTypeOne:
+ case kRegTypeByte:
+ case kRegTypePosByte:
+ case kRegTypeShort:
+ case kRegTypePosShort:
+ case kRegTypeChar:
+ case kRegTypeInteger:
+ case kRegTypeFloat:
+ case kRegTypeZero:
+ if (vdst >= (u4) insnRegCount) {
+ *pFailure = VERIFY_ERROR_GENERIC;
+ } else {
+ insnRegs[vdst] = newType;
+ }
+ break;
+ case kRegTypeLongLo:
+ case kRegTypeDoubleLo:
+ if (vdst+1 >= (u4) insnRegCount) {
+ *pFailure = VERIFY_ERROR_GENERIC;
+ } else {
+ insnRegs[vdst] = newType;
+ insnRegs[vdst+1] = newType+1;
+ }
+ break;
+ case kRegTypeLongHi:
+ case kRegTypeDoubleHi:
+ /* should never set these explicitly */
+ *pFailure = VERIFY_ERROR_GENERIC;
+ break;
+
+ case kRegTypeUninit:
+ default:
+ if (regTypeIsReference(newType)) {
+ if (vdst >= (u4) insnRegCount) {
+ *pFailure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+ insnRegs[vdst] = newType;
+
+ /*
+ * In most circumstances we won't see a reference to a primitive
+ * class here (e.g. "D"), since that would mean the object in the
+ * register is actually a primitive type. It can happen as the
+ * result of an assumed-successful check-cast instruction in
+ * which the second argument refers to a primitive class. (In
+ * practice, such an instruction will always throw an exception.)
+ *
+ * This is not an issue for instructions like const-class, where
+ * the object in the register is a java.lang.Class instance.
+ */
+ break;
+ }
+ /* bad - fall through */
+
+ case kRegTypeConflict: // should only be set during a merge
+ LOG_VFY("Unexpected set type %d\n", newType);
+ assert(false);
+ *pFailure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+}
+
+/*
+ * Verify that the contents of the specified register have the specified
+ * type (or can be converted to it through an implicit widening conversion).
+ *
+ * In theory we could use this to modify the type of the source register,
+ * e.g. a generic 32-bit constant, once used as a float, would thereafter
+ * remain a float. There is no compelling reason to require this though.
+ *
+ * If "vsrc" is a reference, both it and the "vsrc" register must be
+ * initialized ("vsrc" may be Zero). This will verify that the value in
+ * the register is an instance of checkType, or if checkType is an
+ * interface, verify that the register implements checkType.
+ */
+static void verifyRegisterType(const RegType* insnRegs, const int insnRegCount,
+ u4 vsrc, RegType checkType, VerifyError* pFailure)
+{
+ if (vsrc >= (u4) insnRegCount) {
+ *pFailure = VERIFY_ERROR_GENERIC;
+ return;
+ }
+
+ RegType srcType = insnRegs[vsrc];
+
+ //LOGD("check-reg v%u = %d\n", vsrc, checkType);
+ switch (checkType) {
+ case kRegTypeFloat:
+ case kRegTypeBoolean:
+ case kRegTypePosByte:
+ case kRegTypeByte:
+ case kRegTypePosShort:
+ case kRegTypeShort:
+ case kRegTypeChar:
+ case kRegTypeInteger:
+ if (!canConvertTo1nr(srcType, checkType)) {
+ LOG_VFY("VFY: register1 v%u type %d, wanted %d\n",
+ vsrc, srcType, checkType);
+ *pFailure = VERIFY_ERROR_GENERIC;
+ }
+ break;
+ case kRegTypeLongLo:
+ case kRegTypeDoubleLo:
+ if (vsrc+1 >= (u4) insnRegCount) {
+ LOG_VFY("VFY: register2 v%u out of range (%d)\n",
+ vsrc, insnRegCount);
+ *pFailure = VERIFY_ERROR_GENERIC;
+ } else if (insnRegs[vsrc+1] != srcType+1) {
+ LOG_VFY("VFY: register2 v%u-%u values %d,%d\n",
+ vsrc, vsrc+1, insnRegs[vsrc], insnRegs[vsrc+1]);
+ *pFailure = VERIFY_ERROR_GENERIC;
+ } else if (!canConvertTo2(srcType, checkType)) {
+ LOG_VFY("VFY: register2 v%u type %d, wanted %d\n",
+ vsrc, srcType, checkType);
+ *pFailure = VERIFY_ERROR_GENERIC;
+ }
+ break;
+
+ case kRegTypeLongHi:
+ case kRegTypeDoubleHi:
+ case kRegTypeZero:
+ case kRegTypeOne:
+ case kRegTypeUnknown:
+ case kRegTypeConflict:
+ /* should never be checking for these explicitly */
+ assert(false);
+ *pFailure = VERIFY_ERROR_GENERIC;
+ return;
+ case kRegTypeUninit:
+ default:
+ /* make sure checkType is initialized reference */
+ if (!regTypeIsReference(checkType)) {
+ LOG_VFY("VFY: unexpected check type %d\n", checkType);
+ assert(false);
+ *pFailure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+ if (regTypeIsUninitReference(checkType)) {
+ LOG_VFY("VFY: uninitialized ref not expected as reg check\n");
+ *pFailure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+ /* make sure srcType is initialized reference or always-NULL */
+ if (!regTypeIsReference(srcType)) {
+ LOG_VFY("VFY: register1 v%u type %d, wanted ref\n", vsrc, srcType);
+ *pFailure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+ if (regTypeIsUninitReference(srcType)) {
+ LOG_VFY("VFY: register1 v%u holds uninitialized ref\n", vsrc);
+ *pFailure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+ /* if the register isn't Zero, make sure it's an instance of check */
+ if (srcType != kRegTypeZero) {
+ ClassObject* srcClass = regTypeInitializedReferenceToClass(srcType);
+ ClassObject* checkClass = regTypeInitializedReferenceToClass(checkType);
+ assert(srcClass != NULL);
+ assert(checkClass != NULL);
+
+ if (dvmIsInterfaceClass(checkClass)) {
+ /*
+ * All objects implement all interfaces as far as the
+ * verifier is concerned. The runtime has to sort it out.
+ * See comments above findCommonSuperclass.
+ */
+ /*
+ if (srcClass != checkClass &&
+ !dvmImplements(srcClass, checkClass))
+ {
+ LOG_VFY("VFY: %s does not implement %s\n",
+ srcClass->descriptor, checkClass->descriptor);
+ *pFailure = VERIFY_ERROR_GENERIC;
+ }
+ */
+ } else {
+ if (!dvmInstanceof(srcClass, checkClass)) {
+ LOG_VFY("VFY: %s is not instance of %s\n",
+ srcClass->descriptor, checkClass->descriptor);
+ *pFailure = VERIFY_ERROR_GENERIC;
+ }
+ }
+ }
+ break;
+ }
+}
+
+/*
+ * Set the type of the "result" register. Mostly this exists to expand
+ * "insnRegCount" to encompass the result register.
+ */
+static void setResultRegisterType(RegType* insnRegs, const int insnRegCount,
+ RegType newType, VerifyError* pFailure)
+{
+ setRegisterType(insnRegs, insnRegCount + kExtraRegs,
+ RESULT_REGISTER(insnRegCount), newType, pFailure);
+}
+
+
+/*
+ * Update all registers holding "uninitType" to instead hold the
+ * corresponding initialized reference type. This is called when an
+ * appropriate <init> method is invoked -- all copies of the reference
+ * must be marked as initialized.
+ */
+static void markRefsAsInitialized(RegType* insnRegs, int insnRegCount,
+ UninitInstanceMap* uninitMap, RegType uninitType, VerifyError* pFailure)
+{
+ ClassObject* clazz;
+ RegType initType;
+ int i, changed;
+
+ clazz = dvmGetUninitInstance(uninitMap, regTypeToUninitIndex(uninitType));
+ if (clazz == NULL) {
+ LOGE("VFY: unable to find type=0x%x (idx=%d)\n",
+ uninitType, regTypeToUninitIndex(uninitType));
+ *pFailure = VERIFY_ERROR_GENERIC;
+ return;
+ }
+ initType = regTypeFromClass(clazz);
+
+ changed = 0;
+ for (i = 0; i < insnRegCount; i++) {
+ if (insnRegs[i] == uninitType) {
+ insnRegs[i] = initType;
+ changed++;
+ }
+ }
+ //LOGD("VFY: marked %d registers as initialized\n", changed);
+ assert(changed > 0);
+
+ return;
+}
+
+/*
+ * We're creating a new instance of class C at address A. Any registers
+ * holding instances previously created at address A must be initialized
+ * by now. If not, we mark them as "conflict" to prevent them from being
+ * used (otherwise, markRefsAsInitialized would mark the old ones and the
+ * new ones at the same time).
+ */
+static void markUninitRefsAsInvalid(RegType* insnRegs, int insnRegCount,
+ UninitInstanceMap* uninitMap, RegType uninitType)
+{
+ int i, changed;
+
+ changed = 0;
+ for (i = 0; i < insnRegCount; i++) {
+ if (insnRegs[i] == uninitType) {
+ insnRegs[i] = kRegTypeConflict;
+ changed++;
+ }
+ }
+
+ //if (changed)
+ // LOGD("VFY: marked %d uninitialized registers as invalid\n", changed);
+}
+
+/*
+ * Find the start of the register set for the specified instruction in
+ * the current method.
+ */
+static inline RegType* getRegisterLine(const RegisterTable* regTable,
+ int insnIdx)
+{
+ return regTable->addrRegs[insnIdx];
+}
+
+/*
+ * Copy a bunch of registers.
+ */
+static inline void copyRegisters(RegType* dst, const RegType* src,
+ int numRegs)
+{
+ memcpy(dst, src, numRegs * sizeof(RegType));
+}
+
+/*
+ * Compare a bunch of registers.
+ *
+ * Returns 0 if they match. Using this for a sort is unwise, since the
+ * value can change based on machine endianness.
+ */
+static inline int compareRegisters(const RegType* src1, const RegType* src2,
+ int numRegs)
+{
+ return memcmp(src1, src2, numRegs * sizeof(RegType));
+}
+
+/*
+ * Register type categories, for type checking.
+ *
+ * The spec says category 1 includes boolean, byte, char, short, int, float,
+ * reference, and returnAddress. Category 2 includes long and double.
+ *
+ * We treat object references separately, so we have "category1nr". We
+ * don't support jsr/ret, so there is no "returnAddress" type.
+ */
+typedef enum TypeCategory {
+ kTypeCategoryUnknown = 0,
+ kTypeCategory1nr, // byte, char, int, float, boolean
+ kTypeCategory2, // long, double
+ kTypeCategoryRef, // object reference
+} TypeCategory;
+
+/*
+ * See if "type" matches "cat". All we're really looking for here is that
+ * we're not mixing and matching 32-bit and 64-bit quantities, and we're
+ * not mixing references with numerics. (For example, the arguments to
+ * "a < b" could be integers of different sizes, but they must both be
+ * integers. Dalvik is less specific about int vs. float, so we treat them
+ * as equivalent here.)
+ *
+ * For category 2 values, "type" must be the "low" half of the value.
+ *
+ * Sets "*pFailure" if something looks wrong.
+ */
+static void checkTypeCategory(RegType type, TypeCategory cat,
+ VerifyError* pFailure)
+{
+ switch (cat) {
+ case kTypeCategory1nr:
+ switch (type) {
+ case kRegTypeFloat:
+ case kRegTypeZero:
+ case kRegTypeOne:
+ case kRegTypeBoolean:
+ case kRegTypePosByte:
+ case kRegTypeByte:
+ case kRegTypePosShort:
+ case kRegTypeShort:
+ case kRegTypeChar:
+ case kRegTypeInteger:
+ break;
+ default:
+ *pFailure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+ break;
+
+ case kTypeCategory2:
+ switch (type) {
+ case kRegTypeLongLo:
+ case kRegTypeDoubleLo:
+ break;
+ default:
+ *pFailure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+ break;
+
+ case kTypeCategoryRef:
+ if (type != kRegTypeZero && !regTypeIsReference(type))
+ *pFailure = VERIFY_ERROR_GENERIC;
+ break;
+
+ default:
+ assert(false);
+ *pFailure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+}
+
+/*
+ * For a category 2 register pair, verify that "typeh" is the appropriate
+ * high part for "typel".
+ *
+ * Does not verify that "typel" is in fact the low part of a 64-bit
+ * register pair.
+ */
+static void checkWidePair(RegType typel, RegType typeh, VerifyError* pFailure)
+{
+ if ((typeh != typel+1))
+ *pFailure = VERIFY_ERROR_GENERIC;
+}
+
+/*
+ * Implement category-1 "move" instructions. Copy a 32-bit value from
+ * "vsrc" to "vdst".
+ *
+ * "insnRegCount" is the number of registers available. The "vdst" and
+ * "vsrc" values are checked against this.
+ */
+static void copyRegister1(RegType* insnRegs, int insnRegCount, u4 vdst,
+ u4 vsrc, TypeCategory cat, VerifyError* pFailure)
+{
+ RegType type = getRegisterType(insnRegs, insnRegCount, vsrc, pFailure);
+ if (VERIFY_OK(*pFailure))
+ checkTypeCategory(type, cat, pFailure);
+ if (VERIFY_OK(*pFailure))
+ setRegisterType(insnRegs, insnRegCount, vdst, type, pFailure);
+
+ if (!VERIFY_OK(*pFailure)) {
+ LOG_VFY("VFY: copy1 v%u<-v%u type=%d cat=%d\n", vdst, vsrc, type, cat);
+ }
+}
+
+/*
+ * Implement category-2 "move" instructions. Copy a 64-bit value from
+ * "vsrc" to "vdst". This copies both halves of the register.
+ */
+static void copyRegister2(RegType* insnRegs, int insnRegCount, u4 vdst,
+ u4 vsrc, VerifyError* pFailure)
+{
+ RegType typel = getRegisterType(insnRegs, insnRegCount, vsrc, pFailure);
+ RegType typeh = getRegisterType(insnRegs, insnRegCount, vsrc+1, pFailure);
+ if (VERIFY_OK(*pFailure)) {
+ checkTypeCategory(typel, kTypeCategory2, pFailure);
+ checkWidePair(typel, typeh, pFailure);
+ }
+ if (VERIFY_OK(*pFailure))
+ setRegisterType(insnRegs, insnRegCount, vdst, typel, pFailure);
+
+ if (!VERIFY_OK(*pFailure)) {
+ LOG_VFY("VFY: copy2 v%u<-v%u type=%d/%d\n", vdst, vsrc, typel, typeh);
+ }
+}
+
+/*
+ * Implement "move-result". Copy the category-1 value from the result
+ * register to another register, and reset the result register.
+ *
+ * We can't just call copyRegister1 with an altered insnRegCount,
+ * because that would affect the test on "vdst" as well.
+ */
+static void copyResultRegister1(RegType* insnRegs, const int insnRegCount,
+ u4 vdst, TypeCategory cat, VerifyError* pFailure)
+{
+ RegType type;
+ u4 vsrc;
+
+ vsrc = RESULT_REGISTER(insnRegCount);
+ type = getRegisterType(insnRegs, insnRegCount + kExtraRegs, vsrc, pFailure);
+ if (VERIFY_OK(*pFailure))
+ checkTypeCategory(type, cat, pFailure);
+ if (VERIFY_OK(*pFailure)) {
+ setRegisterType(insnRegs, insnRegCount, vdst, type, pFailure);
+ insnRegs[vsrc] = kRegTypeUnknown;
+ }
+
+ if (!VERIFY_OK(*pFailure)) {
+ LOG_VFY("VFY: copyRes1 v%u<-v%u cat=%d type=%d\n",
+ vdst, vsrc, cat, type);
+ }
+}
+
+/*
+ * Implement "move-result-wide". Copy the category-2 value from the result
+ * register to another register, and reset the result register.
+ *
+ * We can't just call copyRegister2 with an altered insnRegCount,
+ * because that would affect the test on "vdst" as well.
+ */
+static void copyResultRegister2(RegType* insnRegs, const int insnRegCount,
+ u4 vdst, VerifyError* pFailure)
+{
+ RegType typel, typeh;
+ u4 vsrc;
+
+ vsrc = RESULT_REGISTER(insnRegCount);
+ typel = getRegisterType(insnRegs, insnRegCount + kExtraRegs, vsrc,
+ pFailure);
+ typeh = getRegisterType(insnRegs, insnRegCount + kExtraRegs, vsrc+1,
+ pFailure);
+ if (VERIFY_OK(*pFailure)) {
+ checkTypeCategory(typel, kTypeCategory2, pFailure);
+ checkWidePair(typel, typeh, pFailure);
+ }
+ if (VERIFY_OK(*pFailure)) {
+ setRegisterType(insnRegs, insnRegCount, vdst, typel, pFailure);
+ insnRegs[vsrc] = kRegTypeUnknown;
+ insnRegs[vsrc+1] = kRegTypeUnknown;
+ }
+
+ if (!VERIFY_OK(*pFailure)) {
+ LOG_VFY("VFY: copyRes2 v%u<-v%u type=%d/%d\n",
+ vdst, vsrc, typel, typeh);
+ }
+}
+
+/*
+ * Verify types for a simple two-register instruction (e.g. "neg-int").
+ * "dstType" is stored into vA, and "srcType" is verified against vB.
+ */
+static void checkUnop(RegType* insnRegs, const int insnRegCount,
+ DecodedInstruction* pDecInsn, RegType dstType, RegType srcType,
+ VerifyError* pFailure)
+{
+ verifyRegisterType(insnRegs, insnRegCount, pDecInsn->vB, srcType, pFailure);
+ setRegisterType(insnRegs, insnRegCount, pDecInsn->vA, dstType, pFailure);
+}
+
+/*
+ * We're performing an operation like "and-int/2addr" that can be
+ * performed on booleans as well as integers. We get no indication of
+ * boolean-ness, but we can infer it from the types of the arguments.
+ *
+ * Assumes we've already validated reg1/reg2.
+ *
+ * TODO: consider generalizing this. The key principle is that the
+ * result of a bitwise operation can only be as wide as the widest of
+ * the operands. You can safely AND/OR/XOR two chars together and know
+ * you still have a char, so it's reasonable for the compiler or "dx"
+ * to skip the int-to-char instruction. (We need to do this for boolean
+ * because there is no int-to-boolean operation.)
+ *
+ * Returns true if both args are Boolean, Zero, or One.
+ */
+static bool upcastBooleanOp(RegType* insnRegs, const int insnRegCount,
+ u4 reg1, u4 reg2)
+{
+ RegType type1, type2;
+
+ type1 = insnRegs[reg1];
+ type2 = insnRegs[reg2];
+
+ if ((type1 == kRegTypeBoolean || type1 == kRegTypeZero ||
+ type1 == kRegTypeOne) &&
+ (type2 == kRegTypeBoolean || type2 == kRegTypeZero ||
+ type2 == kRegTypeOne))
+ {
+ return true;
+ }
+ return false;
+}
+
+/*
+ * Verify types for A two-register instruction with a literal constant
+ * (e.g. "add-int/lit8"). "dstType" is stored into vA, and "srcType" is
+ * verified against vB.
+ *
+ * If "checkBooleanOp" is set, we use the constant value in vC.
+ */
+static void checkLitop(RegType* insnRegs, const int insnRegCount,
+ DecodedInstruction* pDecInsn, RegType dstType, RegType srcType,
+ bool checkBooleanOp, VerifyError* pFailure)
+{
+ verifyRegisterType(insnRegs, insnRegCount, pDecInsn->vB, srcType, pFailure);
+ if (VERIFY_OK(*pFailure) && checkBooleanOp) {
+ assert(dstType == kRegTypeInteger);
+ /* check vB with the call, then check the constant manually */
+ if (upcastBooleanOp(insnRegs, insnRegCount, pDecInsn->vB, pDecInsn->vB)
+ && (pDecInsn->vC == 0 || pDecInsn->vC == 1))
+ {
+ dstType = kRegTypeBoolean;
+ }
+ }
+ setRegisterType(insnRegs, insnRegCount, pDecInsn->vA, dstType, pFailure);
+}
+
+/*
+ * Verify types for a simple three-register instruction (e.g. "add-int").
+ * "dstType" is stored into vA, and "srcType1"/"srcType2" are verified
+ * against vB/vC.
+ */
+static void checkBinop(RegType* insnRegs, const int insnRegCount,
+ DecodedInstruction* pDecInsn, RegType dstType, RegType srcType1,
+ RegType srcType2, bool checkBooleanOp, VerifyError* pFailure)
+{
+ verifyRegisterType(insnRegs, insnRegCount, pDecInsn->vB, srcType1,
+ pFailure);
+ verifyRegisterType(insnRegs, insnRegCount, pDecInsn->vC, srcType2,
+ pFailure);
+ if (VERIFY_OK(*pFailure) && checkBooleanOp) {
+ assert(dstType == kRegTypeInteger);
+ if (upcastBooleanOp(insnRegs, insnRegCount, pDecInsn->vB, pDecInsn->vC))
+ dstType = kRegTypeBoolean;
+ }
+ setRegisterType(insnRegs, insnRegCount, pDecInsn->vA, dstType, pFailure);
+}
+
+/*
+ * Verify types for a binary "2addr" operation. "srcType1"/"srcType2"
+ * are verified against vA/vB, then "dstType" is stored into vA.
+ */
+static void checkBinop2addr(RegType* insnRegs, const int insnRegCount,
+ DecodedInstruction* pDecInsn, RegType dstType, RegType srcType1,
+ RegType srcType2, bool checkBooleanOp, VerifyError* pFailure)
+{
+ verifyRegisterType(insnRegs, insnRegCount, pDecInsn->vA, srcType1,
+ pFailure);
+ verifyRegisterType(insnRegs, insnRegCount, pDecInsn->vB, srcType2,
+ pFailure);
+ if (VERIFY_OK(*pFailure) && checkBooleanOp) {
+ assert(dstType == kRegTypeInteger);
+ if (upcastBooleanOp(insnRegs, insnRegCount, pDecInsn->vA, pDecInsn->vB))
+ dstType = kRegTypeBoolean;
+ }
+ setRegisterType(insnRegs, insnRegCount, pDecInsn->vA, dstType, pFailure);
+}
+
+/*
+ * Treat right-shifting as a narrowing conversion when possible.
+ *
+ * For example, right-shifting an int 24 times results in a value that can
+ * be treated as a byte.
+ *
+ * Things get interesting when contemplating sign extension. Right-
+ * shifting an integer by 16 yields a value that can be represented in a
+ * "short" but not a "char", but an unsigned right shift by 16 yields a
+ * value that belongs in a char rather than a short. (Consider what would
+ * happen if the result of the shift were cast to a char or short and then
+ * cast back to an int. If sign extension, or the lack thereof, causes
+ * a change in the 32-bit representation, then the conversion was lossy.)
+ *
+ * A signed right shift by 17 on an integer results in a short. An unsigned
+ * right shfit by 17 on an integer results in a posshort, which can be
+ * assigned to a short or a char.
+ *
+ * An unsigned right shift on a short can actually expand the result into
+ * a 32-bit integer. For example, 0xfffff123 >>> 8 becomes 0x00fffff1,
+ * which can't be represented in anything smaller than an int.
+ *
+ * javac does not generate code that takes advantage of this, but some
+ * of the code optimizers do. It's generally a peephole optimization
+ * that replaces a particular sequence, e.g. (bipush 24, ishr, i2b) is
+ * replaced by (bipush 24, ishr). Knowing that shifting a short 8 times
+ * to the right yields a byte is really more than we need to handle the
+ * code that's out there, but support is not much more complex than just
+ * handling integer.
+ *
+ * Right-shifting never yields a boolean value.
+ *
+ * Returns the new register type.
+ */
+static RegType adjustForRightShift(RegType* workRegs, const int insnRegCount,
+ int reg, unsigned int shiftCount, bool isUnsignedShift,
+ VerifyError* pFailure)
+{
+ RegType srcType = getRegisterType(workRegs, insnRegCount, reg, pFailure);
+ RegType newType;
+
+ /* no-op */
+ if (shiftCount == 0)
+ return srcType;
+
+ /* safe defaults */
+ if (isUnsignedShift)
+ newType = kRegTypeInteger;
+ else
+ newType = srcType;
+
+ if (shiftCount >= 32) {
+ LOG_VFY("Got unexpectedly large shift count %u\n", shiftCount);
+ /* fail? */
+ return newType;
+ }
+
+ switch (srcType) {
+ case kRegTypeInteger: /* 32-bit signed value */
+ case kRegTypeFloat: /* (allowed; treat same as int) */
+ if (isUnsignedShift) {
+ if (shiftCount > 24)
+ newType = kRegTypePosByte;
+ else if (shiftCount >= 16)
+ newType = kRegTypeChar;
+ } else {
+ if (shiftCount >= 24)
+ newType = kRegTypeByte;
+ else if (shiftCount >= 16)
+ newType = kRegTypeShort;
+ }
+ break;
+ case kRegTypeShort: /* 16-bit signed value */
+ if (isUnsignedShift) {
+ /* default (kRegTypeInteger) is correct */
+ } else {
+ if (shiftCount >= 8)
+ newType = kRegTypeByte;
+ }
+ break;
+ case kRegTypePosShort: /* 15-bit unsigned value */
+ if (shiftCount >= 8)
+ newType = kRegTypePosByte;
+ break;
+ case kRegTypeChar: /* 16-bit unsigned value */
+ if (shiftCount > 8)
+ newType = kRegTypePosByte;
+ break;
+ case kRegTypeByte: /* 8-bit signed value */
+ /* defaults (u=kRegTypeInteger / s=srcType) are correct */
+ break;
+ case kRegTypePosByte: /* 7-bit unsigned value */
+ /* always use newType=srcType */
+ newType = srcType;
+ break;
+ case kRegTypeZero: /* 1-bit unsigned value */
+ case kRegTypeOne:
+ case kRegTypeBoolean:
+ /* unnecessary? */
+ newType = kRegTypeZero;
+ break;
+ default:
+ /* long, double, references; shouldn't be here! */
+ assert(false);
+ break;
+ }
+
+ if (newType != srcType) {
+ LOGVV("narrowing: %d(%d) --> %d to %d\n",
+ shiftCount, isUnsignedShift, srcType, newType);
+ } else {
+ LOGVV("not narrowed: %d(%d) --> %d\n",
+ shiftCount, isUnsignedShift, srcType);
+ }
+ return newType;
+}
+
+
+/*
+ * ===========================================================================
+ * Register merge
+ * ===========================================================================
+ */
+
+/*
+ * Compute the "class depth" of a class. This is the distance from the
+ * class to the top of the tree, chasing superclass links. java.lang.Object
+ * has a class depth of 0.
+ */
+static int getClassDepth(ClassObject* clazz)
+{
+ int depth = 0;
+
+ while (clazz->super != NULL) {
+ clazz = clazz->super;
+ depth++;
+ }
+ return depth;
+}
+
+/*
+ * Given two classes, walk up the superclass tree to find a common
+ * ancestor. (Called from findCommonSuperclass().)
+ *
+ * TODO: consider caching the class depth in the class object so we don't
+ * have to search for it here.
+ */
+static ClassObject* digForSuperclass(ClassObject* c1, ClassObject* c2)
+{
+ int depth1, depth2;
+
+ depth1 = getClassDepth(c1);
+ depth2 = getClassDepth(c2);
+
+ if (gDebugVerbose) {
+ LOGVV("COMMON: %s(%d) + %s(%d)\n",
+ c1->descriptor, depth1, c2->descriptor, depth2);
+ }
+
+ /* pull the deepest one up */
+ if (depth1 > depth2) {
+ while (depth1 > depth2) {
+ c1 = c1->super;
+ depth1--;
+ }
+ } else {
+ while (depth2 > depth1) {
+ c2 = c2->super;
+ depth2--;
+ }
+ }
+
+ /* walk up in lock-step */
+ while (c1 != c2) {
+ c1 = c1->super;
+ c2 = c2->super;
+
+ assert(c1 != NULL && c2 != NULL);
+ }
+
+ if (gDebugVerbose) {
+ LOGVV(" : --> %s\n", c1->descriptor);
+ }
+ return c1;
+}
+
+/*
+ * Merge two array classes. We can't use the general "walk up to the
+ * superclass" merge because the superclass of an array is always Object.
+ * We want String[] + Integer[] = Object[]. This works for higher dimensions
+ * as well, e.g. String[][] + Integer[][] = Object[][].
+ *
+ * If Foo1 and Foo2 are subclasses of Foo, Foo1[] + Foo2[] = Foo[].
+ *
+ * If Class implements Type, Class[] + Type[] = Type[].
+ *
+ * If the dimensions don't match, we want to convert to an array of Object
+ * with the least dimension, e.g. String[][] + String[][][][] = Object[][].
+ *
+ * This gets a little awkward because we may have to ask the VM to create
+ * a new array type with the appropriate element and dimensions. However, we
+ * shouldn't be doing this often.
+ */
+static ClassObject* findCommonArraySuperclass(ClassObject* c1, ClassObject* c2)
+{
+ ClassObject* arrayClass = NULL;
+ ClassObject* commonElem;
+ int i, numDims;
+
+ assert(c1->arrayDim > 0);
+ assert(c2->arrayDim > 0);
+
+ if (c1->arrayDim == c2->arrayDim) {
+ //commonElem = digForSuperclass(c1->elementClass, c2->elementClass);
+ commonElem = findCommonSuperclass(c1->elementClass, c2->elementClass);
+ numDims = c1->arrayDim;
+ } else {
+ if (c1->arrayDim < c2->arrayDim)
+ numDims = c1->arrayDim;
+ else
+ numDims = c2->arrayDim;
+ commonElem = c1->super; // == java.lang.Object
+ }
+
+ /* walk from the element to the (multi-)dimensioned array type */
+ for (i = 0; i < numDims; i++) {
+ arrayClass = dvmFindArrayClassForElement(commonElem);
+ commonElem = arrayClass;
+ }
+
+ LOGVV("ArrayMerge '%s' + '%s' --> '%s'\n",
+ c1->descriptor, c2->descriptor, arrayClass->descriptor);
+ return arrayClass;
+}
+
+/*
+ * Find the first common superclass of the two classes. We're not
+ * interested in common interfaces.
+ *
+ * The easiest way to do this for concrete classes is to compute the "class
+ * depth" of each, move up toward the root of the deepest one until they're
+ * at the same depth, then walk both up to the root until they match.
+ *
+ * If both classes are arrays of non-primitive types, we need to merge
+ * based on array depth and element type.
+ *
+ * If one class is an interface, we check to see if the other class/interface
+ * (or one of its predecessors) implements the interface. If so, we return
+ * the interface; otherwise, we return Object.
+ *
+ * NOTE: we continue the tradition of "lazy interface handling". To wit,
+ * suppose we have three classes:
+ * One implements Fancy, Free
+ * Two implements Fancy, Free
+ * Three implements Free
+ * where Fancy and Free are unrelated interfaces. The code requires us
+ * to merge One into Two. Ideally we'd use a common interface, which
+ * gives us a choice between Fancy and Free, and no guidance on which to
+ * use. If we use Free, we'll be okay when Three gets merged in, but if
+ * we choose Fancy, we're hosed. The "ideal" solution is to create a
+ * set of common interfaces and carry that around, merging further references
+ * into it. This is a pain. The easy solution is to simply boil them
+ * down to Objects and let the runtime invokeinterface call fail, which
+ * is what we do.
+ */
+static ClassObject* findCommonSuperclass(ClassObject* c1, ClassObject* c2)
+{
+ assert(!dvmIsPrimitiveClass(c1) && !dvmIsPrimitiveClass(c2));
+
+ if (c1 == c2)
+ return c1;
+
+ if (dvmIsInterfaceClass(c1) && dvmImplements(c2, c1)) {
+ if (gDebugVerbose)
+ LOGVV("COMMON/I1: %s + %s --> %s\n",
+ c1->descriptor, c2->descriptor, c1->descriptor);
+ return c1;
+ }
+ if (dvmIsInterfaceClass(c2) && dvmImplements(c1, c2)) {
+ if (gDebugVerbose)
+ LOGVV("COMMON/I2: %s + %s --> %s\n",
+ c1->descriptor, c2->descriptor, c2->descriptor);
+ return c2;
+ }
+
+ if (dvmIsArrayClass(c1) && dvmIsArrayClass(c2) &&
+ !dvmIsPrimitiveClass(c1->elementClass) &&
+ !dvmIsPrimitiveClass(c2->elementClass))
+ {
+ return findCommonArraySuperclass(c1, c2);
+ }
+
+ return digForSuperclass(c1, c2);
+}
+
+/*
+ * Merge two RegType values.
+ *
+ * Sets "*pChanged" to "true" if the result doesn't match "type1".
+ */
+static RegType mergeTypes(RegType type1, RegType type2, bool* pChanged)
+{
+ RegType result;
+
+ /*
+ * Check for trivial case so we don't have to hit memory.
+ */
+ if (type1 == type2)
+ return type1;
+
+ /*
+ * Use the table if we can, and reject any attempts to merge something
+ * from the table with a reference type.
+ *
+ * The uninitialized table entry at index zero *will* show up as a
+ * simple kRegTypeUninit value. Since this cannot be merged with
+ * anything but itself, the rules do the right thing.
+ */
+ if (type1 < kRegTypeMAX) {
+ if (type2 < kRegTypeMAX) {
+ result = gDvmMergeTab[type1][type2];
+ } else {
+ /* simple + reference == conflict, usually */
+ if (type1 == kRegTypeZero)
+ result = type2;
+ else
+ result = kRegTypeConflict;
+ }
+ } else {
+ if (type2 < kRegTypeMAX) {
+ /* reference + simple == conflict, usually */
+ if (type2 == kRegTypeZero)
+ result = type1;
+ else
+ result = kRegTypeConflict;
+ } else {
+ /* merging two references */
+ if (regTypeIsUninitReference(type1) ||
+ regTypeIsUninitReference(type2))
+ {
+ /* can't merge uninit with anything but self */
+ result = kRegTypeConflict;
+ } else {
+ ClassObject* clazz1 = regTypeInitializedReferenceToClass(type1);
+ ClassObject* clazz2 = regTypeInitializedReferenceToClass(type2);
+ ClassObject* mergedClass;
+
+ mergedClass = findCommonSuperclass(clazz1, clazz2);
+ assert(mergedClass != NULL);
+ result = regTypeFromClass(mergedClass);
+ }
+ }
+ }
+
+ if (result != type1)
+ *pChanged = true;
+ return result;
+}
+
+/*
+ * Control can transfer to "nextInsn".
+ *
+ * Merge the registers from "workRegs" into "regTypes" at "nextInsn", and
+ * set the "changed" flag on the target address if the registers have changed.
+ */
+static void updateRegisters(const Method* meth, InsnFlags* insnFlags,
+ RegisterTable* regTable, int nextInsn, const RegType* workRegs)
+{
+ RegType* targetRegs = getRegisterLine(regTable, nextInsn);
+ const int insnRegCount = meth->registersSize;
+
+#if 0
+ if (!dvmInsnIsBranchTarget(insnFlags, nextInsn)) {
+ LOGE("insnFlags[0x%x]=0x%08x\n", nextInsn, insnFlags[nextInsn]);
+ LOGE(" In %s.%s %s\n",
+ meth->clazz->descriptor, meth->name, meth->descriptor);
+ assert(false);
+ }
+#endif
+
+ if (!dvmInsnIsVisitedOrChanged(insnFlags, nextInsn)) {
+ /*
+ * We haven't processed this instruction before, and we haven't
+ * touched the registers here, so there's nothing to "merge". Copy
+ * the registers over and mark it as changed. (This is the only
+ * way a register can transition out of "unknown", so this is not
+ * just an optimization.)
+ */
+ LOGVV("COPY into 0x%04x\n", nextInsn);
+ copyRegisters(targetRegs, workRegs, insnRegCount + kExtraRegs);
+ dvmInsnSetChanged(insnFlags, nextInsn, true);
+ } else {
+ if (gDebugVerbose) {
+ LOGVV("MERGE into 0x%04x\n", nextInsn);
+ //dumpRegTypes(meth, insnFlags, targetRegs, 0, "targ", NULL, 0);
+ //dumpRegTypes(meth, insnFlags, workRegs, 0, "work", NULL, 0);
+ }
+ /* merge registers, set Changed only if different */
+ bool changed = false;
+ int i;
+
+ for (i = 0; i < insnRegCount + kExtraRegs; i++) {
+ targetRegs[i] = mergeTypes(targetRegs[i], workRegs[i], &changed);
+ }
+
+ if (gDebugVerbose) {
+ //LOGI(" RESULT (changed=%d)\n", changed);
+ //dumpRegTypes(meth, insnFlags, targetRegs, 0, "rslt", NULL, 0);
+ }
+
+ if (changed)
+ dvmInsnSetChanged(insnFlags, nextInsn, true);
+ }
+}
+
+
+/*
+ * ===========================================================================
+ * Utility functions
+ * ===========================================================================
+ */
+
+/*
+ * Look up an instance field, specified by "fieldIdx", that is going to be
+ * accessed in object "objType". This resolves the field and then verifies
+ * that the class containing the field is an instance of the reference in
+ * "objType".
+ *
+ * It is possible for "objType" to be kRegTypeZero, meaning that we might
+ * have a null reference. This is a runtime problem, so we allow it,
+ * skipping some of the type checks.
+ *
+ * In general, "objType" must be an initialized reference. However, we
+ * allow it to be uninitialized if this is an "<init>" method and the field
+ * is declared within the "objType" class.
+ *
+ * Returns an InstField on success, returns NULL and sets "*pFailure"
+ * on failure.
+ */
+static InstField* getInstField(const Method* meth,
+ const UninitInstanceMap* uninitMap, RegType objType, int fieldIdx,
+ VerifyError* pFailure)
+{
+ InstField* instField = NULL;
+ ClassObject* objClass;
+ bool mustBeLocal = false;
+
+ if (!regTypeIsReference(objType)) {
+ LOG_VFY("VFY: attempt to access field in non-reference type %d\n",
+ objType);
+ *pFailure = VERIFY_ERROR_GENERIC;
+ goto bail;
+ }
+
+ instField = dvmOptResolveInstField(meth->clazz, fieldIdx, pFailure);
+ if (instField == NULL) {
+ LOG_VFY("VFY: unable to resolve instance field %u\n", fieldIdx);
+ assert(!VERIFY_OK(*pFailure));
+ goto bail;
+ }
+
+ if (objType == kRegTypeZero)
+ goto bail;
+
+ /*
+ * Access to fields in uninitialized objects is allowed if this is
+ * the <init> method for the object and the field in question is
+ * declared by this class.
+ */
+ objClass = regTypeReferenceToClass(objType, uninitMap);
+ assert(objClass != NULL);
+ if (regTypeIsUninitReference(objType)) {
+ if (!isInitMethod(meth) || meth->clazz != objClass) {
+ LOG_VFY("VFY: attempt to access field via uninitialized ref\n");
+ *pFailure = VERIFY_ERROR_GENERIC;
+ goto bail;
+ }
+ mustBeLocal = true;
+ }
+
+ if (!dvmInstanceof(objClass, instField->field.clazz)) {
+ LOG_VFY("VFY: invalid field access (field %s.%s, through %s ref)\n",
+ instField->field.clazz->descriptor, instField->field.name,
+ objClass->descriptor);
+ *pFailure = VERIFY_ERROR_NO_FIELD;
+ goto bail;
+ }
+
+ if (mustBeLocal) {
+ /* for uninit ref, make sure it's defined by this class, not super */
+ if (instField < objClass->ifields ||
+ instField >= objClass->ifields + objClass->ifieldCount)
+ {
+ LOG_VFY("VFY: invalid constructor field access (field %s in %s)\n",
+ instField->field.name, objClass->descriptor);
+ *pFailure = VERIFY_ERROR_GENERIC;
+ goto bail;
+ }
+ }
+
+bail:
+ return instField;
+}
+
+/*
+ * Look up a static field.
+ *
+ * Returns a StaticField on success, returns NULL and sets "*pFailure"
+ * on failure.
+ */
+static StaticField* getStaticField(const Method* meth, int fieldIdx,
+ VerifyError* pFailure)
+{
+ StaticField* staticField;
+
+ staticField = dvmOptResolveStaticField(meth->clazz, fieldIdx, pFailure);
+ if (staticField == NULL) {
+ DexFile* pDexFile = meth->clazz->pDvmDex->pDexFile;
+ const DexFieldId* pFieldId;
+
+ pFieldId = dexGetFieldId(pDexFile, fieldIdx);
+
+ LOG_VFY("VFY: unable to resolve static field %u (%s) in %s\n", fieldIdx,
+ dexStringById(pDexFile, pFieldId->nameIdx),
+ dexStringByTypeIdx(pDexFile, pFieldId->classIdx));
+ assert(!VERIFY_OK(*pFailure));
+ goto bail;
+ }
+
+bail:
+ return staticField;
+}
+
+/*
+ * If "field" is marked "final", make sure this is the either <clinit>
+ * or <init> as appropriate.
+ *
+ * Sets "*pFailure" on failure.
+ */
+static void checkFinalFieldAccess(const Method* meth, const Field* field,
+ VerifyError* pFailure)
+{
+ if (!dvmIsFinalField(field))
+ return;
+
+ /* make sure we're in the same class */
+ if (meth->clazz != field->clazz) {
+ LOG_VFY_METH(meth, "VFY: can't modify final field %s.%s\n",
+ field->clazz->descriptor, field->name);
+ *pFailure = VERIFY_ERROR_ACCESS_FIELD;
+ return;
+ }
+
+ /*
+ * The VM spec descriptions of putfield and putstatic say that
+ * IllegalAccessError is only thrown when the instructions appear
+ * outside the declaring class. Our earlier attempts to restrict
+ * final field modification to constructors are, therefore, wrong.
+ */
+#if 0
+ /* make sure we're in the right kind of constructor */
+ if (dvmIsStaticField(field)) {
+ if (!isClassInitMethod(meth)) {
+ LOG_VFY_METH(meth,
+ "VFY: can't modify final static field outside <clinit>\n");
+ *pFailure = VERIFY_ERROR_GENERIC;
+ }
+ } else {
+ if (!isInitMethod(meth)) {
+ LOG_VFY_METH(meth,
+ "VFY: can't modify final field outside <init>\n");
+ *pFailure = VERIFY_ERROR_GENERIC;
+ }
+ }
+#endif
+}
+
+/*
+ * Make sure that the register type is suitable for use as an array index.
+ *
+ * Sets "*pFailure" if not.
+ */
+static void checkArrayIndexType(const Method* meth, RegType regType,
+ VerifyError* pFailure)
+{
+ if (VERIFY_OK(*pFailure)) {
+ /*
+ * The 1nr types are interchangeable at this level. We could
+ * do something special if we can definitively identify it as a
+ * float, but there's no real value in doing so.
+ */
+ checkTypeCategory(regType, kTypeCategory1nr, pFailure);
+ if (!VERIFY_OK(*pFailure)) {
+ LOG_VFY_METH(meth, "Invalid reg type for array index (%d)\n",
+ regType);
+ }
+ }
+}
+
+/*
+ * Check constraints on constructor return. Specifically, make sure that
+ * the "this" argument got initialized.
+ *
+ * The "this" argument to <init> uses code offset kUninitThisArgAddr, which
+ * puts it at the start of the list in slot 0. If we see a register with
+ * an uninitialized slot 0 reference, we know it somehow didn't get
+ * initialized.
+ *
+ * Returns "true" if all is well.
+ */
+static bool checkConstructorReturn(const Method* meth, const RegType* insnRegs,
+ const int insnRegCount)
+{
+ int i;
+
+ if (!isInitMethod(meth))
+ return true;
+
+ RegType uninitThis = regTypeFromUninitIndex(kUninitThisArgSlot);
+
+ for (i = 0; i < insnRegCount; i++) {
+ if (insnRegs[i] == uninitThis) {
+ LOG_VFY("VFY: <init> returning without calling superclass init\n");
+ return false;
+ }
+ }
+ return true;
+}
+
+/*
+ * Verify that the target instruction is not "move-exception". It's important
+ * that the only way to execute a move-exception is as the first instruction
+ * of an exception handler.
+ *
+ * Returns "true" if all is well, "false" if the target instruction is
+ * move-exception.
+ */
+static bool checkMoveException(const Method* meth, int insnIdx,
+ const char* logNote)
+{
+ assert(insnIdx >= 0 && insnIdx < (int)dvmGetMethodInsnsSize(meth));
+
+ if ((meth->insns[insnIdx] & 0xff) == OP_MOVE_EXCEPTION) {
+ LOG_VFY("VFY: invalid use of move-exception\n");
+ return false;
+ }
+ return true;
+}
+
+/*
+ * For the "move-exception" instruction at "insnIdx", which must be at an
+ * exception handler address, determine the first common superclass of
+ * all exceptions that can land here. (For javac output, we're probably
+ * looking at multiple spans of bytecode covered by one "try" that lands
+ * at an exception-specific "catch", but in general the handler could be
+ * shared for multiple exceptions.)
+ *
+ * Returns NULL if no matching exception handler can be found, or if the
+ * exception is not a subclass of Throwable.
+ */
+static ClassObject* getCaughtExceptionType(const Method* meth, int insnIdx,
+ VerifyError* pFailure)
+{
+ VerifyError localFailure;
+ const DexCode* pCode;
+ DexFile* pDexFile;
+ ClassObject* commonSuper = NULL;
+ bool foundPossibleHandler = false;
+ u4 handlersSize;
+ u4 offset;
+ u4 i;
+
+ pDexFile = meth->clazz->pDvmDex->pDexFile;
+ pCode = dvmGetMethodCode(meth);
+
+ if (pCode->triesSize != 0) {
+ handlersSize = dexGetHandlersSize(pCode);
+ offset = dexGetFirstHandlerOffset(pCode);
+ } else {
+ handlersSize = 0;
+ offset = 0;
+ }
+
+ for (i = 0; i < handlersSize; i++) {
+ DexCatchIterator iterator;
+ dexCatchIteratorInit(&iterator, pCode, offset);
+
+ for (;;) {
+ const DexCatchHandler* handler = dexCatchIteratorNext(&iterator);
+
+ if (handler == NULL) {
+ break;
+ }
+
+ if (handler->address == (u4) insnIdx) {
+ ClassObject* clazz;
+ foundPossibleHandler = true;
+
+ if (handler->typeIdx == kDexNoIndex)
+ clazz = gDvm.classJavaLangThrowable;
+ else
+ clazz = dvmOptResolveClass(meth->clazz, handler->typeIdx,
+ &localFailure);
+
+ if (clazz == NULL) {
+ LOG_VFY("VFY: unable to resolve exception class %u (%s)\n",
+ handler->typeIdx,
+ dexStringByTypeIdx(pDexFile, handler->typeIdx));
+ /* TODO: do we want to keep going? If we don't fail
+ * this we run the risk of having a non-Throwable
+ * introduced at runtime. However, that won't pass
+ * an instanceof test, so is essentially harmless. */
+ } else {
+ if (commonSuper == NULL)
+ commonSuper = clazz;
+ else
+ commonSuper = findCommonSuperclass(clazz, commonSuper);
+ }
+ }
+ }
+
+ offset = dexCatchIteratorGetEndOffset(&iterator, pCode);
+ }
+
+ if (commonSuper == NULL) {
+ /* no catch blocks, or no catches with classes we can find */
+ LOG_VFY_METH(meth,
+ "VFY: unable to find exception handler at addr 0x%x\n", insnIdx);
+ *pFailure = VERIFY_ERROR_GENERIC;
+ } else {
+ // TODO: verify the class is an instance of Throwable?
+ }
+
+ return commonSuper;
+}
+
+/*
+ * Initialize the RegisterTable.
+ *
+ * Every instruction address can have a different set of information about
+ * what's in which register, but for verification purposes we only need to
+ * store it at branch target addresses (because we merge into that).
+ *
+ * By zeroing out the storage we are effectively initializing the register
+ * information to kRegTypeUnknown.
+ */
+static bool initRegisterTable(const Method* meth, const InsnFlags* insnFlags,
+ RegisterTable* regTable, RegisterTrackingMode trackRegsFor)
+{
+ const int insnsSize = dvmGetMethodInsnsSize(meth);
+ int i;
+
+ regTable->insnRegCountPlus = meth->registersSize + kExtraRegs;
+ regTable->addrRegs = (RegType**) calloc(insnsSize, sizeof(RegType*));
+ if (regTable->addrRegs == NULL)
+ return false;
+
+ assert(insnsSize > 0);
+
+ /*
+ * "All" means "every address that holds the start of an instruction".
+ * "Branches" and "GcPoints" mean just those addresses.
+ *
+ * "GcPoints" fills about half the addresses, "Branches" about 15%.
+ */
+ int interestingCount = 0;
+ //int insnCount = 0;
+
+ for (i = 0; i < insnsSize; i++) {
+ bool interesting;
+
+ switch (trackRegsFor) {
+ case kTrackRegsAll:
+ interesting = dvmInsnIsOpcode(insnFlags, i);
+ break;
+ case kTrackRegsGcPoints:
+ interesting = dvmInsnIsGcPoint(insnFlags, i) ||
+ dvmInsnIsBranchTarget(insnFlags, i);
+ break;
+ case kTrackRegsBranches:
+ interesting = dvmInsnIsBranchTarget(insnFlags, i);
+ break;
+ default:
+ dvmAbort();
+ return false;
+ }
+
+ if (interesting)
+ interestingCount++;
+
+ /* count instructions, for display only */
+ //if (dvmInsnIsOpcode(insnFlags, i))
+ // insnCount++;
+ }
+
+ regTable->regAlloc = (RegType*)
+ calloc(regTable->insnRegCountPlus * interestingCount, sizeof(RegType));
+ if (regTable->regAlloc == NULL)
+ return false;
+
+ RegType* regPtr = regTable->regAlloc;
+ for (i = 0; i < insnsSize; i++) {
+ bool interesting;
+
+ switch (trackRegsFor) {
+ case kTrackRegsAll:
+ interesting = dvmInsnIsOpcode(insnFlags, i);
+ break;
+ case kTrackRegsGcPoints:
+ interesting = dvmInsnIsGcPoint(insnFlags, i) ||
+ dvmInsnIsBranchTarget(insnFlags, i);
+ break;
+ case kTrackRegsBranches:
+ interesting = dvmInsnIsBranchTarget(insnFlags, i);
+ break;
+ default:
+ dvmAbort();
+ return false;
+ }
+
+ if (interesting) {
+ regTable->addrRegs[i] = regPtr;
+ regPtr += regTable->insnRegCountPlus;
+ }
+ }
+
+ //LOGD("Tracking registers for %d, total %d of %d(%d) (%d%%)\n",
+ // TRACK_REGS_FOR, interestingCount, insnCount, insnsSize,
+ // (interestingCount*100) / insnCount);
+
+ assert(regPtr - regTable->regAlloc ==
+ regTable->insnRegCountPlus * interestingCount);
+ assert(regTable->addrRegs[0] != NULL);
+ return true;
+}
+
+
+/*
+ * Verify that the arguments in a filled-new-array instruction are valid.
+ *
+ * "resClass" is the class refered to by pDecInsn->vB.
+ */
+static void verifyFilledNewArrayRegs(const Method* meth,
+ const RegType* insnRegs, const int insnRegCount,
+ const DecodedInstruction* pDecInsn, ClassObject* resClass, bool isRange,
+ VerifyError* pFailure)
+{
+ u4 argCount = pDecInsn->vA;
+ RegType expectedType;
+ PrimitiveType elemType;
+ unsigned int ui;
+
+ assert(dvmIsArrayClass(resClass));
+ elemType = resClass->elementClass->primitiveType;
+ if (elemType == PRIM_NOT) {
+ expectedType = regTypeFromClass(resClass->elementClass);
+ } else {
+ expectedType = primitiveTypeToRegType(elemType);
+ }
+ //LOGI("filled-new-array: %s -> %d\n", resClass->descriptor, expectedType);
+
+ /*
+ * Verify each register. If "argCount" is bad, verifyRegisterType()
+ * will run off the end of the list and fail. It's legal, if silly,
+ * for argCount to be zero.
+ */
+ for (ui = 0; ui < argCount; ui++) {
+ u4 getReg;
+
+ if (isRange)
+ getReg = pDecInsn->vC + ui;
+ else
+ getReg = pDecInsn->arg[ui];
+
+ verifyRegisterType(insnRegs, insnRegCount, getReg, expectedType,
+ pFailure);
+ if (!VERIFY_OK(*pFailure)) {
+ LOG_VFY("VFY: filled-new-array arg %u(%u) not valid\n", ui, getReg);
+ return;
+ }
+ }
+}
+
+
+/*
+ * Replace an instruction with "throw-verification-error". This allows us to
+ * defer error reporting until the code path is first used.
+ *
+ * This is expected to be called during "just in time" verification, not
+ * from within dexopt. (Verification failures in dexopt will result in
+ * postponement of verification to first use of the class.)
+ *
+ * The throw-verification-error instruction requires two code units. Some
+ * of the replaced instructions require three; the third code unit will
+ * receive a "nop". The instruction's length will be left unchanged
+ * in "insnFlags".
+ *
+ * The verifier explicitly locks out breakpoint activity, so there should
+ * be no clashes with the debugger.
+ *
+ * Returns "true" on success.
+ */
+static bool replaceFailingInstruction(const Method* meth, InsnFlags* insnFlags,
+ int insnIdx, VerifyError failure)
+{
+ VerifyErrorRefType refType;
+ const u2* oldInsns = meth->insns + insnIdx;
+ u2 oldInsn = *oldInsns;
+ bool result = false;
+
+ if (gDvm.optimizing)
+ LOGD("Weird: RFI during dexopt?");
+
+ //LOGD(" was 0x%04x\n", oldInsn);
+ u2* newInsns = (u2*) meth->insns + insnIdx;
+
+ /*
+ * Generate the new instruction out of the old.
+ *
+ * First, make sure this is an instruction we're expecting to stomp on.
+ */
+ switch (oldInsn & 0xff) {
+ case OP_CONST_CLASS: // insn[1] == class ref, 2 bytes
+ case OP_CHECK_CAST:
+ case OP_INSTANCE_OF:
+ case OP_NEW_INSTANCE:
+ case OP_NEW_ARRAY:
+ case OP_FILLED_NEW_ARRAY: // insn[1] == class ref, 3 bytes
+ case OP_FILLED_NEW_ARRAY_RANGE:
+ refType = VERIFY_ERROR_REF_CLASS;
+ break;
+
+ case OP_IGET: // insn[1] == field ref, 2 bytes
+ case OP_IGET_BOOLEAN:
+ case OP_IGET_BYTE:
+ case OP_IGET_CHAR:
+ case OP_IGET_SHORT:
+ case OP_IGET_WIDE:
+ case OP_IGET_OBJECT:
+ case OP_IPUT:
+ case OP_IPUT_BOOLEAN:
+ case OP_IPUT_BYTE:
+ case OP_IPUT_CHAR:
+ case OP_IPUT_SHORT:
+ case OP_IPUT_WIDE:
+ case OP_IPUT_OBJECT:
+ case OP_SGET:
+ case OP_SGET_BOOLEAN:
+ case OP_SGET_BYTE:
+ case OP_SGET_CHAR:
+ case OP_SGET_SHORT:
+ case OP_SGET_WIDE:
+ case OP_SGET_OBJECT:
+ case OP_SPUT:
+ case OP_SPUT_BOOLEAN:
+ case OP_SPUT_BYTE:
+ case OP_SPUT_CHAR:
+ case OP_SPUT_SHORT:
+ case OP_SPUT_WIDE:
+ case OP_SPUT_OBJECT:
+ refType = VERIFY_ERROR_REF_FIELD;
+ break;
+
+ case OP_INVOKE_VIRTUAL: // insn[1] == method ref, 3 bytes
+ case OP_INVOKE_VIRTUAL_RANGE:
+ case OP_INVOKE_SUPER:
+ case OP_INVOKE_SUPER_RANGE:
+ case OP_INVOKE_DIRECT:
+ case OP_INVOKE_DIRECT_RANGE:
+ case OP_INVOKE_STATIC:
+ case OP_INVOKE_STATIC_RANGE:
+ case OP_INVOKE_INTERFACE:
+ case OP_INVOKE_INTERFACE_RANGE:
+ refType = VERIFY_ERROR_REF_METHOD;
+ break;
+
+ default:
+ /* could handle this in a generic way, but this is probably safer */
+ LOG_VFY("GLITCH: verifier asked to replace opcode 0x%02x\n",
+ oldInsn & 0xff);
+ goto bail;
+ }
+
+ /* write a NOP over the third code unit, if necessary */
+ int width = dvmInsnGetWidth(insnFlags, insnIdx);
+ switch (width) {
+ case 2:
+ /* nothing to do */
+ break;
+ case 3:
+ dvmDexChangeDex2(meth->clazz->pDvmDex, newInsns+2, OP_NOP);
+ //newInsns[2] = OP_NOP;
+ break;
+ default:
+ /* whoops */
+ LOGE("ERROR: stomped a %d-unit instruction with a verifier error\n",
+ width);
+ dvmAbort();
+ }
+
+ /* encode the opcode, with the failure code in the high byte */
+ u2 newVal = OP_THROW_VERIFICATION_ERROR |
+ (failure << 8) | (refType << (8 + kVerifyErrorRefTypeShift));
+ //newInsns[0] = newVal;
+ dvmDexChangeDex2(meth->clazz->pDvmDex, newInsns, newVal);
+
+ result = true;
+
+bail:
+ return result;
+}
+
+
+/*
+ * ===========================================================================
+ * Entry point and driver loop
+ * ===========================================================================
+ */
+
+/*
+ * Entry point for the detailed code-flow analysis.
+ */
+bool dvmVerifyCodeFlow(VerifierData* vdata)
+{
+ bool result = false;
+ const Method* meth = vdata->method;
+ const int insnsSize = vdata->insnsSize;
+ const bool generateRegisterMap = gDvm.generateRegisterMaps;
+ RegisterTable regTable;
+
+ memset(&regTable, 0, sizeof(regTable));
+
+#ifndef NDEBUG
+ checkMergeTab(); // only need to do this if table gets updated
+#endif
+
+ /*
+ * We rely on these for verification of const-class, const-string,
+ * and throw instructions. Make sure we have them.
+ */
+ if (gDvm.classJavaLangClass == NULL)
+ gDvm.classJavaLangClass =
+ dvmFindSystemClassNoInit("Ljava/lang/Class;");
+ if (gDvm.classJavaLangString == NULL)
+ gDvm.classJavaLangString =
+ dvmFindSystemClassNoInit("Ljava/lang/String;");
+ if (gDvm.classJavaLangThrowable == NULL) {
+ gDvm.classJavaLangThrowable =
+ dvmFindSystemClassNoInit("Ljava/lang/Throwable;");
+ gDvm.offJavaLangThrowable_cause =
+ dvmFindFieldOffset(gDvm.classJavaLangThrowable,
+ "cause", "Ljava/lang/Throwable;");
+ }
+ if (gDvm.classJavaLangObject == NULL)
+ gDvm.classJavaLangObject =
+ dvmFindSystemClassNoInit("Ljava/lang/Object;");
+
+ if (meth->registersSize * insnsSize > 4*1024*1024) {
+ LOG_VFY_METH(meth,
+ "VFY: warning: method is huge (regs=%d insnsSize=%d)\n",
+ meth->registersSize, insnsSize);
+ /* might be bogus data, might be some huge generated method */
+ }
+
+ /*
+ * Create register lists, and initialize them to "Unknown". If we're
+ * also going to create the register map, we need to retain the
+ * register lists for a larger set of addresses.
+ */
+ if (!initRegisterTable(meth, vdata->insnFlags, &regTable,
+ generateRegisterMap ? kTrackRegsGcPoints : kTrackRegsBranches))
+ goto bail;
+
+ vdata->addrRegs = NULL; /* don't set this until we need it */
+
+ /*
+ * Initialize the types of the registers that correspond to the
+ * method arguments. We can determine this from the method signature.
+ */
+ if (!setTypesFromSignature(meth, regTable.addrRegs[0], vdata->uninitMap))
+ goto bail;
+
+ /*
+ * Run the verifier.
+ */
+ if (!doCodeVerification(meth, vdata->insnFlags, &regTable, vdata->uninitMap))
+ goto bail;
+
+ /*
+ * Generate a register map.
+ */
+ if (generateRegisterMap) {
+ vdata->addrRegs = regTable.addrRegs;
+
+ RegisterMap* pMap = dvmGenerateRegisterMapV(vdata);
+ if (pMap != NULL) {
+ /*
+ * Tuck it into the Method struct. It will either get used
+ * directly or, if we're in dexopt, will be packed up and
+ * appended to the DEX file.
+ */
+ dvmSetRegisterMap((Method*)meth, pMap);
+ }
+ }
+
+ /*
+ * Success.
+ */
+ result = true;
+
+bail:
+ free(regTable.addrRegs);
+ free(regTable.regAlloc);
+ return result;
+}
+
+/*
+ * Grind through the instructions.
+ *
+ * The basic strategy is as outlined in v3 4.11.1.2: set the "changed" bit
+ * on the first instruction, process it (setting additional "changed" bits),
+ * and repeat until there are no more.
+ *
+ * v3 4.11.1.1
+ * - (N/A) operand stack is always the same size
+ * - operand stack [registers] contain the correct types of values
+ * - local variables [registers] contain the correct types of values
+ * - methods are invoked with the appropriate arguments
+ * - fields are assigned using values of appropriate types
+ * - opcodes have the correct type values in operand registers
+ * - there is never an uninitialized class instance in a local variable in
+ * code protected by an exception handler (operand stack is okay, because
+ * the operand stack is discarded when an exception is thrown) [can't
+ * know what's a local var w/o the debug info -- should fall out of
+ * register typing]
+ *
+ * v3 4.11.1.2
+ * - execution cannot fall off the end of the code
+ *
+ * (We also do many of the items described in the "static checks" sections,
+ * because it's easier to do them here.)
+ *
+ * We need an array of RegType values, one per register, for every
+ * instruction. In theory this could become quite large -- up to several
+ * megabytes for a monster function. For self-preservation we reject
+ * anything that requires more than a certain amount of memory. (Typical
+ * "large" should be on the order of 4K code units * 8 registers.) This
+ * will likely have to be adjusted.
+ *
+ *
+ * The spec forbids backward branches when there's an uninitialized reference
+ * in a register. The idea is to prevent something like this:
+ * loop:
+ * move r1, r0
+ * new-instance r0, MyClass
+ * ...
+ * if-eq rN, loop // once
+ * initialize r0
+ *
+ * This leaves us with two different instances, both allocated by the
+ * same instruction, but only one is initialized. The scheme outlined in
+ * v3 4.11.1.4 wouldn't catch this, so they work around it by preventing
+ * backward branches. We achieve identical results without restricting
+ * code reordering by specifying that you can't execute the new-instance
+ * instruction if a register contains an uninitialized instance created
+ * by that same instrutcion.
+ */
+static bool doCodeVerification(const Method* meth, InsnFlags* insnFlags,
+ RegisterTable* regTable, UninitInstanceMap* uninitMap)
+{
+ const int insnsSize = dvmGetMethodInsnsSize(meth);
+ RegType workRegs[meth->registersSize + kExtraRegs];
+ bool result = false;
+ bool debugVerbose = false;
+ int insnIdx, startGuess;
+
+ /*
+ * Begin by marking the first instruction as "changed".
+ */
+ dvmInsnSetChanged(insnFlags, 0, true);
+
+ if (doVerboseLogging(meth)) {
+ IF_LOGI() {
+ char* desc = dexProtoCopyMethodDescriptor(&meth->prototype);
+ LOGI("Now verifying: %s.%s %s (ins=%d regs=%d)\n",
+ meth->clazz->descriptor, meth->name, desc,
+ meth->insSize, meth->registersSize);
+ LOGI(" ------ [0 4 8 12 16 20 24 28 32 36\n");
+ free(desc);
+ }
+ debugVerbose = true;
+ gDebugVerbose = true;
+ } else {
+ gDebugVerbose = false;
+ }
+
+ startGuess = 0;
+
+ /*
+ * Continue until no instructions are marked "changed".
+ */
+ while (true) {
+ /*
+ * Find the first marked one. Use "startGuess" as a way to find
+ * one quickly.
+ */
+ for (insnIdx = startGuess; insnIdx < insnsSize; insnIdx++) {
+ if (dvmInsnIsChanged(insnFlags, insnIdx))
+ break;
+ }
+
+ if (insnIdx == insnsSize) {
+ if (startGuess != 0) {
+ /* try again, starting from the top */
+ startGuess = 0;
+ continue;
+ } else {
+ /* all flags are clear */
+ break;
+ }
+ }
+
+ /*
+ * We carry the working set of registers from instruction to
+ * instruction. If this address can be the target of a branch
+ * (or throw) instruction, or if we're skipping around chasing
+ * "changed" flags, we need to load the set of registers from
+ * the table.
+ *
+ * Because we always prefer to continue on to the next instruction,
+ * we should never have a situation where we have a stray
+ * "changed" flag set on an instruction that isn't a branch target.
+ */
+ if (dvmInsnIsBranchTarget(insnFlags, insnIdx)) {
+ RegType* insnRegs = getRegisterLine(regTable, insnIdx);
+ assert(insnRegs != NULL);
+ copyRegisters(workRegs, insnRegs, meth->registersSize + kExtraRegs);
+
+ if (debugVerbose) {
+ dumpRegTypes(meth, insnFlags, workRegs, insnIdx, NULL,uninitMap,
+ SHOW_REG_DETAILS);
+ }
+
+ } else {
+ if (debugVerbose) {
+ dumpRegTypes(meth, insnFlags, workRegs, insnIdx, NULL,uninitMap,
+ SHOW_REG_DETAILS);
+ }
+
+#ifndef NDEBUG
+ /*
+ * Sanity check: retrieve the stored register line (assuming
+ * a full table) and make sure it actually matches.
+ */
+ RegType* insnRegs = getRegisterLine(regTable, insnIdx);
+ if (insnRegs != NULL &&
+ compareRegisters(workRegs, insnRegs,
+ meth->registersSize + kExtraRegs) != 0)
+ {
+ char* desc = dexProtoCopyMethodDescriptor(&meth->prototype);
+ LOG_VFY("HUH? workRegs diverged in %s.%s %s\n",
+ meth->clazz->descriptor, meth->name, desc);
+ free(desc);
+ dumpRegTypes(meth, insnFlags, workRegs, 0, "work",
+ uninitMap, DRT_SHOW_REF_TYPES | DRT_SHOW_LOCALS);
+ dumpRegTypes(meth, insnFlags, insnRegs, 0, "insn",
+ uninitMap, DRT_SHOW_REF_TYPES | DRT_SHOW_LOCALS);
+ }
+#endif
+ }
+
+ //LOGI("process %s.%s %s %d\n",
+ // meth->clazz->descriptor, meth->name, meth->descriptor, insnIdx);
+ if (!verifyInstruction(meth, insnFlags, regTable, workRegs, insnIdx,
+ uninitMap, &startGuess))
+ {
+ //LOGD("+++ %s bailing at %d\n", meth->name, insnIdx);
+ goto bail;
+ }
+
+#if 0
+ {
+ static const int gcMask = kInstrCanBranch | kInstrCanSwitch |
+ kInstrCanThrow | kInstrCanReturn;
+ OpCode opCode = *(meth->insns + insnIdx) & 0xff;
+ int flags = dexGetInstrFlags(gDvm.instrFlags, opCode);
+
+ /* 8, 16, 32, or 32*n -bit regs */
+ int regWidth = (meth->registersSize + 7) / 8;
+ if (regWidth == 3)
+ regWidth = 4;
+ if (regWidth > 4) {
+ regWidth = ((regWidth + 3) / 4) * 4;
+ if (false) {
+ LOGW("WOW: %d regs -> %d %s.%s\n",
+ meth->registersSize, regWidth,
+ meth->clazz->descriptor, meth->name);
+ //x = true;
+ }
+ }
+
+ if ((flags & gcMask) != 0) {
+ /* this is a potential GC point */
+ gDvm__gcInstr++;
+
+ if (insnsSize < 256)
+ gDvm__gcData += 1;
+ else
+ gDvm__gcData += 2;
+ gDvm__gcData += regWidth;
+ }
+ gDvm__gcSimpleData += regWidth;
+
+ gDvm__totalInstr++;
+ }
+#endif
+
+ /*
+ * Clear "changed" and mark as visited.
+ */
+ dvmInsnSetVisited(insnFlags, insnIdx, true);
+ dvmInsnSetChanged(insnFlags, insnIdx, false);
+ }
+
+ if (DEAD_CODE_SCAN && !IS_METHOD_FLAG_SET(meth, METHOD_ISWRITABLE)) {
+ /*
+ * Scan for dead code. There's nothing "evil" about dead code
+ * (besides the wasted space), but it indicates a flaw somewhere
+ * down the line, possibly in the verifier.
+ *
+ * If we've rewritten "always throw" instructions into the stream,
+ * we are almost certainly going to have some dead code.
+ */
+ int deadStart = -1;
+ for (insnIdx = 0; insnIdx < insnsSize;
+ insnIdx += dvmInsnGetWidth(insnFlags, insnIdx))
+ {
+ /*
+ * Switch-statement data doesn't get "visited" by scanner. It
+ * may or may not be preceded by a padding NOP.
+ */
+ int instr = meth->insns[insnIdx];
+ if (instr == kPackedSwitchSignature ||
+ instr == kSparseSwitchSignature ||
+ instr == kArrayDataSignature ||
+ (instr == OP_NOP &&
+ (meth->insns[insnIdx+1] == kPackedSwitchSignature ||
+ meth->insns[insnIdx+1] == kSparseSwitchSignature ||
+ meth->insns[insnIdx+1] == kArrayDataSignature)))
+ {
+ dvmInsnSetVisited(insnFlags, insnIdx, true);
+ }
+
+ if (!dvmInsnIsVisited(insnFlags, insnIdx)) {
+ if (deadStart < 0)
+ deadStart = insnIdx;
+ } else if (deadStart >= 0) {
+ IF_LOGD() {
+ char* desc =
+ dexProtoCopyMethodDescriptor(&meth->prototype);
+ LOGD("VFY: dead code 0x%04x-%04x in %s.%s %s\n",
+ deadStart, insnIdx-1,
+ meth->clazz->descriptor, meth->name, desc);
+ free(desc);
+ }
+
+ deadStart = -1;
+ }
+ }
+ if (deadStart >= 0) {
+ IF_LOGD() {
+ char* desc = dexProtoCopyMethodDescriptor(&meth->prototype);
+ LOGD("VFY: dead code 0x%04x-%04x in %s.%s %s\n",
+ deadStart, insnIdx-1,
+ meth->clazz->descriptor, meth->name, desc);
+ free(desc);
+ }
+ }
+ }
+
+ result = true;
+
+bail:
+ return result;
+}
+
+
+/*
+ * Perform verification for a single instruction.
+ *
+ * This requires fully decoding the instruction to determine the effect
+ * it has on registers.
+ *
+ * Finds zero or more following instructions and sets the "changed" flag
+ * if execution at that point needs to be (re-)evaluated. Register changes
+ * are merged into "regTypes" at the target addresses. Does not set or
+ * clear any other flags in "insnFlags".
+ *
+ * This may alter meth->insns if we need to replace an instruction with
+ * throw-verification-error.
+ */
+static bool verifyInstruction(const Method* meth, InsnFlags* insnFlags,
+ RegisterTable* regTable, RegType* workRegs, int insnIdx,
+ UninitInstanceMap* uninitMap, int* pStartGuess)
+{
+ const int insnsSize = dvmGetMethodInsnsSize(meth);
+ const u2* insns = meth->insns + insnIdx;
+ bool result = false;
+
+ /*
+ * Once we finish decoding the instruction, we need to figure out where
+ * we can go from here. There are three possible ways to transfer
+ * control to another statement:
+ *
+ * (1) Continue to the next instruction. Applies to all but
+ * unconditional branches, method returns, and exception throws.
+ * (2) Branch to one or more possible locations. Applies to branches
+ * and switch statements.
+ * (3) Exception handlers. Applies to any instruction that can
+ * throw an exception that is handled by an encompassing "try"
+ * block.
+ *
+ * We can also return, in which case there is no successor instruction
+ * from this point.
+ *
+ * The behavior can be determined from the InstructionFlags.
+ */
+
+ const DexFile* pDexFile = meth->clazz->pDvmDex->pDexFile;
+ RegType entryRegs[meth->registersSize + kExtraRegs];
+ ClassObject* resClass;
+ int branchTarget = 0;
+ const int insnRegCount = meth->registersSize;
+ RegType tmpType;
+ DecodedInstruction decInsn;
+ bool justSetResult = false;
+ VerifyError failure = VERIFY_ERROR_NONE;
+
+#ifndef NDEBUG
+ memset(&decInsn, 0x81, sizeof(decInsn));
+#endif
+ dexDecodeInstruction(gDvm.instrFormat, insns, &decInsn);
+
+ int nextFlags = dexGetInstrFlags(gDvm.instrFlags, decInsn.opCode);
+
+ /*
+ * Make a copy of the previous register state. If the instruction
+ * throws an exception, we merge *this* into the destination rather
+ * than workRegs, because we don't want the result from the "successful"
+ * code path (e.g. a check-cast that "improves" a type) to be visible
+ * to the exception handler.
+ */
+ if ((nextFlags & kInstrCanThrow) != 0 && dvmInsnIsInTry(insnFlags, insnIdx))
+ {
+ copyRegisters(entryRegs, workRegs, meth->registersSize + kExtraRegs);
+ } else {
+#ifndef NDEBUG
+ memset(entryRegs, 0xdd,
+ (meth->registersSize + kExtraRegs) * sizeof(RegType));
+#endif
+ }
+
+ switch (decInsn.opCode) {
+ case OP_NOP:
+ /*
+ * A "pure" NOP has no effect on anything. Data tables start with
+ * a signature that looks like a NOP; if we see one of these in
+ * the course of executing code then we have a problem.
+ */
+ if (decInsn.vA != 0) {
+ LOG_VFY("VFY: encountered data table in instruction stream\n");
+ failure = VERIFY_ERROR_GENERIC;
+ }
+ break;
+
+ case OP_MOVE:
+ case OP_MOVE_FROM16:
+ case OP_MOVE_16:
+ copyRegister1(workRegs, insnRegCount, decInsn.vA, decInsn.vB,
+ kTypeCategory1nr, &failure);
+ break;
+ case OP_MOVE_WIDE:
+ case OP_MOVE_WIDE_FROM16:
+ case OP_MOVE_WIDE_16:
+ copyRegister2(workRegs, insnRegCount, decInsn.vA, decInsn.vB, &failure);
+ break;
+ case OP_MOVE_OBJECT:
+ case OP_MOVE_OBJECT_FROM16:
+ case OP_MOVE_OBJECT_16:
+ copyRegister1(workRegs, insnRegCount, decInsn.vA, decInsn.vB,
+ kTypeCategoryRef, &failure);
+ break;
+
+ /*
+ * The move-result instructions copy data out of a "pseudo-register"
+ * with the results from the last method invocation. In practice we
+ * might want to hold the result in an actual CPU register, so the
+ * Dalvik spec requires that these only appear immediately after an
+ * invoke or filled-new-array.
+ *
+ * These calls invalidate the "result" register. (This is now
+ * redundant with the reset done below, but it can make the debug info
+ * easier to read in some cases.)
+ */
+ case OP_MOVE_RESULT:
+ copyResultRegister1(workRegs, insnRegCount, decInsn.vA,
+ kTypeCategory1nr, &failure);
+ break;
+ case OP_MOVE_RESULT_WIDE:
+ copyResultRegister2(workRegs, insnRegCount, decInsn.vA, &failure);
+ break;
+ case OP_MOVE_RESULT_OBJECT:
+ copyResultRegister1(workRegs, insnRegCount, decInsn.vA,
+ kTypeCategoryRef, &failure);
+ break;
+
+ case OP_MOVE_EXCEPTION:
+ /*
+ * This statement can only appear as the first instruction in an
+ * exception handler (though not all exception handlers need to
+ * have one of these). We verify that as part of extracting the
+ * exception type from the catch block list.
+ *
+ * "resClass" will hold the closest common superclass of all
+ * exceptions that can be handled here.
+ */
+ resClass = getCaughtExceptionType(meth, insnIdx, &failure);
+ if (resClass == NULL) {
+ assert(!VERIFY_OK(failure));
+ } else {
+ setRegisterType(workRegs, insnRegCount, decInsn.vA,
+ regTypeFromClass(resClass), &failure);
+ }
+ break;
+
+ case OP_RETURN_VOID:
+ if (!checkConstructorReturn(meth, workRegs, insnRegCount)) {
+ failure = VERIFY_ERROR_GENERIC;
+ } else if (getMethodReturnType(meth) != kRegTypeUnknown) {
+ LOG_VFY("VFY: return-void not expected\n");
+ failure = VERIFY_ERROR_GENERIC;
+ }
+ break;
+ case OP_RETURN:
+ if (!checkConstructorReturn(meth, workRegs, insnRegCount)) {
+ failure = VERIFY_ERROR_GENERIC;
+ } else {
+ /* check the method signature */
+ RegType returnType = getMethodReturnType(meth);
+ checkTypeCategory(returnType, kTypeCategory1nr, &failure);
+ if (!VERIFY_OK(failure))
+ LOG_VFY("VFY: return-32 not expected\n");
+
+ /* check the register contents */
+ returnType = getRegisterType(workRegs, insnRegCount, decInsn.vA,
+ &failure);
+ checkTypeCategory(returnType, kTypeCategory1nr, &failure);
+ if (!VERIFY_OK(failure))
+ LOG_VFY("VFY: return-32 on invalid register v%d\n", decInsn.vA);
+ }
+ break;
+ case OP_RETURN_WIDE:
+ if (!checkConstructorReturn(meth, workRegs, insnRegCount)) {
+ failure = VERIFY_ERROR_GENERIC;
+ } else {
+ RegType returnType, returnTypeHi;
+
+ /* check the method signature */
+ returnType = getMethodReturnType(meth);
+ checkTypeCategory(returnType, kTypeCategory2, &failure);
+ if (!VERIFY_OK(failure))
+ LOG_VFY("VFY: return-wide not expected\n");
+
+ /* check the register contents */
+ returnType = getRegisterType(workRegs, insnRegCount, decInsn.vA,
+ &failure);
+ returnTypeHi = getRegisterType(workRegs, insnRegCount,
+ decInsn.vA +1, &failure);
+ if (VERIFY_OK(failure)) {
+ checkTypeCategory(returnType, kTypeCategory2, &failure);
+ checkWidePair(returnType, returnTypeHi, &failure);
+ }
+ if (!VERIFY_OK(failure)) {
+ LOG_VFY("VFY: return-wide on invalid register pair v%d\n",
+ decInsn.vA);
+ }
+ }
+ break;
+ case OP_RETURN_OBJECT:
+ if (!checkConstructorReturn(meth, workRegs, insnRegCount)) {
+ failure = VERIFY_ERROR_GENERIC;
+ } else {
+ RegType returnType = getMethodReturnType(meth);
+ checkTypeCategory(returnType, kTypeCategoryRef, &failure);
+ if (!VERIFY_OK(failure)) {
+ LOG_VFY("VFY: return-object not expected\n");
+ break;
+ }
+
+ /* returnType is the *expected* return type, not register value */
+ assert(returnType != kRegTypeZero);
+ assert(!regTypeIsUninitReference(returnType));
+
+ /*
+ * Verify that the reference in vAA is an instance of the type
+ * in "returnType". The Zero type is allowed here. If the
+ * method is declared to return an interface, then any
+ * initialized reference is acceptable.
+ *
+ * Note getClassFromRegister fails if the register holds an
+ * uninitialized reference, so we do not allow them to be
+ * returned.
+ */
+ ClassObject* declClass;
+
+ declClass = regTypeInitializedReferenceToClass(returnType);
+ resClass = getClassFromRegister(workRegs, insnRegCount,
+ decInsn.vA, &failure);
+ if (!VERIFY_OK(failure))
+ break;
+ if (resClass != NULL) {
+ if (!dvmIsInterfaceClass(declClass) &&
+ !dvmInstanceof(resClass, declClass))
+ {
+ LOG_VFY("VFY: returning %s (cl=%p), declared %s (cl=%p)\n",
+ resClass->descriptor, resClass->classLoader,
+ declClass->descriptor, declClass->classLoader);
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+ }
+ }
+ break;
+
+ case OP_CONST_4:
+ case OP_CONST_16:
+ case OP_CONST:
+ /* could be boolean, int, float, or a null reference */
+ setRegisterType(workRegs, insnRegCount, decInsn.vA,
+ dvmDetermineCat1Const((s4)decInsn.vB), &failure);
+ break;
+ case OP_CONST_HIGH16:
+ /* could be boolean, int, float, or a null reference */
+ setRegisterType(workRegs, insnRegCount, decInsn.vA,
+ dvmDetermineCat1Const((s4) decInsn.vB << 16), &failure);
+ break;
+ case OP_CONST_WIDE_16:
+ case OP_CONST_WIDE_32:
+ case OP_CONST_WIDE:
+ case OP_CONST_WIDE_HIGH16:
+ /* could be long or double; default to long and allow conversion */
+ setRegisterType(workRegs, insnRegCount, decInsn.vA,
+ kRegTypeLongLo, &failure);
+ break;
+ case OP_CONST_STRING:
+ case OP_CONST_STRING_JUMBO:
+ assert(gDvm.classJavaLangString != NULL);
+ setRegisterType(workRegs, insnRegCount, decInsn.vA,
+ regTypeFromClass(gDvm.classJavaLangString), &failure);
+ break;
+ case OP_CONST_CLASS:
+ assert(gDvm.classJavaLangClass != NULL);
+ /* make sure we can resolve the class; access check is important */
+ resClass = dvmOptResolveClass(meth->clazz, decInsn.vB, &failure);
+ if (resClass == NULL) {
+ const char* badClassDesc = dexStringByTypeIdx(pDexFile, decInsn.vB);
+ dvmLogUnableToResolveClass(badClassDesc, meth);
+ LOG_VFY("VFY: unable to resolve const-class %d (%s) in %s\n",
+ decInsn.vB, badClassDesc, meth->clazz->descriptor);
+ assert(failure != VERIFY_ERROR_GENERIC);
+ } else {
+ setRegisterType(workRegs, insnRegCount, decInsn.vA,
+ regTypeFromClass(gDvm.classJavaLangClass), &failure);
+ }
+ break;
+
+ case OP_MONITOR_ENTER:
+ case OP_MONITOR_EXIT:
+ tmpType = getRegisterType(workRegs, insnRegCount, decInsn.vA, &failure);
+ if (VERIFY_OK(failure)) {
+ if (!regTypeIsReference(tmpType)) {
+ LOG_VFY("VFY: monitor op on non-object\n");
+ failure = VERIFY_ERROR_GENERIC;
+ }
+ }
+ break;
+
+ case OP_CHECK_CAST:
+ /*
+ * If this instruction succeeds, we will promote register vA to
+ * the type in vB. (This could be a demotion -- not expected, so
+ * we don't try to address it.)
+ *
+ * If it fails, an exception is thrown, which we deal with later
+ * by ignoring the update to decInsn.vA when branching to a handler.
+ */
+ resClass = dvmOptResolveClass(meth->clazz, decInsn.vB, &failure);
+ if (resClass == NULL) {
+ const char* badClassDesc = dexStringByTypeIdx(pDexFile, decInsn.vB);
+ dvmLogUnableToResolveClass(badClassDesc, meth);
+ LOG_VFY("VFY: unable to resolve check-cast %d (%s) in %s\n",
+ decInsn.vB, badClassDesc, meth->clazz->descriptor);
+ assert(failure != VERIFY_ERROR_GENERIC);
+ } else {
+ RegType origType;
+
+ origType = getRegisterType(workRegs, insnRegCount, decInsn.vA,
+ &failure);
+ if (!VERIFY_OK(failure))
+ break;
+ if (!regTypeIsReference(origType)) {
+ LOG_VFY("VFY: check-cast on non-reference in v%u\n",decInsn.vA);
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+ setRegisterType(workRegs, insnRegCount, decInsn.vA,
+ regTypeFromClass(resClass), &failure);
+ }
+ break;
+ case OP_INSTANCE_OF:
+ /* make sure we're checking a reference type */
+ tmpType = getRegisterType(workRegs, insnRegCount, decInsn.vB, &failure);
+ if (!VERIFY_OK(failure))
+ break;
+ if (!regTypeIsReference(tmpType)) {
+ LOG_VFY("VFY: vB not a reference (%d)\n", tmpType);
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+
+ /* make sure we can resolve the class; access check is important */
+ resClass = dvmOptResolveClass(meth->clazz, decInsn.vC, &failure);
+ if (resClass == NULL) {
+ const char* badClassDesc = dexStringByTypeIdx(pDexFile, decInsn.vC);
+ dvmLogUnableToResolveClass(badClassDesc, meth);
+ LOG_VFY("VFY: unable to resolve instanceof %d (%s) in %s\n",
+ decInsn.vC, badClassDesc, meth->clazz->descriptor);
+ assert(failure != VERIFY_ERROR_GENERIC);
+ } else {
+ /* result is boolean */
+ setRegisterType(workRegs, insnRegCount, decInsn.vA,
+ kRegTypeBoolean, &failure);
+ }
+ break;
+
+ case OP_ARRAY_LENGTH:
+ resClass = getClassFromRegister(workRegs, insnRegCount,
+ decInsn.vB, &failure);
+ if (!VERIFY_OK(failure))
+ break;
+ if (resClass != NULL && !dvmIsArrayClass(resClass)) {
+ LOG_VFY("VFY: array-length on non-array\n");
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+ setRegisterType(workRegs, insnRegCount, decInsn.vA, kRegTypeInteger,
+ &failure);
+ break;
+
+ case OP_NEW_INSTANCE:
+ resClass = dvmOptResolveClass(meth->clazz, decInsn.vB, &failure);
+ if (resClass == NULL) {
+ const char* badClassDesc = dexStringByTypeIdx(pDexFile, decInsn.vB);
+ dvmLogUnableToResolveClass(badClassDesc, meth);
+ LOG_VFY("VFY: unable to resolve new-instance %d (%s) in %s\n",
+ decInsn.vB, badClassDesc, meth->clazz->descriptor);
+ assert(failure != VERIFY_ERROR_GENERIC);
+ } else {
+ RegType uninitType;
+
+ /* can't create an instance of an interface or abstract class */
+ if (dvmIsAbstractClass(resClass) || dvmIsInterfaceClass(resClass)) {
+ LOG_VFY("VFY: new-instance on interface or abstract class %s\n",
+ resClass->descriptor);
+ failure = VERIFY_ERROR_INSTANTIATION;
+ break;
+ }
+
+ /* add resolved class to uninit map if not already there */
+ int uidx = dvmSetUninitInstance(uninitMap, insnIdx, resClass);
+ assert(uidx >= 0);
+ uninitType = regTypeFromUninitIndex(uidx);
+
+ /*
+ * Any registers holding previous allocations from this address
+ * that have not yet been initialized must be marked invalid.
+ */
+ markUninitRefsAsInvalid(workRegs, insnRegCount, uninitMap,
+ uninitType);
+
+ /* add the new uninitialized reference to the register ste */
+ setRegisterType(workRegs, insnRegCount, decInsn.vA,
+ uninitType, &failure);
+ }
+ break;
+ case OP_NEW_ARRAY:
+ resClass = dvmOptResolveClass(meth->clazz, decInsn.vC, &failure);
+ if (resClass == NULL) {
+ const char* badClassDesc = dexStringByTypeIdx(pDexFile, decInsn.vC);
+ dvmLogUnableToResolveClass(badClassDesc, meth);
+ LOG_VFY("VFY: unable to resolve new-array %d (%s) in %s\n",
+ decInsn.vC, badClassDesc, meth->clazz->descriptor);
+ assert(failure != VERIFY_ERROR_GENERIC);
+ } else if (!dvmIsArrayClass(resClass)) {
+ LOG_VFY("VFY: new-array on non-array class\n");
+ failure = VERIFY_ERROR_GENERIC;
+ } else {
+ /* make sure "size" register is valid type */
+ verifyRegisterType(workRegs, insnRegCount, decInsn.vB,
+ kRegTypeInteger, &failure);
+ /* set register type to array class */
+ setRegisterType(workRegs, insnRegCount, decInsn.vA,
+ regTypeFromClass(resClass), &failure);
+ }
+ break;
+ case OP_FILLED_NEW_ARRAY:
+ case OP_FILLED_NEW_ARRAY_RANGE:
+ resClass = dvmOptResolveClass(meth->clazz, decInsn.vB, &failure);
+ if (resClass == NULL) {
+ const char* badClassDesc = dexStringByTypeIdx(pDexFile, decInsn.vB);
+ dvmLogUnableToResolveClass(badClassDesc, meth);
+ LOG_VFY("VFY: unable to resolve filled-array %d (%s) in %s\n",
+ decInsn.vB, badClassDesc, meth->clazz->descriptor);
+ assert(failure != VERIFY_ERROR_GENERIC);
+ } else if (!dvmIsArrayClass(resClass)) {
+ LOG_VFY("VFY: filled-new-array on non-array class\n");
+ failure = VERIFY_ERROR_GENERIC;
+ } else {
+ bool isRange = (decInsn.opCode == OP_FILLED_NEW_ARRAY_RANGE);
+
+ /* check the arguments to the instruction */
+ verifyFilledNewArrayRegs(meth, workRegs, insnRegCount, &decInsn,
+ resClass, isRange, &failure);
+ /* filled-array result goes into "result" register */
+ setResultRegisterType(workRegs, insnRegCount,
+ regTypeFromClass(resClass), &failure);
+ justSetResult = true;
+ }
+ break;
+
+ case OP_CMPL_FLOAT:
+ case OP_CMPG_FLOAT:
+ verifyRegisterType(workRegs, insnRegCount, decInsn.vB, kRegTypeFloat,
+ &failure);
+ verifyRegisterType(workRegs, insnRegCount, decInsn.vC, kRegTypeFloat,
+ &failure);
+ setRegisterType(workRegs, insnRegCount, decInsn.vA, kRegTypeBoolean,
+ &failure);
+ break;
+ case OP_CMPL_DOUBLE:
+ case OP_CMPG_DOUBLE:
+ verifyRegisterType(workRegs, insnRegCount, decInsn.vB, kRegTypeDoubleLo,
+ &failure);
+ verifyRegisterType(workRegs, insnRegCount, decInsn.vC, kRegTypeDoubleLo,
+ &failure);
+ setRegisterType(workRegs, insnRegCount, decInsn.vA, kRegTypeBoolean,
+ &failure);
+ break;
+ case OP_CMP_LONG:
+ verifyRegisterType(workRegs, insnRegCount, decInsn.vB, kRegTypeLongLo,
+ &failure);
+ verifyRegisterType(workRegs, insnRegCount, decInsn.vC, kRegTypeLongLo,
+ &failure);
+ setRegisterType(workRegs, insnRegCount, decInsn.vA, kRegTypeBoolean,
+ &failure);
+ break;
+
+ case OP_THROW:
+ resClass = getClassFromRegister(workRegs, insnRegCount,
+ decInsn.vA, &failure);
+ if (VERIFY_OK(failure) && resClass != NULL) {
+ if (!dvmInstanceof(resClass, gDvm.classJavaLangThrowable)) {
+ LOG_VFY("VFY: thrown class %s not instanceof Throwable\n",
+ resClass->descriptor);
+ failure = VERIFY_ERROR_GENERIC;
+ }
+ }
+ break;
+
+ case OP_GOTO:
+ case OP_GOTO_16:
+ case OP_GOTO_32:
+ /* no effect on or use of registers */
+ break;
+
+ case OP_PACKED_SWITCH:
+ case OP_SPARSE_SWITCH:
+ /* verify that vAA is an integer, or can be converted to one */
+ verifyRegisterType(workRegs, insnRegCount, decInsn.vA,
+ kRegTypeInteger, &failure);
+ break;
+
+ case OP_FILL_ARRAY_DATA:
+ {
+ RegType valueType;
+ const u2 *arrayData;
+ u2 elemWidth;
+
+ /* Similar to the verification done for APUT */
+ resClass = getClassFromRegister(workRegs, insnRegCount,
+ decInsn.vA, &failure);
+ if (!VERIFY_OK(failure))
+ break;
+
+ /* resClass can be null if the reg type is Zero */
+ if (resClass == NULL)
+ break;
+
+ if (!dvmIsArrayClass(resClass) || resClass->arrayDim != 1 ||
+ resClass->elementClass->primitiveType == PRIM_NOT ||
+ resClass->elementClass->primitiveType == PRIM_VOID)
+ {
+ LOG_VFY("VFY: invalid fill-array-data on %s\n",
+ resClass->descriptor);
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+
+ valueType = primitiveTypeToRegType(
+ resClass->elementClass->primitiveType);
+ assert(valueType != kRegTypeUnknown);
+
+ /*
+ * Now verify if the element width in the table matches the element
+ * width declared in the array
+ */
+ arrayData = insns + (insns[1] | (((s4)insns[2]) << 16));
+ if (arrayData[0] != kArrayDataSignature) {
+ LOG_VFY("VFY: invalid magic for array-data\n");
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+
+ switch (resClass->elementClass->primitiveType) {
+ case PRIM_BOOLEAN:
+ case PRIM_BYTE:
+ elemWidth = 1;
+ break;
+ case PRIM_CHAR:
+ case PRIM_SHORT:
+ elemWidth = 2;
+ break;
+ case PRIM_FLOAT:
+ case PRIM_INT:
+ elemWidth = 4;
+ break;
+ case PRIM_DOUBLE:
+ case PRIM_LONG:
+ elemWidth = 8;
+ break;
+ default:
+ elemWidth = 0;
+ break;
+ }
+
+ /*
+ * Since we don't compress the data in Dex, expect to see equal
+ * width of data stored in the table and expected from the array
+ * class.
+ */
+ if (arrayData[1] != elemWidth) {
+ LOG_VFY("VFY: array-data size mismatch (%d vs %d)\n",
+ arrayData[1], elemWidth);
+ failure = VERIFY_ERROR_GENERIC;
+ }
+ }
+ break;
+
+ case OP_IF_EQ:
+ case OP_IF_NE:
+ {
+ RegType type1, type2;
+
+ type1 = getRegisterType(workRegs, insnRegCount, decInsn.vA,
+ &failure);
+ type2 = getRegisterType(workRegs, insnRegCount, decInsn.vB,
+ &failure);
+ if (!VERIFY_OK(failure))
+ break;
+
+ /* both references? */
+ if (regTypeIsReference(type1) && regTypeIsReference(type2))
+ break;
+
+ /* both category-1nr? */
+ checkTypeCategory(type1, kTypeCategory1nr, &failure);
+ checkTypeCategory(type2, kTypeCategory1nr, &failure);
+ if (!VERIFY_OK(failure)) {
+ LOG_VFY("VFY: args to if-eq/if-ne must both be refs or cat1\n");
+ break;
+ }
+ }
+ break;
+ case OP_IF_LT:
+ case OP_IF_GE:
+ case OP_IF_GT:
+ case OP_IF_LE:
+ tmpType = getRegisterType(workRegs, insnRegCount, decInsn.vA, &failure);
+ if (!VERIFY_OK(failure))
+ break;
+ checkTypeCategory(tmpType, kTypeCategory1nr, &failure);
+ if (!VERIFY_OK(failure)) {
+ LOG_VFY("VFY: args to 'if' must be cat-1nr\n");
+ break;
+ }
+ tmpType = getRegisterType(workRegs, insnRegCount, decInsn.vB, &failure);
+ if (!VERIFY_OK(failure))
+ break;
+ checkTypeCategory(tmpType, kTypeCategory1nr, &failure);
+ if (!VERIFY_OK(failure)) {
+ LOG_VFY("VFY: args to 'if' must be cat-1nr\n");
+ break;
+ }
+ break;
+ case OP_IF_EQZ:
+ case OP_IF_NEZ:
+ tmpType = getRegisterType(workRegs, insnRegCount, decInsn.vA, &failure);
+ if (!VERIFY_OK(failure))
+ break;
+ if (regTypeIsReference(tmpType))
+ break;
+ checkTypeCategory(tmpType, kTypeCategory1nr, &failure);
+ if (!VERIFY_OK(failure))
+ LOG_VFY("VFY: expected cat-1 arg to if\n");
+ break;
+ case OP_IF_LTZ:
+ case OP_IF_GEZ:
+ case OP_IF_GTZ:
+ case OP_IF_LEZ:
+ tmpType = getRegisterType(workRegs, insnRegCount, decInsn.vA, &failure);
+ if (!VERIFY_OK(failure))
+ break;
+ checkTypeCategory(tmpType, kTypeCategory1nr, &failure);
+ if (!VERIFY_OK(failure))
+ LOG_VFY("VFY: expected cat-1 arg to if\n");
+ break;
+
+ case OP_AGET:
+ tmpType = kRegTypeInteger;
+ goto aget_1nr_common;
+ case OP_AGET_BOOLEAN:
+ tmpType = kRegTypeBoolean;
+ goto aget_1nr_common;
+ case OP_AGET_BYTE:
+ tmpType = kRegTypeByte;
+ goto aget_1nr_common;
+ case OP_AGET_CHAR:
+ tmpType = kRegTypeChar;
+ goto aget_1nr_common;
+ case OP_AGET_SHORT:
+ tmpType = kRegTypeShort;
+ goto aget_1nr_common;
+aget_1nr_common:
+ {
+ RegType srcType, indexType;
+
+ indexType = getRegisterType(workRegs, insnRegCount, decInsn.vC,
+ &failure);
+ checkArrayIndexType(meth, indexType, &failure);
+ if (!VERIFY_OK(failure))
+ break;
+
+ resClass = getClassFromRegister(workRegs, insnRegCount,
+ decInsn.vB, &failure);
+ if (!VERIFY_OK(failure))
+ break;
+ if (resClass != NULL) {
+ /* verify the class */
+ if (!dvmIsArrayClass(resClass) || resClass->arrayDim != 1 ||
+ resClass->elementClass->primitiveType == PRIM_NOT)
+ {
+ LOG_VFY("VFY: invalid aget-1nr target %s\n",
+ resClass->descriptor);
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+
+ /* make sure array type matches instruction */
+ srcType = primitiveTypeToRegType(
+ resClass->elementClass->primitiveType);
+
+ if (!checkFieldArrayStore1nr(tmpType, srcType)) {
+ LOG_VFY("VFY: invalid aget-1nr, array type=%d with"
+ " inst type=%d (on %s)\n",
+ srcType, tmpType, resClass->descriptor);
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+
+ }
+ setRegisterType(workRegs, insnRegCount, decInsn.vA,
+ tmpType, &failure);
+ }
+ break;
+
+ case OP_AGET_WIDE:
+ {
+ RegType dstType, indexType;
+
+ indexType = getRegisterType(workRegs, insnRegCount, decInsn.vC,
+ &failure);
+ checkArrayIndexType(meth, indexType, &failure);
+ if (!VERIFY_OK(failure))
+ break;
+
+ resClass = getClassFromRegister(workRegs, insnRegCount,
+ decInsn.vB, &failure);
+ if (!VERIFY_OK(failure))
+ break;
+ if (resClass != NULL) {
+ /* verify the class */
+ if (!dvmIsArrayClass(resClass) || resClass->arrayDim != 1 ||
+ resClass->elementClass->primitiveType == PRIM_NOT)
+ {
+ LOG_VFY("VFY: invalid aget-wide target %s\n",
+ resClass->descriptor);
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+
+ /* try to refine "dstType" */
+ switch (resClass->elementClass->primitiveType) {
+ case PRIM_LONG:
+ dstType = kRegTypeLongLo;
+ break;
+ case PRIM_DOUBLE:
+ dstType = kRegTypeDoubleLo;
+ break;
+ default:
+ LOG_VFY("VFY: invalid aget-wide on %s\n",
+ resClass->descriptor);
+ dstType = kRegTypeUnknown;
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+ } else {
+ /*
+ * Null array ref; this code path will fail at runtime. We
+ * know this is either long or double, and we don't really
+ * discriminate between those during verification, so we
+ * call it a long.
+ */
+ dstType = kRegTypeLongLo;
+ }
+ setRegisterType(workRegs, insnRegCount, decInsn.vA,
+ dstType, &failure);
+ }
+ break;
+
+ case OP_AGET_OBJECT:
+ {
+ RegType dstType, indexType;
+
+ indexType = getRegisterType(workRegs, insnRegCount, decInsn.vC,
+ &failure);
+ checkArrayIndexType(meth, indexType, &failure);
+ if (!VERIFY_OK(failure))
+ break;
+
+ /* get the class of the array we're pulling an object from */
+ resClass = getClassFromRegister(workRegs, insnRegCount,
+ decInsn.vB, &failure);
+ if (!VERIFY_OK(failure))
+ break;
+ if (resClass != NULL) {
+ ClassObject* elementClass;
+
+ assert(resClass != NULL);
+ if (!dvmIsArrayClass(resClass)) {
+ LOG_VFY("VFY: aget-object on non-array class\n");
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+ assert(resClass->elementClass != NULL);
+
+ /*
+ * Find the element class. resClass->elementClass indicates
+ * the basic type, which won't be what we want for a
+ * multi-dimensional array.
+ */
+ if (resClass->descriptor[1] == '[') {
+ assert(resClass->arrayDim > 1);
+ elementClass = dvmFindArrayClass(&resClass->descriptor[1],
+ resClass->classLoader);
+ } else if (resClass->descriptor[1] == 'L') {
+ assert(resClass->arrayDim == 1);
+ elementClass = resClass->elementClass;
+ } else {
+ LOG_VFY("VFY: aget-object on non-ref array class (%s)\n",
+ resClass->descriptor);
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+
+ dstType = regTypeFromClass(elementClass);
+ } else {
+ /*
+ * The array reference is NULL, so the current code path will
+ * throw an exception. For proper merging with later code
+ * paths, and correct handling of "if-eqz" tests on the
+ * result of the array get, we want to treat this as a null
+ * reference.
+ */
+ dstType = kRegTypeZero;
+ }
+ setRegisterType(workRegs, insnRegCount, decInsn.vA,
+ dstType, &failure);
+ }
+ break;
+ case OP_APUT:
+ tmpType = kRegTypeInteger;
+ goto aput_1nr_common;
+ case OP_APUT_BOOLEAN:
+ tmpType = kRegTypeBoolean;
+ goto aput_1nr_common;
+ case OP_APUT_BYTE:
+ tmpType = kRegTypeByte;
+ goto aput_1nr_common;
+ case OP_APUT_CHAR:
+ tmpType = kRegTypeChar;
+ goto aput_1nr_common;
+ case OP_APUT_SHORT:
+ tmpType = kRegTypeShort;
+ goto aput_1nr_common;
+aput_1nr_common:
+ {
+ RegType srcType, dstType, indexType;
+
+ indexType = getRegisterType(workRegs, insnRegCount, decInsn.vC,
+ &failure);
+ checkArrayIndexType(meth, indexType, &failure);
+ if (!VERIFY_OK(failure))
+ break;
+
+ /* make sure the source register has the correct type */
+ srcType = getRegisterType(workRegs, insnRegCount, decInsn.vA,
+ &failure);
+ if (!canConvertTo1nr(srcType, tmpType)) {
+ LOG_VFY("VFY: invalid reg type %d on aput instr (need %d)\n",
+ srcType, tmpType);
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+
+ resClass = getClassFromRegister(workRegs, insnRegCount,
+ decInsn.vB, &failure);
+ if (!VERIFY_OK(failure))
+ break;
+
+ /* resClass can be null if the reg type is Zero */
+ if (resClass == NULL)
+ break;
+
+ if (!dvmIsArrayClass(resClass) || resClass->arrayDim != 1 ||
+ resClass->elementClass->primitiveType == PRIM_NOT)
+ {
+ LOG_VFY("VFY: invalid aput-1nr on %s\n", resClass->descriptor);
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+
+ /* verify that instruction matches array */
+ dstType = primitiveTypeToRegType(
+ resClass->elementClass->primitiveType);
+ assert(dstType != kRegTypeUnknown);
+
+ if (!checkFieldArrayStore1nr(tmpType, dstType)) {
+ LOG_VFY("VFY: invalid aput-1nr on %s (inst=%d dst=%d)\n",
+ resClass->descriptor, tmpType, dstType);
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+ }
+ break;
+ case OP_APUT_WIDE:
+ tmpType = getRegisterType(workRegs, insnRegCount, decInsn.vC,
+ &failure);
+ checkArrayIndexType(meth, tmpType, &failure);
+ if (!VERIFY_OK(failure))
+ break;
+
+ tmpType = getRegisterType(workRegs, insnRegCount, decInsn.vA, &failure);
+ if (VERIFY_OK(failure)) {
+ RegType typeHi =
+ getRegisterType(workRegs, insnRegCount, decInsn.vA+1, &failure);
+ checkTypeCategory(tmpType, kTypeCategory2, &failure);
+ checkWidePair(tmpType, typeHi, &failure);
+ }
+ if (!VERIFY_OK(failure))
+ break;
+
+ resClass = getClassFromRegister(workRegs, insnRegCount,
+ decInsn.vB, &failure);
+ if (!VERIFY_OK(failure))
+ break;
+ if (resClass != NULL) {
+ /* verify the class and try to refine "dstType" */
+ if (!dvmIsArrayClass(resClass) || resClass->arrayDim != 1 ||
+ resClass->elementClass->primitiveType == PRIM_NOT)
+ {
+ LOG_VFY("VFY: invalid aput-wide on %s\n",
+ resClass->descriptor);
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+
+ switch (resClass->elementClass->primitiveType) {
+ case PRIM_LONG:
+ case PRIM_DOUBLE:
+ /* these are okay */
+ break;
+ default:
+ LOG_VFY("VFY: invalid aput-wide on %s\n",
+ resClass->descriptor);
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+ }
+ break;
+ case OP_APUT_OBJECT:
+ tmpType = getRegisterType(workRegs, insnRegCount, decInsn.vC,
+ &failure);
+ checkArrayIndexType(meth, tmpType, &failure);
+ if (!VERIFY_OK(failure))
+ break;
+
+ /* get the ref we're storing; Zero is okay, Uninit is not */
+ resClass = getClassFromRegister(workRegs, insnRegCount,
+ decInsn.vA, &failure);
+ if (!VERIFY_OK(failure))
+ break;
+ if (resClass != NULL) {
+ ClassObject* arrayClass;
+ ClassObject* elementClass;
+
+ /*
+ * Get the array class. If the array ref is null, we won't
+ * have type information (and we'll crash at runtime with a
+ * null pointer exception).
+ */
+ arrayClass = getClassFromRegister(workRegs, insnRegCount,
+ decInsn.vB, &failure);
+
+ if (arrayClass != NULL) {
+ /* see if the array holds a compatible type */
+ if (!dvmIsArrayClass(arrayClass)) {
+ LOG_VFY("VFY: invalid aput-object on %s\n",
+ arrayClass->descriptor);
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+
+ /*
+ * Find the element class. resClass->elementClass indicates
+ * the basic type, which won't be what we want for a
+ * multi-dimensional array.
+ *
+ * All we want to check here is that the element type is a
+ * reference class. We *don't* check instanceof here, because
+ * you can still put a String into a String[] after the latter
+ * has been cast to an Object[].
+ */
+ if (arrayClass->descriptor[1] == '[') {
+ assert(arrayClass->arrayDim > 1);
+ elementClass = dvmFindArrayClass(&arrayClass->descriptor[1],
+ arrayClass->classLoader);
+ } else {
+ assert(arrayClass->arrayDim == 1);
+ elementClass = arrayClass->elementClass;
+ }
+ if (elementClass->primitiveType != PRIM_NOT) {
+ LOG_VFY("VFY: invalid aput-object of %s into %s\n",
+ resClass->descriptor, arrayClass->descriptor);
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+ }
+ }
+ break;
+
+ case OP_IGET:
+ case OP_IGET_VOLATILE:
+ tmpType = kRegTypeInteger;
+ goto iget_1nr_common;
+ case OP_IGET_BOOLEAN:
+ tmpType = kRegTypeBoolean;
+ goto iget_1nr_common;
+ case OP_IGET_BYTE:
+ tmpType = kRegTypeByte;
+ goto iget_1nr_common;
+ case OP_IGET_CHAR:
+ tmpType = kRegTypeChar;
+ goto iget_1nr_common;
+ case OP_IGET_SHORT:
+ tmpType = kRegTypeShort;
+ goto iget_1nr_common;
+iget_1nr_common:
+ {
+ InstField* instField;
+ RegType objType, fieldType;
+
+ objType = getRegisterType(workRegs, insnRegCount, decInsn.vB,
+ &failure);
+ if (!VERIFY_OK(failure))
+ break;
+ instField = getInstField(meth, uninitMap, objType, decInsn.vC,
+ &failure);
+ if (!VERIFY_OK(failure))
+ break;
+
+ /* make sure the field's type is compatible with expectation */
+ fieldType = primSigCharToRegType(instField->field.signature[0]);
+ if (fieldType == kRegTypeUnknown ||
+ !checkFieldArrayStore1nr(tmpType, fieldType))
+ {
+ LOG_VFY("VFY: invalid iget-1nr of %s.%s (inst=%d field=%d)\n",
+ instField->field.clazz->descriptor,
+ instField->field.name, tmpType, fieldType);
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+
+ setRegisterType(workRegs, insnRegCount, decInsn.vA, tmpType,
+ &failure);
+ }
+ break;
+ case OP_IGET_WIDE:
+ case OP_IGET_WIDE_VOLATILE:
+ {
+ RegType dstType;
+ InstField* instField;
+ RegType objType;
+
+ objType = getRegisterType(workRegs, insnRegCount, decInsn.vB,
+ &failure);
+ if (!VERIFY_OK(failure))
+ break;
+ instField = getInstField(meth, uninitMap, objType, decInsn.vC,
+ &failure);
+ if (!VERIFY_OK(failure))
+ break;
+ /* check the type, which should be prim */
+ switch (instField->field.signature[0]) {
+ case 'D':
+ dstType = kRegTypeDoubleLo;
+ break;
+ case 'J':
+ dstType = kRegTypeLongLo;
+ break;
+ default:
+ LOG_VFY("VFY: invalid iget-wide of %s.%s\n",
+ instField->field.clazz->descriptor,
+ instField->field.name);
+ dstType = kRegTypeUnknown;
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+ if (VERIFY_OK(failure)) {
+ setRegisterType(workRegs, insnRegCount, decInsn.vA,
+ dstType, &failure);
+ }
+ }
+ break;
+ case OP_IGET_OBJECT:
+ case OP_IGET_OBJECT_VOLATILE:
+ {
+ ClassObject* fieldClass;
+ InstField* instField;
+ RegType objType;
+
+ objType = getRegisterType(workRegs, insnRegCount, decInsn.vB,
+ &failure);
+ if (!VERIFY_OK(failure))
+ break;
+ instField = getInstField(meth, uninitMap, objType, decInsn.vC,
+ &failure);
+ if (!VERIFY_OK(failure))
+ break;
+ fieldClass = getFieldClass(meth, &instField->field);
+ if (fieldClass == NULL) {
+ /* class not found or primitive type */
+ LOG_VFY("VFY: unable to recover field class from '%s'\n",
+ instField->field.signature);
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+ if (VERIFY_OK(failure)) {
+ assert(!dvmIsPrimitiveClass(fieldClass));
+ setRegisterType(workRegs, insnRegCount, decInsn.vA,
+ regTypeFromClass(fieldClass), &failure);
+ }
+ }
+ break;
+ case OP_IPUT:
+ case OP_IPUT_VOLATILE:
+ tmpType = kRegTypeInteger;
+ goto iput_1nr_common;
+ case OP_IPUT_BOOLEAN:
+ tmpType = kRegTypeBoolean;
+ goto iput_1nr_common;
+ case OP_IPUT_BYTE:
+ tmpType = kRegTypeByte;
+ goto iput_1nr_common;
+ case OP_IPUT_CHAR:
+ tmpType = kRegTypeChar;
+ goto iput_1nr_common;
+ case OP_IPUT_SHORT:
+ tmpType = kRegTypeShort;
+ goto iput_1nr_common;
+iput_1nr_common:
+ {
+ RegType srcType, fieldType, objType;
+ InstField* instField;
+
+ srcType = getRegisterType(workRegs, insnRegCount, decInsn.vA,
+ &failure);
+
+ /*
+ * javac generates synthetic functions that write byte values
+ * into boolean fields.
+ */
+ if (tmpType == kRegTypeBoolean && srcType == kRegTypeByte)
+ srcType = kRegTypeBoolean;
+
+ /* make sure the source register has the correct type */
+ if (!canConvertTo1nr(srcType, tmpType)) {
+ LOG_VFY("VFY: invalid reg type %d on iput instr (need %d)\n",
+ srcType, tmpType);
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+
+ objType = getRegisterType(workRegs, insnRegCount, decInsn.vB,
+ &failure);
+ if (!VERIFY_OK(failure))
+ break;
+ instField = getInstField(meth, uninitMap, objType, decInsn.vC,
+ &failure);
+ if (!VERIFY_OK(failure))
+ break;
+ checkFinalFieldAccess(meth, &instField->field, &failure);
+ if (!VERIFY_OK(failure))
+ break;
+
+ /* get type of field we're storing into */
+ fieldType = primSigCharToRegType(instField->field.signature[0]);
+ if (fieldType == kRegTypeUnknown ||
+ !checkFieldArrayStore1nr(tmpType, fieldType))
+ {
+ LOG_VFY("VFY: invalid iput-1nr of %s.%s (inst=%d field=%d)\n",
+ instField->field.clazz->descriptor,
+ instField->field.name, tmpType, fieldType);
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+ }
+ break;
+ case OP_IPUT_WIDE:
+ case OP_IPUT_WIDE_VOLATILE:
+ tmpType = getRegisterType(workRegs, insnRegCount, decInsn.vA, &failure);
+ if (VERIFY_OK(failure)) {
+ RegType typeHi =
+ getRegisterType(workRegs, insnRegCount, decInsn.vA+1, &failure);
+ checkTypeCategory(tmpType, kTypeCategory2, &failure);
+ checkWidePair(tmpType, typeHi, &failure);
+ }
+ if (VERIFY_OK(failure)) {
+ InstField* instField;
+ RegType objType;
+
+ objType = getRegisterType(workRegs, insnRegCount, decInsn.vB,
+ &failure);
+ if (!VERIFY_OK(failure))
+ break;
+ instField = getInstField(meth, uninitMap, objType, decInsn.vC,
+ &failure);
+ if (!VERIFY_OK(failure))
+ break;
+ checkFinalFieldAccess(meth, &instField->field, &failure);
+ if (!VERIFY_OK(failure))
+ break;
+
+ /* check the type, which should be prim */
+ switch (instField->field.signature[0]) {
+ case 'D':
+ case 'J':
+ /* these are okay (and interchangeable) */
+ break;
+ default:
+ LOG_VFY("VFY: invalid iput-wide of %s.%s\n",
+ instField->field.clazz->descriptor,
+ instField->field.name);
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+ }
+ break;
+ case OP_IPUT_OBJECT:
+ case OP_IPUT_OBJECT_VOLATILE:
+ {
+ ClassObject* fieldClass;
+ ClassObject* valueClass;
+ InstField* instField;
+ RegType objType, valueType;
+
+ objType = getRegisterType(workRegs, insnRegCount, decInsn.vB,
+ &failure);
+ if (!VERIFY_OK(failure))
+ break;
+ instField = getInstField(meth, uninitMap, objType, decInsn.vC,
+ &failure);
+ if (!VERIFY_OK(failure))
+ break;
+ checkFinalFieldAccess(meth, &instField->field, &failure);
+ if (!VERIFY_OK(failure))
+ break;
+
+ fieldClass = getFieldClass(meth, &instField->field);
+ if (fieldClass == NULL) {
+ LOG_VFY("VFY: unable to recover field class from '%s'\n",
+ instField->field.signature);
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+
+ valueType = getRegisterType(workRegs, insnRegCount, decInsn.vA,
+ &failure);
+ if (!VERIFY_OK(failure))
+ break;
+ if (!regTypeIsReference(valueType)) {
+ LOG_VFY("VFY: storing non-ref v%d into ref field '%s' (%s)\n",
+ decInsn.vA, instField->field.name,
+ fieldClass->descriptor);
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+ if (valueType != kRegTypeZero) {
+ valueClass = regTypeInitializedReferenceToClass(valueType);
+ if (valueClass == NULL) {
+ LOG_VFY("VFY: storing uninit ref v%d into ref field\n",
+ decInsn.vA);
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+ /* allow if field is any interface or field is base class */
+ if (!dvmIsInterfaceClass(fieldClass) &&
+ !dvmInstanceof(valueClass, fieldClass))
+ {
+ LOG_VFY("VFY: storing type '%s' into field type '%s' (%s.%s)\n",
+ valueClass->descriptor, fieldClass->descriptor,
+ instField->field.clazz->descriptor,
+ instField->field.name);
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+ }
+ }
+ break;
+
+ case OP_SGET:
+ case OP_SGET_VOLATILE:
+ tmpType = kRegTypeInteger;
+ goto sget_1nr_common;
+ case OP_SGET_BOOLEAN:
+ tmpType = kRegTypeBoolean;
+ goto sget_1nr_common;
+ case OP_SGET_BYTE:
+ tmpType = kRegTypeByte;
+ goto sget_1nr_common;
+ case OP_SGET_CHAR:
+ tmpType = kRegTypeChar;
+ goto sget_1nr_common;
+ case OP_SGET_SHORT:
+ tmpType = kRegTypeShort;
+ goto sget_1nr_common;
+sget_1nr_common:
+ {
+ StaticField* staticField;
+ RegType fieldType;
+
+ staticField = getStaticField(meth, decInsn.vB, &failure);
+ if (!VERIFY_OK(failure))
+ break;
+
+ /*
+ * Make sure the field's type is compatible with expectation.
+ * We can get ourselves into trouble if we mix & match loads
+ * and stores with different widths, so rather than just checking
+ * "canConvertTo1nr" we require that the field types have equal
+ * widths. (We can't generally require an exact type match,
+ * because e.g. "int" and "float" are interchangeable.)
+ */
+ fieldType = primSigCharToRegType(staticField->field.signature[0]);
+ if (!checkFieldArrayStore1nr(tmpType, fieldType)) {
+ LOG_VFY("VFY: invalid sget-1nr of %s.%s (inst=%d actual=%d)\n",
+ staticField->field.clazz->descriptor,
+ staticField->field.name, tmpType, fieldType);
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+
+ setRegisterType(workRegs, insnRegCount, decInsn.vA, tmpType,
+ &failure);
+ }
+ break;
+ case OP_SGET_WIDE:
+ case OP_SGET_WIDE_VOLATILE:
+ {
+ StaticField* staticField;
+ RegType dstType;
+
+ staticField = getStaticField(meth, decInsn.vB, &failure);
+ if (!VERIFY_OK(failure))
+ break;
+ /* check the type, which should be prim */
+ switch (staticField->field.signature[0]) {
+ case 'D':
+ dstType = kRegTypeDoubleLo;
+ break;
+ case 'J':
+ dstType = kRegTypeLongLo;
+ break;
+ default:
+ LOG_VFY("VFY: invalid sget-wide of %s.%s\n",
+ staticField->field.clazz->descriptor,
+ staticField->field.name);
+ dstType = kRegTypeUnknown;
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+ if (VERIFY_OK(failure)) {
+ setRegisterType(workRegs, insnRegCount, decInsn.vA,
+ dstType, &failure);
+ }
+ }
+ break;
+ case OP_SGET_OBJECT:
+ case OP_SGET_OBJECT_VOLATILE:
+ {
+ StaticField* staticField;
+ ClassObject* fieldClass;
+
+ staticField = getStaticField(meth, decInsn.vB, &failure);
+ if (!VERIFY_OK(failure))
+ break;
+ fieldClass = getFieldClass(meth, &staticField->field);
+ if (fieldClass == NULL) {
+ LOG_VFY("VFY: unable to recover field class from '%s'\n",
+ staticField->field.signature);
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+ if (dvmIsPrimitiveClass(fieldClass)) {
+ LOG_VFY("VFY: attempt to get prim field with sget-object\n");
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+ setRegisterType(workRegs, insnRegCount, decInsn.vA,
+ regTypeFromClass(fieldClass), &failure);
+ }
+ break;
+ case OP_SPUT:
+ case OP_SPUT_VOLATILE:
+ tmpType = kRegTypeInteger;
+ goto sput_1nr_common;
+ case OP_SPUT_BOOLEAN:
+ tmpType = kRegTypeBoolean;
+ goto sput_1nr_common;
+ case OP_SPUT_BYTE:
+ tmpType = kRegTypeByte;
+ goto sput_1nr_common;
+ case OP_SPUT_CHAR:
+ tmpType = kRegTypeChar;
+ goto sput_1nr_common;
+ case OP_SPUT_SHORT:
+ tmpType = kRegTypeShort;
+ goto sput_1nr_common;
+sput_1nr_common:
+ {
+ RegType srcType, fieldType;
+ StaticField* staticField;
+
+ srcType = getRegisterType(workRegs, insnRegCount, decInsn.vA,
+ &failure);
+
+ /*
+ * javac generates synthetic functions that write byte values
+ * into boolean fields.
+ */
+ if (tmpType == kRegTypeBoolean && srcType == kRegTypeByte)
+ srcType = kRegTypeBoolean;
+
+ /* make sure the source register has the correct type */
+ if (!canConvertTo1nr(srcType, tmpType)) {
+ LOG_VFY("VFY: invalid reg type %d on sput instr (need %d)\n",
+ srcType, tmpType);
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+
+ staticField = getStaticField(meth, decInsn.vB, &failure);
+ if (!VERIFY_OK(failure))
+ break;
+ checkFinalFieldAccess(meth, &staticField->field, &failure);
+ if (!VERIFY_OK(failure))
+ break;
+
+ /*
+ * Get type of field we're storing into. We know that the
+ * contents of the register match the instruction, but we also
+ * need to ensure that the instruction matches the field type.
+ * Using e.g. sput-short to write into a 32-bit integer field
+ * can lead to trouble if we do 16-bit writes.
+ */
+ fieldType = primSigCharToRegType(staticField->field.signature[0]);
+ if (!checkFieldArrayStore1nr(tmpType, fieldType)) {
+ LOG_VFY("VFY: invalid sput-1nr of %s.%s (inst=%d actual=%d)\n",
+ staticField->field.clazz->descriptor,
+ staticField->field.name, tmpType, fieldType);
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+ }
+ break;
+ case OP_SPUT_WIDE:
+ case OP_SPUT_WIDE_VOLATILE:
+ tmpType = getRegisterType(workRegs, insnRegCount, decInsn.vA, &failure);
+ if (VERIFY_OK(failure)) {
+ RegType typeHi =
+ getRegisterType(workRegs, insnRegCount, decInsn.vA+1, &failure);
+ checkTypeCategory(tmpType, kTypeCategory2, &failure);
+ checkWidePair(tmpType, typeHi, &failure);
+ }
+ if (VERIFY_OK(failure)) {
+ StaticField* staticField;
+
+ staticField = getStaticField(meth, decInsn.vB, &failure);
+ if (!VERIFY_OK(failure))
+ break;
+ checkFinalFieldAccess(meth, &staticField->field, &failure);
+ if (!VERIFY_OK(failure))
+ break;
+
+ /* check the type, which should be prim */
+ switch (staticField->field.signature[0]) {
+ case 'D':
+ case 'J':
+ /* these are okay */
+ break;
+ default:
+ LOG_VFY("VFY: invalid sput-wide of %s.%s\n",
+ staticField->field.clazz->descriptor,
+ staticField->field.name);
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+ }
+ break;
+ case OP_SPUT_OBJECT:
+ case OP_SPUT_OBJECT_VOLATILE:
+ {
+ ClassObject* fieldClass;
+ ClassObject* valueClass;
+ StaticField* staticField;
+ RegType valueType;
+
+ staticField = getStaticField(meth, decInsn.vB, &failure);
+ if (!VERIFY_OK(failure))
+ break;
+ checkFinalFieldAccess(meth, &staticField->field, &failure);
+ if (!VERIFY_OK(failure))
+ break;
+
+ fieldClass = getFieldClass(meth, &staticField->field);
+ if (fieldClass == NULL) {
+ LOG_VFY("VFY: unable to recover field class from '%s'\n",
+ staticField->field.signature);
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+
+ valueType = getRegisterType(workRegs, insnRegCount, decInsn.vA,
+ &failure);
+ if (!VERIFY_OK(failure))
+ break;
+ if (!regTypeIsReference(valueType)) {
+ LOG_VFY("VFY: storing non-ref v%d into ref field '%s' (%s)\n",
+ decInsn.vA, staticField->field.name,
+ fieldClass->descriptor);
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+ if (valueType != kRegTypeZero) {
+ valueClass = regTypeInitializedReferenceToClass(valueType);
+ if (valueClass == NULL) {
+ LOG_VFY("VFY: storing uninit ref v%d into ref field\n",
+ decInsn.vA);
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+ /* allow if field is any interface or field is base class */
+ if (!dvmIsInterfaceClass(fieldClass) &&
+ !dvmInstanceof(valueClass, fieldClass))
+ {
+ LOG_VFY("VFY: storing type '%s' into field type '%s' (%s.%s)\n",
+ valueClass->descriptor, fieldClass->descriptor,
+ staticField->field.clazz->descriptor,
+ staticField->field.name);
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+ }
+ }
+ break;
+
+ case OP_INVOKE_VIRTUAL:
+ case OP_INVOKE_VIRTUAL_RANGE:
+ case OP_INVOKE_SUPER:
+ case OP_INVOKE_SUPER_RANGE:
+ {
+ Method* calledMethod;
+ RegType returnType;
+ bool isRange;
+ bool isSuper;
+
+ isRange = (decInsn.opCode == OP_INVOKE_VIRTUAL_RANGE ||
+ decInsn.opCode == OP_INVOKE_SUPER_RANGE);
+ isSuper = (decInsn.opCode == OP_INVOKE_SUPER ||
+ decInsn.opCode == OP_INVOKE_SUPER_RANGE);
+
+ calledMethod = verifyInvocationArgs(meth, workRegs, insnRegCount,
+ &decInsn, uninitMap, METHOD_VIRTUAL, isRange,
+ isSuper, &failure);
+ if (!VERIFY_OK(failure))
+ break;
+ returnType = getMethodReturnType(calledMethod);
+ setResultRegisterType(workRegs, insnRegCount, returnType, &failure);
+ justSetResult = true;
+ }
+ break;
+ case OP_INVOKE_DIRECT:
+ case OP_INVOKE_DIRECT_RANGE:
+ {
+ RegType returnType;
+ Method* calledMethod;
+ bool isRange;
+
+ isRange = (decInsn.opCode == OP_INVOKE_DIRECT_RANGE);
+ calledMethod = verifyInvocationArgs(meth, workRegs, insnRegCount,
+ &decInsn, uninitMap, METHOD_DIRECT, isRange,
+ false, &failure);
+ if (!VERIFY_OK(failure))
+ break;
+
+ /*
+ * Some additional checks when calling <init>. We know from
+ * the invocation arg check that the "this" argument is an
+ * instance of calledMethod->clazz. Now we further restrict
+ * that to require that calledMethod->clazz is the same as
+ * this->clazz or this->super, allowing the latter only if
+ * the "this" argument is the same as the "this" argument to
+ * this method (which implies that we're in <init> ourselves).
+ */
+ if (isInitMethod(calledMethod)) {
+ RegType thisType;
+ thisType = getInvocationThis(workRegs, insnRegCount,
+ &decInsn, &failure);
+ if (!VERIFY_OK(failure))
+ break;
+
+ /* no null refs allowed (?) */
+ if (thisType == kRegTypeZero) {
+ LOG_VFY("VFY: unable to initialize null ref\n");
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+
+ ClassObject* thisClass;
+
+ thisClass = regTypeReferenceToClass(thisType, uninitMap);
+ assert(thisClass != NULL);
+
+ /* must be in same class or in superclass */
+ if (calledMethod->clazz == thisClass->super) {
+ if (thisClass != meth->clazz) {
+ LOG_VFY("VFY: invoke-direct <init> on super only "
+ "allowed for 'this' in <init>");
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+ } else if (calledMethod->clazz != thisClass) {
+ LOG_VFY("VFY: invoke-direct <init> must be on current "
+ "class or super\n");
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+
+ /* arg must be an uninitialized reference */
+ if (!regTypeIsUninitReference(thisType)) {
+ LOG_VFY("VFY: can only initialize the uninitialized\n");
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+
+ /*
+ * Replace the uninitialized reference with an initialized
+ * one, and clear the entry in the uninit map. We need to
+ * do this for all registers that have the same object
+ * instance in them, not just the "this" register.
+ */
+ markRefsAsInitialized(workRegs, insnRegCount, uninitMap,
+ thisType, &failure);
+ if (!VERIFY_OK(failure))
+ break;
+ }
+ returnType = getMethodReturnType(calledMethod);
+ setResultRegisterType(workRegs, insnRegCount,
+ returnType, &failure);
+ justSetResult = true;
+ }
+ break;
+ case OP_INVOKE_STATIC:
+ case OP_INVOKE_STATIC_RANGE:
+ {
+ RegType returnType;
+ Method* calledMethod;
+ bool isRange;
+
+ isRange = (decInsn.opCode == OP_INVOKE_STATIC_RANGE);
+ calledMethod = verifyInvocationArgs(meth, workRegs, insnRegCount,
+ &decInsn, uninitMap, METHOD_STATIC, isRange,
+ false, &failure);
+ if (!VERIFY_OK(failure))
+ break;
+
+ returnType = getMethodReturnType(calledMethod);
+ setResultRegisterType(workRegs, insnRegCount, returnType, &failure);
+ justSetResult = true;
+ }
+ break;
+ case OP_INVOKE_INTERFACE:
+ case OP_INVOKE_INTERFACE_RANGE:
+ {
+ RegType /*thisType,*/ returnType;
+ Method* absMethod;
+ bool isRange;
+
+ isRange = (decInsn.opCode == OP_INVOKE_INTERFACE_RANGE);
+ absMethod = verifyInvocationArgs(meth, workRegs, insnRegCount,
+ &decInsn, uninitMap, METHOD_INTERFACE, isRange,
+ false, &failure);
+ if (!VERIFY_OK(failure))
+ break;
+
+#if 0 /* can't do this here, fails on dalvik test 052-verifier-fun */
+ /*
+ * Get the type of the "this" arg, which should always be an
+ * interface class. Because we don't do a full merge on
+ * interface classes, this might have reduced to Object.
+ */
+ thisType = getInvocationThis(workRegs, insnRegCount,
+ &decInsn, &failure);
+ if (!VERIFY_OK(failure))
+ break;
+
+ if (thisType == kRegTypeZero) {
+ /* null pointer always passes (and always fails at runtime) */
+ } else {
+ ClassObject* thisClass;
+
+ thisClass = regTypeInitializedReferenceToClass(thisType);
+ if (thisClass == NULL) {
+ LOG_VFY("VFY: interface call on uninitialized\n");
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+
+ /*
+ * Either "thisClass" needs to be the interface class that
+ * defined absMethod, or absMethod's class needs to be one
+ * of the interfaces implemented by "thisClass". (Or, if
+ * we couldn't complete the merge, this will be Object.)
+ */
+ if (thisClass != absMethod->clazz &&
+ thisClass != gDvm.classJavaLangObject &&
+ !dvmImplements(thisClass, absMethod->clazz))
+ {
+ LOG_VFY("VFY: unable to match absMethod '%s' with %s interfaces\n",
+ absMethod->name, thisClass->descriptor);
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+ }
+ }
+#endif
+
+ /*
+ * We don't have an object instance, so we can't find the
+ * concrete method. However, all of the type information is
+ * in the abstract method, so we're good.
+ */
+ returnType = getMethodReturnType(absMethod);
+ setResultRegisterType(workRegs, insnRegCount, returnType, &failure);
+ justSetResult = true;
+ }
+ break;
+
+ case OP_NEG_INT:
+ case OP_NOT_INT:
+ checkUnop(workRegs, insnRegCount, &decInsn,
+ kRegTypeInteger, kRegTypeInteger, &failure);
+ break;
+ case OP_NEG_LONG:
+ case OP_NOT_LONG:
+ checkUnop(workRegs, insnRegCount, &decInsn,
+ kRegTypeLongLo, kRegTypeLongLo, &failure);
+ break;
+ case OP_NEG_FLOAT:
+ checkUnop(workRegs, insnRegCount, &decInsn,
+ kRegTypeFloat, kRegTypeFloat, &failure);
+ break;
+ case OP_NEG_DOUBLE:
+ checkUnop(workRegs, insnRegCount, &decInsn,
+ kRegTypeDoubleLo, kRegTypeDoubleLo, &failure);
+ break;
+ case OP_INT_TO_LONG:
+ checkUnop(workRegs, insnRegCount, &decInsn,
+ kRegTypeLongLo, kRegTypeInteger, &failure);
+ break;
+ case OP_INT_TO_FLOAT:
+ checkUnop(workRegs, insnRegCount, &decInsn,
+ kRegTypeFloat, kRegTypeInteger, &failure);
+ break;
+ case OP_INT_TO_DOUBLE:
+ checkUnop(workRegs, insnRegCount, &decInsn,
+ kRegTypeDoubleLo, kRegTypeInteger, &failure);
+ break;
+ case OP_LONG_TO_INT:
+ checkUnop(workRegs, insnRegCount, &decInsn,
+ kRegTypeInteger, kRegTypeLongLo, &failure);
+ break;
+ case OP_LONG_TO_FLOAT:
+ checkUnop(workRegs, insnRegCount, &decInsn,
+ kRegTypeFloat, kRegTypeLongLo, &failure);
+ break;
+ case OP_LONG_TO_DOUBLE:
+ checkUnop(workRegs, insnRegCount, &decInsn,
+ kRegTypeDoubleLo, kRegTypeLongLo, &failure);
+ break;
+ case OP_FLOAT_TO_INT:
+ checkUnop(workRegs, insnRegCount, &decInsn,
+ kRegTypeInteger, kRegTypeFloat, &failure);
+ break;
+ case OP_FLOAT_TO_LONG:
+ checkUnop(workRegs, insnRegCount, &decInsn,
+ kRegTypeLongLo, kRegTypeFloat, &failure);
+ break;
+ case OP_FLOAT_TO_DOUBLE:
+ checkUnop(workRegs, insnRegCount, &decInsn,
+ kRegTypeDoubleLo, kRegTypeFloat, &failure);
+ break;
+ case OP_DOUBLE_TO_INT:
+ checkUnop(workRegs, insnRegCount, &decInsn,
+ kRegTypeInteger, kRegTypeDoubleLo, &failure);
+ break;
+ case OP_DOUBLE_TO_LONG:
+ checkUnop(workRegs, insnRegCount, &decInsn,
+ kRegTypeLongLo, kRegTypeDoubleLo, &failure);
+ break;
+ case OP_DOUBLE_TO_FLOAT:
+ checkUnop(workRegs, insnRegCount, &decInsn,
+ kRegTypeFloat, kRegTypeDoubleLo, &failure);
+ break;
+ case OP_INT_TO_BYTE:
+ checkUnop(workRegs, insnRegCount, &decInsn,
+ kRegTypeByte, kRegTypeInteger, &failure);
+ break;
+ case OP_INT_TO_CHAR:
+ checkUnop(workRegs, insnRegCount, &decInsn,
+ kRegTypeChar, kRegTypeInteger, &failure);
+ break;
+ case OP_INT_TO_SHORT:
+ checkUnop(workRegs, insnRegCount, &decInsn,
+ kRegTypeShort, kRegTypeInteger, &failure);
+ break;
+
+ case OP_ADD_INT:
+ case OP_SUB_INT:
+ case OP_MUL_INT:
+ case OP_REM_INT:
+ case OP_DIV_INT:
+ case OP_SHL_INT:
+ case OP_SHR_INT:
+ case OP_USHR_INT:
+ checkBinop(workRegs, insnRegCount, &decInsn,
+ kRegTypeInteger, kRegTypeInteger, kRegTypeInteger, false, &failure);
+ break;
+ case OP_AND_INT:
+ case OP_OR_INT:
+ case OP_XOR_INT:
+ checkBinop(workRegs, insnRegCount, &decInsn,
+ kRegTypeInteger, kRegTypeInteger, kRegTypeInteger, true, &failure);
+ break;
+ case OP_ADD_LONG:
+ case OP_SUB_LONG:
+ case OP_MUL_LONG:
+ case OP_DIV_LONG:
+ case OP_REM_LONG:
+ case OP_AND_LONG:
+ case OP_OR_LONG:
+ case OP_XOR_LONG:
+ checkBinop(workRegs, insnRegCount, &decInsn,
+ kRegTypeLongLo, kRegTypeLongLo, kRegTypeLongLo, false, &failure);
+ break;
+ case OP_SHL_LONG:
+ case OP_SHR_LONG:
+ case OP_USHR_LONG:
+ /* shift distance is Int, making these different from other binops */
+ checkBinop(workRegs, insnRegCount, &decInsn,
+ kRegTypeLongLo, kRegTypeLongLo, kRegTypeInteger, false, &failure);
+ break;
+ case OP_ADD_FLOAT:
+ case OP_SUB_FLOAT:
+ case OP_MUL_FLOAT:
+ case OP_DIV_FLOAT:
+ case OP_REM_FLOAT:
+ checkBinop(workRegs, insnRegCount, &decInsn,
+ kRegTypeFloat, kRegTypeFloat, kRegTypeFloat, false, &failure);
+ break;
+ case OP_ADD_DOUBLE:
+ case OP_SUB_DOUBLE:
+ case OP_MUL_DOUBLE:
+ case OP_DIV_DOUBLE:
+ case OP_REM_DOUBLE:
+ checkBinop(workRegs, insnRegCount, &decInsn,
+ kRegTypeDoubleLo, kRegTypeDoubleLo, kRegTypeDoubleLo, false,
+ &failure);
+ break;
+ case OP_ADD_INT_2ADDR:
+ case OP_SUB_INT_2ADDR:
+ case OP_MUL_INT_2ADDR:
+ case OP_REM_INT_2ADDR:
+ case OP_SHL_INT_2ADDR:
+ case OP_SHR_INT_2ADDR:
+ case OP_USHR_INT_2ADDR:
+ checkBinop2addr(workRegs, insnRegCount, &decInsn,
+ kRegTypeInteger, kRegTypeInteger, kRegTypeInteger, false, &failure);
+ break;
+ case OP_AND_INT_2ADDR:
+ case OP_OR_INT_2ADDR:
+ case OP_XOR_INT_2ADDR:
+ checkBinop2addr(workRegs, insnRegCount, &decInsn,
+ kRegTypeInteger, kRegTypeInteger, kRegTypeInteger, true, &failure);
+ break;
+ case OP_DIV_INT_2ADDR:
+ checkBinop2addr(workRegs, insnRegCount, &decInsn,
+ kRegTypeInteger, kRegTypeInteger, kRegTypeInteger, false, &failure);
+ break;
+ case OP_ADD_LONG_2ADDR:
+ case OP_SUB_LONG_2ADDR:
+ case OP_MUL_LONG_2ADDR:
+ case OP_DIV_LONG_2ADDR:
+ case OP_REM_LONG_2ADDR:
+ case OP_AND_LONG_2ADDR:
+ case OP_OR_LONG_2ADDR:
+ case OP_XOR_LONG_2ADDR:
+ checkBinop2addr(workRegs, insnRegCount, &decInsn,
+ kRegTypeLongLo, kRegTypeLongLo, kRegTypeLongLo, false, &failure);
+ break;
+ case OP_SHL_LONG_2ADDR:
+ case OP_SHR_LONG_2ADDR:
+ case OP_USHR_LONG_2ADDR:
+ checkBinop2addr(workRegs, insnRegCount, &decInsn,
+ kRegTypeLongLo, kRegTypeLongLo, kRegTypeInteger, false, &failure);
+ break;
+ case OP_ADD_FLOAT_2ADDR:
+ case OP_SUB_FLOAT_2ADDR:
+ case OP_MUL_FLOAT_2ADDR:
+ case OP_DIV_FLOAT_2ADDR:
+ case OP_REM_FLOAT_2ADDR:
+ checkBinop2addr(workRegs, insnRegCount, &decInsn,
+ kRegTypeFloat, kRegTypeFloat, kRegTypeFloat, false, &failure);
+ break;
+ case OP_ADD_DOUBLE_2ADDR:
+ case OP_SUB_DOUBLE_2ADDR:
+ case OP_MUL_DOUBLE_2ADDR:
+ case OP_DIV_DOUBLE_2ADDR:
+ case OP_REM_DOUBLE_2ADDR:
+ checkBinop2addr(workRegs, insnRegCount, &decInsn,
+ kRegTypeDoubleLo, kRegTypeDoubleLo, kRegTypeDoubleLo, false,
+ &failure);
+ break;
+ case OP_ADD_INT_LIT16:
+ case OP_RSUB_INT:
+ case OP_MUL_INT_LIT16:
+ case OP_DIV_INT_LIT16:
+ case OP_REM_INT_LIT16:
+ checkLitop(workRegs, insnRegCount, &decInsn,
+ kRegTypeInteger, kRegTypeInteger, false, &failure);
+ break;
+ case OP_AND_INT_LIT16:
+ case OP_OR_INT_LIT16:
+ case OP_XOR_INT_LIT16:
+ checkLitop(workRegs, insnRegCount, &decInsn,
+ kRegTypeInteger, kRegTypeInteger, true, &failure);
+ break;
+ case OP_ADD_INT_LIT8:
+ case OP_RSUB_INT_LIT8:
+ case OP_MUL_INT_LIT8:
+ case OP_DIV_INT_LIT8:
+ case OP_REM_INT_LIT8:
+ case OP_SHL_INT_LIT8:
+ checkLitop(workRegs, insnRegCount, &decInsn,
+ kRegTypeInteger, kRegTypeInteger, false, &failure);
+ break;
+ case OP_SHR_INT_LIT8:
+ tmpType = adjustForRightShift(workRegs, insnRegCount,
+ decInsn.vB, decInsn.vC, false, &failure);
+ checkLitop(workRegs, insnRegCount, &decInsn,
+ tmpType, kRegTypeInteger, false, &failure);
+ break;
+ case OP_USHR_INT_LIT8:
+ tmpType = adjustForRightShift(workRegs, insnRegCount,
+ decInsn.vB, decInsn.vC, true, &failure);
+ checkLitop(workRegs, insnRegCount, &decInsn,
+ tmpType, kRegTypeInteger, false, &failure);
+ break;
+ case OP_AND_INT_LIT8:
+ case OP_OR_INT_LIT8:
+ case OP_XOR_INT_LIT8:
+ checkLitop(workRegs, insnRegCount, &decInsn,
+ kRegTypeInteger, kRegTypeInteger, true, &failure);
+ break;
+
+ /*
+ * This falls into the general category of "optimized" instructions,
+ * which don't generally appear during verification. Because it's
+ * inserted in the course of verification, we can expect to see it here.
+ */
+ case OP_THROW_VERIFICATION_ERROR:
+ break;
+
+ /*
+ * Verifying "quickened" instructions is tricky, because we have
+ * discarded the original field/method information. The byte offsets
+ * and vtable indices only have meaning in the context of an object
+ * instance.
+ *
+ * If a piece of code declares a local reference variable, assigns
+ * null to it, and then issues a virtual method call on it, we
+ * cannot evaluate the method call during verification. This situation
+ * isn't hard to handle, since we know the call will always result in an
+ * NPE, and the arguments and return value don't matter. Any code that
+ * depends on the result of the method call is inaccessible, so the
+ * fact that we can't fully verify anything that comes after the bad
+ * call is not a problem.
+ *
+ * We must also consider the case of multiple code paths, only some of
+ * which involve a null reference. We can completely verify the method
+ * if we sidestep the results of executing with a null reference.
+ * For example, if on the first pass through the code we try to do a
+ * virtual method invocation through a null ref, we have to skip the
+ * method checks and have the method return a "wildcard" type (which
+ * merges with anything to become that other thing). The move-result
+ * will tell us if it's a reference, single-word numeric, or double-word
+ * value. We continue to perform the verification, and at the end of
+ * the function any invocations that were never fully exercised are
+ * marked as null-only.
+ *
+ * We would do something similar for the field accesses. The field's
+ * type, once known, can be used to recover the width of short integers.
+ * If the object reference was null, the field-get returns the "wildcard"
+ * type, which is acceptable for any operation.
+ */
+ case OP_EXECUTE_INLINE:
+ case OP_EXECUTE_INLINE_RANGE:
+ case OP_INVOKE_DIRECT_EMPTY:
+ case OP_IGET_QUICK:
+ case OP_IGET_WIDE_QUICK:
+ case OP_IGET_OBJECT_QUICK:
+ case OP_IPUT_QUICK:
+ case OP_IPUT_WIDE_QUICK:
+ case OP_IPUT_OBJECT_QUICK:
+ case OP_INVOKE_VIRTUAL_QUICK:
+ case OP_INVOKE_VIRTUAL_QUICK_RANGE:
+ case OP_INVOKE_SUPER_QUICK:
+ case OP_INVOKE_SUPER_QUICK_RANGE:
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+
+ /* these should never appear during verification */
+ case OP_UNUSED_3E:
+ case OP_UNUSED_3F:
+ case OP_UNUSED_40:
+ case OP_UNUSED_41:
+ case OP_UNUSED_42:
+ case OP_UNUSED_43:
+ case OP_UNUSED_73:
+ case OP_UNUSED_79:
+ case OP_UNUSED_7A:
+ case OP_BREAKPOINT:
+ case OP_UNUSED_F1:
+ case OP_UNUSED_FF:
+ failure = VERIFY_ERROR_GENERIC;
+ break;
+
+ /*
+ * DO NOT add a "default" clause here. Without it the compiler will
+ * complain if an instruction is missing (which is desirable).
+ */
+ }
+
+ if (!VERIFY_OK(failure)) {
+ if (failure == VERIFY_ERROR_GENERIC || gDvm.optimizing) {
+ /* immediate failure, reject class */
+ LOG_VFY_METH(meth, "VFY: rejecting opcode 0x%02x at 0x%04x\n",
+ decInsn.opCode, insnIdx);
+ goto bail;
+ } else {
+ /* replace opcode and continue on */
+ LOGD("VFY: replacing opcode 0x%02x at 0x%04x\n",
+ decInsn.opCode, insnIdx);
+ if (!replaceFailingInstruction(meth, insnFlags, insnIdx, failure)) {
+ LOG_VFY_METH(meth, "VFY: rejecting opcode 0x%02x at 0x%04x\n",
+ decInsn.opCode, insnIdx);
+ goto bail;
+ }
+ /* IMPORTANT: meth->insns may have been changed */
+ insns = meth->insns + insnIdx;
+
+ /* continue on as if we just handled a throw-verification-error */
+ failure = VERIFY_ERROR_NONE;
+ nextFlags = kInstrCanThrow;
+ }
+ }
+
+ /*
+ * If we didn't just set the result register, clear it out. This
+ * ensures that you can only use "move-result" immediately after the
+ * result is set. (We could check this statically, but it's not
+ * expensive and it makes our debugging output cleaner.)
+ */
+ if (!justSetResult) {
+ int reg = RESULT_REGISTER(insnRegCount);
+ workRegs[reg] = workRegs[reg+1] = kRegTypeUnknown;
+ }
+
+ /*
+ * Handle "continue". Tag the next consecutive instruction.
+ */
+ if ((nextFlags & kInstrCanContinue) != 0) {
+ int insnWidth = dvmInsnGetWidth(insnFlags, insnIdx);
+ if (insnIdx+insnWidth >= insnsSize) {
+ LOG_VFY_METH(meth,
+ "VFY: execution can walk off end of code area (from 0x%x)\n",
+ insnIdx);
+ goto bail;
+ }
+
+ /*
+ * The only way to get to a move-exception instruction is to get
+ * thrown there. Make sure the next instruction isn't one.
+ */
+ if (!checkMoveException(meth, insnIdx+insnWidth, "next"))
+ goto bail;
+
+ if (getRegisterLine(regTable, insnIdx+insnWidth) != NULL) {
+ /*
+ * Merge registers into what we have for the next instruction,
+ * and set the "changed" flag if needed.
+ */
+ updateRegisters(meth, insnFlags, regTable, insnIdx+insnWidth,
+ workRegs);
+ } else {
+ /*
+ * We're not recording register data for the next instruction,
+ * so we don't know what the prior state was. We have to
+ * assume that something has changed and re-evaluate it.
+ */
+ dvmInsnSetChanged(insnFlags, insnIdx+insnWidth, true);
+ }
+ }
+
+ /*
+ * Handle "branch". Tag the branch target.
+ *
+ * NOTE: instructions like OP_EQZ provide information about the state
+ * of the register when the branch is taken or not taken. For example,
+ * somebody could get a reference field, check it for zero, and if the
+ * branch is taken immediately store that register in a boolean field
+ * since the value is known to be zero. We do not currently account for
+ * that, and will reject the code.
+ */
+ if ((nextFlags & kInstrCanBranch) != 0) {
+ bool isConditional;
+
+ if (!dvmGetBranchTarget(meth, insnFlags, insnIdx, &branchTarget,
+ &isConditional))
+ {
+ /* should never happen after static verification */
+ LOG_VFY_METH(meth, "VFY: bad branch at %d\n", insnIdx);
+ goto bail;
+ }
+ assert(isConditional || (nextFlags & kInstrCanContinue) == 0);
+ assert(!isConditional || (nextFlags & kInstrCanContinue) != 0);
+
+ if (!checkMoveException(meth, insnIdx+branchTarget, "branch"))
+ goto bail;
+
+ /* update branch target, set "changed" if appropriate */
+ updateRegisters(meth, insnFlags, regTable, insnIdx+branchTarget,
+ workRegs);
+ }
+
+ /*
+ * Handle "switch". Tag all possible branch targets.
+ *
+ * We've already verified that the table is structurally sound, so we
+ * just need to walk through and tag the targets.
+ */
+ if ((nextFlags & kInstrCanSwitch) != 0) {
+ int offsetToSwitch = insns[1] | (((s4)insns[2]) << 16);
+ const u2* switchInsns = insns + offsetToSwitch;
+ int switchCount = switchInsns[1];
+ int offsetToTargets, targ;
+
+ if ((*insns & 0xff) == OP_PACKED_SWITCH) {
+ /* 0=sig, 1=count, 2/3=firstKey */
+ offsetToTargets = 4;
+ } else {
+ /* 0=sig, 1=count, 2..count*2 = keys */
+ assert((*insns & 0xff) == OP_SPARSE_SWITCH);
+ offsetToTargets = 2 + 2*switchCount;
+ }
+
+ /* verify each switch target */
+ for (targ = 0; targ < switchCount; targ++) {
+ int offset, absOffset;
+
+ /* offsets are 32-bit, and only partly endian-swapped */
+ offset = switchInsns[offsetToTargets + targ*2] |
+ (((s4) switchInsns[offsetToTargets + targ*2 +1]) << 16);
+ absOffset = insnIdx + offset;
+
+ assert(absOffset >= 0 && absOffset < insnsSize);
+
+ if (!checkMoveException(meth, absOffset, "switch"))
+ goto bail;
+
+ updateRegisters(meth, insnFlags, regTable, absOffset, workRegs);
+ }
+ }
+
+ /*
+ * Handle instructions that can throw and that are sitting in a
+ * "try" block. (If they're not in a "try" block when they throw,
+ * control transfers out of the method.)
+ */
+ if ((nextFlags & kInstrCanThrow) != 0 && dvmInsnIsInTry(insnFlags, insnIdx))
+ {
+ const DexCode* pCode = dvmGetMethodCode(meth);
+ DexCatchIterator iterator;
+
+ if (dexFindCatchHandler(&iterator, pCode, insnIdx)) {
+ for (;;) {
+ DexCatchHandler* handler = dexCatchIteratorNext(&iterator);
+
+ if (handler == NULL) {
+ break;
+ }
+
+ /* note we use entryRegs, not workRegs */
+ updateRegisters(meth, insnFlags, regTable, handler->address,
+ entryRegs);
+ }
+ }
+ }
+
+ /*
+ * Update startGuess. Advance to the next instruction of that's
+ * possible, otherwise use the branch target if one was found. If
+ * neither of those exists we're in a return or throw; leave startGuess
+ * alone and let the caller sort it out.
+ */
+ if ((nextFlags & kInstrCanContinue) != 0) {
+ *pStartGuess = insnIdx + dvmInsnGetWidth(insnFlags, insnIdx);
+ } else if ((nextFlags & kInstrCanBranch) != 0) {
+ /* we're still okay if branchTarget is zero */
+ *pStartGuess = insnIdx + branchTarget;
+ }
+
+ assert(*pStartGuess >= 0 && *pStartGuess < insnsSize &&
+ dvmInsnGetWidth(insnFlags, *pStartGuess) != 0);
+
+ result = true;
+
+bail:
+ return result;
+}
+
+
+/*
+ * callback function used in dumpRegTypes to print local vars
+ * valid at a given address.
+ */
+static void logLocalsCb(void *cnxt, u2 reg, u4 startAddress, u4 endAddress,
+ const char *name, const char *descriptor,
+ const char *signature)
+{
+ int addr = *((int *)cnxt);
+
+ if (addr >= (int) startAddress && addr < (int) endAddress)
+ {
+ LOGI(" %2d: '%s' %s\n", reg, name, descriptor);
+ }
+}
+
+/*
+ * Dump the register types for the specifed address to the log file.
+ */
+static void dumpRegTypes(const Method* meth, const InsnFlags* insnFlags,
+ const RegType* addrRegs, int addr, const char* addrName,
+ const UninitInstanceMap* uninitMap, int displayFlags)
+{
+ int regCount = meth->registersSize;
+ int fullRegCount = regCount + kExtraRegs;
+ bool branchTarget = dvmInsnIsBranchTarget(insnFlags, addr);
+ int i;
+
+ assert(addr >= 0 && addr < (int) dvmGetMethodInsnsSize(meth));
+
+ int regCharSize = fullRegCount + (fullRegCount-1)/4 + 2 +1;
+ char regChars[regCharSize +1];
+ memset(regChars, ' ', regCharSize);
+ regChars[0] = '[';
+ if (regCount == 0)
+ regChars[1] = ']';
+ else
+ regChars[1 + (regCount-1) + (regCount-1)/4 +1] = ']';
+ regChars[regCharSize] = '\0';
+
+ //const RegType* addrRegs = getRegisterLine(regTable, addr);
+
+ for (i = 0; i < regCount + kExtraRegs; i++) {
+ char tch;
+
+ switch (addrRegs[i]) {
+ case kRegTypeUnknown: tch = '.'; break;
+ case kRegTypeConflict: tch = 'X'; break;
+ case kRegTypeFloat: tch = 'F'; break;
+ case kRegTypeZero: tch = '0'; break;
+ case kRegTypeOne: tch = '1'; break;
+ case kRegTypeBoolean: tch = 'Z'; break;
+ case kRegTypePosByte: tch = 'b'; break;
+ case kRegTypeByte: tch = 'B'; break;
+ case kRegTypePosShort: tch = 's'; break;
+ case kRegTypeShort: tch = 'S'; break;
+ case kRegTypeChar: tch = 'C'; break;
+ case kRegTypeInteger: tch = 'I'; break;
+ case kRegTypeLongLo: tch = 'J'; break;
+ case kRegTypeLongHi: tch = 'j'; break;
+ case kRegTypeDoubleLo: tch = 'D'; break;
+ case kRegTypeDoubleHi: tch = 'd'; break;
+ default:
+ if (regTypeIsReference(addrRegs[i])) {
+ if (regTypeIsUninitReference(addrRegs[i]))
+ tch = 'U';
+ else
+ tch = 'L';
+ } else {
+ tch = '*';
+ assert(false);
+ }
+ break;
+ }
+
+ if (i < regCount)
+ regChars[1 + i + (i/4)] = tch;
+ else
+ regChars[1 + i + (i/4) + 2] = tch;
+ }
+
+ if (addr == 0 && addrName != NULL)
+ LOGI("%c%s %s\n", branchTarget ? '>' : ' ', addrName, regChars);
+ else
+ LOGI("%c0x%04x %s\n", branchTarget ? '>' : ' ', addr, regChars);
+
+ if (displayFlags & DRT_SHOW_REF_TYPES) {
+ for (i = 0; i < regCount + kExtraRegs; i++) {
+ if (regTypeIsReference(addrRegs[i]) && addrRegs[i] != kRegTypeZero)
+ {
+ ClassObject* clazz;
+
+ clazz = regTypeReferenceToClass(addrRegs[i], uninitMap);
+ assert(dvmValidateObject((Object*)clazz));
+ if (i < regCount) {
+ LOGI(" %2d: 0x%08x %s%s\n",
+ i, addrRegs[i],
+ regTypeIsUninitReference(addrRegs[i]) ? "[U]" : "",
+ clazz->descriptor);
+ } else {
+ LOGI(" RS: 0x%08x %s%s\n",
+ addrRegs[i],
+ regTypeIsUninitReference(addrRegs[i]) ? "[U]" : "",
+ clazz->descriptor);
+ }
+ }
+ }
+ }
+ if (displayFlags & DRT_SHOW_LOCALS) {
+ dexDecodeDebugInfo(meth->clazz->pDvmDex->pDexFile,
+ dvmGetMethodCode(meth),
+ meth->clazz->descriptor,
+ meth->prototype.protoIdx,
+ meth->accessFlags,
+ NULL, logLocalsCb, &addr);
+ }
+}