summaryrefslogtreecommitdiff
path: root/nn/runtime/test/fuzzing/TestRandomGraph.cpp
blob: e668bf9a80e50d37e9d922966d956312a805e6d5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
/*
 * Copyright (C) 2019 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <gtest/gtest.h>

#include <algorithm>
#include <string>

#include "TestNeuralNetworksWrapper.h"
#include "fuzzing/OperationManager.h"
#include "fuzzing/RandomGraphGenerator.h"
#include "fuzzing/RandomGraphGeneratorUtils.h"

#ifndef NNTEST_CTS
#include <android-base/properties.h>
#include <vector>
#include "Manager.h"
#include "SampleDriverFull.h"

using android::nn::sample_driver::SampleDriverFull;

#endif

namespace android {
namespace nn {
namespace fuzzing_test {

using test_wrapper::Result;
constexpr char kRefDeviceName[] = "nnapi-reference";

#ifndef NNTEST_CTS
class TestDriverV1_2 : public SampleDriverFull {
   public:
    TestDriverV1_2() : SampleDriverFull(name, {.execTime = 0.9f, .powerUsage = 0.9f}) {}
    static constexpr char name[] = "TestDriverV1_2";
};

// Like SampleDriverFull, but implementing 1.1
class TestDriverV1_1 : public V1_1::IDevice {
   public:
    TestDriverV1_1()
        : mDriverV1_2(new SampleDriverFull(name, {.execTime = 0.8f, .powerUsage = 0.8f})) {}
    static constexpr char name[] = "TestDriverV1_1";
    Return<void> getCapabilities_1_1(getCapabilities_1_1_cb _hidl_cb) override {
        return mDriverV1_2->getCapabilities_1_1(_hidl_cb);
    }
    Return<void> getSupportedOperations_1_1(const V1_1::Model& model,
                                            getSupportedOperations_1_1_cb _hidl_cb) override {
        return mDriverV1_2->getSupportedOperations_1_1(model, _hidl_cb);
    }
    Return<ErrorStatus> prepareModel_1_1(
            const V1_1::Model& model, ExecutionPreference preference,
            const sp<V1_0::IPreparedModelCallback>& actualCallback) override {
        return mDriverV1_2->prepareModel_1_1(model, preference, actualCallback);
    }
    Return<DeviceStatus> getStatus() override { return mDriverV1_2->getStatus(); }
    Return<void> getCapabilities(getCapabilities_cb _hidl_cb) override {
        return mDriverV1_2->getCapabilities(_hidl_cb);
    }
    Return<void> getSupportedOperations(const V1_0::Model& model,
                                        getSupportedOperations_cb _hidl_cb) override {
        return mDriverV1_2->getSupportedOperations(model, _hidl_cb);
    }
    Return<ErrorStatus> prepareModel(
            const V1_0::Model& model,
            const sp<V1_0::IPreparedModelCallback>& actualCallback) override {
        return mDriverV1_2->prepareModel(model, actualCallback);
    }

   private:
    const sp<V1_2::IDevice> mDriverV1_2;
};

// Like SampleDriverFull, but implementing 1.0
class TestDriverV1_0 : public V1_0::IDevice {
   public:
    TestDriverV1_0()
        : mDriverV1_2(new SampleDriverFull(name, {.execTime = 0.7f, .powerUsage = 0.7f})) {}
    static constexpr char name[] = "TestDriverV1_0";
    Return<void> getCapabilities(getCapabilities_cb _hidl_cb) override {
        return mDriverV1_2->getCapabilities(_hidl_cb);
    }
    Return<void> getSupportedOperations(const V1_0::Model& model,
                                        getSupportedOperations_cb _hidl_cb) override {
        return mDriverV1_2->getSupportedOperations(model, _hidl_cb);
    }
    Return<ErrorStatus> prepareModel(
            const V1_0::Model& model,
            const sp<V1_0::IPreparedModelCallback>& actualCallback) override {
        return mDriverV1_2->prepareModel(model, actualCallback);
    }
    Return<DeviceStatus> getStatus() override { return mDriverV1_2->getStatus(); }

   private:
    const sp<V1_2::IDevice> mDriverV1_2;
};

template <class T_TestDriver>
std::shared_ptr<Device> makeTestDevice() {
    return DeviceManager::forTest_makeDriverDevice(T_TestDriver::name, new T_TestDriver);
}

#endif

// Manages compilation on one single device.
class CompilationForDevice : public test_wrapper::Compilation {
   public:
    CompilationForDevice() = default;
    CompilationForDevice(const CompilationForDevice&) = delete;
    CompilationForDevice& operator=(const CompilationForDevice&) = delete;

    bool initialize(const test_wrapper::Model* model, const ANeuralNetworksDevice* device) {
        int ret = ANeuralNetworksCompilation_createForDevices(model->getHandle(), &device, 1,
                                                              &mCompilation);
        return ret == ANEURALNETWORKS_NO_ERROR;
    }
};

// NN API fuzzer logging setting comes from system property debug.nn.fuzzer.log and
// debug.nn.fuzzer.dumpspec.
// * setprop debug.nn.fuzzer.log 1 : enable logging.
// * setprop debug.nn.fuzzer.log 0 : silence logging.
// * setprop debug.nn.fuzzer.dumpspec 1 : dump the randomly generated graph to a spec file.
// * setprop debug.nn.fuzzer.dumpspec 0 : do not dump the graph.
//
// Logs and spec files are dumped to /data/local/tmp/${testname}.{log,mod.py},
// e.g. for test case TestRandomGraph/RandomGraphTest/Large/0,
//      log : /data/local/tmp/TestRandomGraph_RandomGraphTest_Large_0.log
//      spec: /data/local/tmp/TestRandomGraph_RandomGraphTest_Large_0.mod.py
//
class RandomGraphTest : public ::testing::TestWithParam<uint32_t> {
   public:
    static void SetUpTestCase() {
#ifndef NNTEST_CTS
        mEnableLog = ::android::base::GetProperty("debug.nn.fuzzer.log", "") == "1";
        mDumpSpec = ::android::base::GetProperty("debug.nn.fuzzer.dumpspec", "") == "1";

        mStandardDevices = DeviceManager::get()->forTest_getDevices();
        mSyntheticDevices.push_back(makeTestDevice<TestDriverV1_2>());
        mSyntheticDevices.push_back(makeTestDevice<TestDriverV1_1>());
        mSyntheticDevices.push_back(makeTestDevice<TestDriverV1_0>());
#endif

        // Get all the devices and device names.
        mStandardDevicesFeatureLevel = __ANDROID_API_FUTURE__;
        uint32_t numDevices = 0;
        ASSERT_EQ(ANeuralNetworks_getDeviceCount(&numDevices), ANEURALNETWORKS_NO_ERROR);
        for (uint32_t i = 0; i < numDevices; i++) {
            ANeuralNetworksDevice* device = nullptr;
            const char* name = nullptr;
            int64_t featureLevel;
            ASSERT_EQ(ANeuralNetworks_getDevice(i, &device), ANEURALNETWORKS_NO_ERROR);
            ASSERT_EQ(ANeuralNetworksDevice_getName(device, &name), ANEURALNETWORKS_NO_ERROR);
            ASSERT_EQ(ANeuralNetworksDevice_getFeatureLevel(device, &featureLevel),
                      ANEURALNETWORKS_NO_ERROR);
            mDevices.emplace(name, device);
            mStandardDevicesFeatureLevel = std::min(mStandardDevicesFeatureLevel, featureLevel);
        }
    }

   protected:
    virtual void SetUp() override {
        // Initialize logging.
        const ::testing::TestInfo* const testInfo =
                ::testing::UnitTest::GetInstance()->current_test_info();
        mTestName = mTestName + testInfo->test_case_name() + "_" + testInfo->name();
        std::replace(mTestName.begin(), mTestName.end(), '/', '_');
        if (mEnableLog) NN_FUZZER_LOG_INIT("/data/local/tmp/" + mTestName + ".log");
    }

    virtual void TearDown() override {
        if (::testing::Test::HasFailure() || mDumpSpec) {
            mGraph.dumpSpecFile("/data/local/tmp/" + mTestName + ".mod.py", mTestName);
        }
        NN_FUZZER_LOG_CLOSE;
    }

    bool shouldSkipTest(int64_t featureLevel) {
        static const std::set<std::string> kDisabledTests = {
                // In this test, the RGG produces a non-sensible graph with extreme large output
                // gain and highly clamped output range.
                // TODO: Currently quantized buffer values are uniformly distributed within
                //       [0, 255]. We should investigate on a better buffer value generation
                //       algorithm that represents the real-world cases.
                "TestRandomGraph_SingleOperationTest_CONV_2D_V1_2_12",
        };
        if (kDisabledTests.find(mTestName) != kDisabledTests.end()) return true;
        const auto& operations = mGraph.getOperations();
        for (const auto& op : operations) {
            // Skip if testing BATCH_TO_SPACE_ND with batch dimension == 1 on pre-Q drivers.
            if (op.opType == ANEURALNETWORKS_BATCH_TO_SPACE_ND &&
                op.inputs[0]->dimensions[0].getValue() == 1 && featureLevel < __ANDROID_API_Q__)
                return true;

            // We have a bug in the reference implementation of INSTANCE_NORMALIZATION.
            if (op.opType == ANEURALNETWORKS_INSTANCE_NORMALIZATION) return true;

            // We have a bug in the reference implementation of quantized L2_NORMALIZATION.
            if (op.opType == ANEURALNETWORKS_L2_NORMALIZATION &&
                op.inputs[0]->dataType == test_wrapper::Type::TENSOR_QUANT8_ASYMM)
                return true;
        }
        return false;
    }

    // Compile and execute the generated graph on a device selected by name.
    void computeAndVerifyResultsForDevice(const test_wrapper::Model* model, uint32_t numOps,
                                          const std::string& name) {
        SCOPED_TRACE("Device: " + name);
        ASSERT_TRUE(mDevices.find(name) != mDevices.end());
        const auto device = mDevices[name];
        bool isRef = name.compare(kRefDeviceName) == 0;

        // Check if the device fully supports the graph.
        constexpr int kMaxNumberOperations = 1000;
        ASSERT_TRUE(numOps <= kMaxNumberOperations);
        bool supported[kMaxNumberOperations] = {false};
        ASSERT_EQ(ANeuralNetworksModel_getSupportedOperationsForDevices(model->getHandle(), &device,
                                                                        1, supported),
                  ANEURALNETWORKS_NO_ERROR);
        if (!std::all_of(supported, supported + numOps, [](bool v) { return v; })) {
            // The reference device should always support all operations.
            ASSERT_FALSE(isRef);
            std::cout << "[          ]   SKIP: " << name << " does not support the graph.\n";
            return;
        }

        // Since this test is introduced in Android Q, we only assert no compilation or execution
        // failure if the device has feature level >= Q (API level 29). For pre-Q devices, we allow
        // them to fail with OP_FAILED, but must not hang or crash.
        int64_t featureLevel;
        ASSERT_EQ(ANeuralNetworksDevice_getFeatureLevel(device, &featureLevel),
                  ANEURALNETWORKS_NO_ERROR);
        if (shouldSkipTest(featureLevel)) return;

        // Create compilation for device.
        CompilationForDevice compilation;
        ASSERT_TRUE(compilation.initialize(model, device));
        Result compileReturn = compilation.finish();
        // Even if the model is fully supported, the compilation may still fail, e.g. each operation
        // is supported, but model is too big (too many operations and/or too-large constants) for
        // device.
        if (compileReturn == Result::OP_FAILED) {
            ASSERT_FALSE(isRef);
            std::cout << "[          ]   SKIP: " << name << " failed at compilation step.\n";
            return;
        }
        ASSERT_EQ(compileReturn, Result::NO_ERROR);

        // Create request.
        test_wrapper::Execution execution(&compilation);
        std::vector<OperandBuffer> outputs;
        if (isRef) {
            mGraph.createRequest(&execution);
        } else {
            mGraph.createRequest(&execution, &outputs);
        }

        // Compute result.
        Result executeReturn = execution.compute();
        // Even if the model is fully supported and the compilation succeeds, the execution may
        // still fail, e.g. there may be operand shapes that are unknown until execution time, and
        // at execution time turn out to be too big.
        if (executeReturn == Result::OP_FAILED) {
            ASSERT_FALSE(isRef);
            std::cout << "[          ]   SKIP: " << name << " failed at execution step.\n";
            return;
        }
        ASSERT_EQ(executeReturn, Result::NO_ERROR);
        if (featureLevel >= __ANDROID_API_Q__ && !isRef) {
            mGraph.checkResults(outputs, mCriteria);
        }
    }

    // Compile and execute the generated graph normally (i.e., allow runtime to
    // distribute across devices).
    void computeAndVerifyResults(const test_wrapper::Model* model, bool checkResults) {
        // Because we're not using the introspection/control API, the CpuDevice
        // is available as a fallback, and hence we assume that compilation and
        // execution will succeed.

        // Create compilation.
        test_wrapper::Compilation compilation(model);
        ASSERT_EQ(compilation.finish(), Result::NO_ERROR);

        // Create request.
        test_wrapper::Execution execution(&compilation);
        std::vector<OperandBuffer> outputs;
        mGraph.createRequest(&execution, &outputs);

        // Compute and verify result.
        ASSERT_EQ(execution.compute(), Result::NO_ERROR);
        if (checkResults) {
            mGraph.checkResults(outputs, mCriteria);
        }
    }

    // Main test entrance.
    void testRandomGraph(uint32_t numOperations, uint32_t dimensionRange) {
        // Generate a random graph.
        ASSERT_TRUE(mGraph.generate(kSeed, numOperations, dimensionRange));

        // Create a model from the random graph.
        test_wrapper::Model model;
        mGraph.createModel(&model);
        ASSERT_TRUE(model.isValid());
        ASSERT_EQ(model.finish(), Result::NO_ERROR);

        // Compute reference result.
        computeAndVerifyResultsForDevice(&model, numOperations, kRefDeviceName);

        // Compute on each available device.
        for (auto& pair : mDevices) {
            // Skip the nnapi reference device.
            if (pair.first.compare(kRefDeviceName) == 0) continue;
            computeAndVerifyResultsForDevice(&model, numOperations, pair.first);
        }

        if (numOperations > 1) {
            if (!shouldSkipTest(mStandardDevicesFeatureLevel)) {
                // Compute normally (i.e., allow runtime to distribute across
                // devices).
                SCOPED_TRACE("Compute normally");
                computeAndVerifyResults(&model, mStandardDevicesFeatureLevel >= __ANDROID_API_Q__);
            }

#ifndef NNTEST_CTS
            {
                // Stress partitioner by allowing runtime to distribute across
                // three synthetic devices.  The synthetic devices use the
                // CpuExecutor for execution, so we always check results, even
                // though some are of feature level < __ANDROID_API_Q__: In this
                // case, we don't take feature level as an indication of
                // reliability, as we do with real devices.
                SCOPED_TRACE("Compute across synthetic devices");
                DeviceManager::get()->forTest_setDevices(mSyntheticDevices);
                computeAndVerifyResults(&model, true);
                DeviceManager::get()->forTest_setDevices(mStandardDevices);
            }
#endif
        }
    }

    enum GraphSize : uint32_t { SINGLE = 1, SMALL = 5, LARGE = 40 };
    enum DimensionRange : uint32_t { NARROW = 10, WIDE = 1000 };

    static bool mEnableLog;
    static bool mDumpSpec;
    static std::map<std::string, ANeuralNetworksDevice*> mDevices;

    const uint32_t kSeed = GetParam();
    std::string mTestName;
    RandomGraph mGraph;
    AccuracyCriteria mCriteria;

    static int64_t mStandardDevicesFeatureLevel;  // minimum across all devices
#ifndef NNTEST_CTS
    static std::vector<std::shared_ptr<Device>> mStandardDevices;
    static std::vector<std::shared_ptr<Device>> mSyntheticDevices;
#endif
};

bool RandomGraphTest::mEnableLog = false;
bool RandomGraphTest::mDumpSpec = false;
std::map<std::string, ANeuralNetworksDevice*> RandomGraphTest::mDevices;

int64_t RandomGraphTest::mStandardDevicesFeatureLevel;
#ifndef NNTEST_CTS
std::vector<std::shared_ptr<Device>> RandomGraphTest::mStandardDevices;
std::vector<std::shared_ptr<Device>> RandomGraphTest::mSyntheticDevices;
#endif

// Single-op graph with dimensions in range [1, 1000].
class SingleOperationTest : public RandomGraphTest {};
#define TEST_SINGLE_OPERATION(operation, halVersion, criteria)              \
    TEST_P(SingleOperationTest, operation##_##halVersion) {                 \
        OperationFilter filter = {.opcodes = {ANEURALNETWORKS_##operation}, \
                                  .versions = {HalVersion::halVersion}};    \
        OperationManager::get()->applyFilter(filter);                       \
        mCriteria = (criteria);                                             \
        testRandomGraph(GraphSize::SINGLE, DimensionRange::WIDE);           \
    }

// TODO: Adjust the accuracy criteria based on testing.
// We define three sets of accuracy criteria for single-operation tests.

// This is for operations that only copy buffers around without any computation on buffer values.
// Most of these operations fall into categories of reshape or selection, e.g. RESHAPE, GATHER.
// Additionally, operations with only logical or comparison arithmetic also use this criteria, e.g.
// EQUAL, ARGMAX, TOPK_V2.
const AccuracyCriteria kStrictCriteria = {
        .float32 = {.atol = 1e-6f, .rtol = 1e-6f, .bias = 1e-7f, .mse = 1e-10f},
        .float16 = {.atol = 1e-3f, .rtol = 1e-3f, .bias = 1e-4f, .mse = 1e-8f},
        .int32 = {.atol = 1},
        .quant8Asymm = {.atol = 1, .bias = 0.1f, .mse = 0.1f},
        .quant8Symm = {.atol = 1, .bias = 0.1f, .mse = 0.1f},
        .quant16Asymm = {.atol = 1, .bias = 0.1f, .mse = 0.1f},
        .quant16Symm = {.atol = 1, .bias = 0.1f, .mse = 0.1f}};

// This is for operations that only do simple and single computation on buffer values, such as
// addition, multiplication, or requantization. Most of these operations fall into categories of
// broadcast or elementwise, e.g ADD, FLOOR.
const AccuracyCriteria kMediumCriteria = {
        .float32 = {.atol = 1e-5f, .rtol = 1e-5f, .bias = 1e-6f, .mse = 1e-8f},
        .float16 = {.atol = 1e-2f, .rtol = 1e-2f, .bias = 1e-3f, .mse = 1e-5f},
        .int32 = {.atol = 1},
        .quant8Asymm = {.atol = 2, .bias = 1.2, .mse = 1.2},
        .quant8Symm = {.atol = 2, .bias = 1.2, .mse = 1.2},
        .quant16Asymm = {.atol = 2, .bias = 1.2, .mse = 1.2},
        .quant16Symm = {.atol = 2, .bias = 1.2, .mse = 1.2}};

// This is for operations that involve sophisticated computations on buffer values, either a single
// but complex transformation, e.g. LOGISTIC, or multiple transformations with accumulated errors,
// e.g. L2_NORMALIZATION, REDUCE_*.
const AccuracyCriteria kRelaxedCriteria = {
        .float32 = {.atol = 1e-3f, .rtol = 1e-3f, .bias = 3e-5f, .mse = 1e-6f},
        .float16 = {.atol = 1.0f, .rtol = 1.0f, .bias = 5e-3f, .mse = 1e-3f},
        .int32 = {.atol = 1},
        .quant8Asymm = {.atol = 10, .bias = 1.5, .mse = 1.5},
        .quant8Symm = {.atol = 10, .bias = 1.5, .mse = 1.5},
        .quant16Asymm = {.atol = 10, .bias = 1.5, .mse = 1.5},
        .quant16Symm = {.atol = 10, .bias = 1.5, .mse = 1.5}};

// This is for convolution operations with potentially large kernel size.
const AccuracyCriteria kConvCriteria = {
        .float32 = {.atol = 2e-2f, .rtol = 2e-2f, .bias = 4e-4f, .mse = 1e-5f},
        .float16 = {.atol = 1.0f, .rtol = 1.0f, .bias = 5e-2f, .mse = 1e-2f},
        .int32 = {.atol = 1},
        .quant8Asymm = {.atol = 10, .bias = 1.5, .mse = 1.5},
        .quant8Symm = {.atol = 10, .bias = 1.5, .mse = 1.5},
        .quant16Asymm = {.atol = 10, .bias = 1.5, .mse = 1.5},
        .quant16Symm = {.atol = 10, .bias = 1.5, .mse = 1.5}};

/*-- NNAPI 1.0 Operations ---------------------------------------------------*/

// TODO: The following 1.0 operation signatures are currently not defined:
// - ANEURALNETWORKS_LSH_PROJECTION
// - ANEURALNETWORKS_LSTM
// - ANEURALNETWORKS_RNN
// - ANEURALNETWORKS_SVDF

TEST_SINGLE_OPERATION(ADD, V1_0, kMediumCriteria);
TEST_SINGLE_OPERATION(MUL, V1_0, kMediumCriteria);
TEST_SINGLE_OPERATION(FLOOR, V1_0, kMediumCriteria);
TEST_SINGLE_OPERATION(LOGISTIC, V1_0, kRelaxedCriteria);
TEST_SINGLE_OPERATION(RELU, V1_0, kMediumCriteria);
TEST_SINGLE_OPERATION(RELU1, V1_0, kMediumCriteria);
TEST_SINGLE_OPERATION(RELU6, V1_0, kMediumCriteria);
TEST_SINGLE_OPERATION(TANH, V1_0, kRelaxedCriteria);
TEST_SINGLE_OPERATION(SOFTMAX, V1_0, kRelaxedCriteria);
TEST_SINGLE_OPERATION(L2_NORMALIZATION, V1_0, kRelaxedCriteria);
TEST_SINGLE_OPERATION(LOCAL_RESPONSE_NORMALIZATION, V1_0, kRelaxedCriteria);
TEST_SINGLE_OPERATION(AVERAGE_POOL_2D, V1_0, kRelaxedCriteria);
TEST_SINGLE_OPERATION(L2_POOL_2D, V1_0, kRelaxedCriteria);
TEST_SINGLE_OPERATION(MAX_POOL_2D, V1_0, kRelaxedCriteria);
TEST_SINGLE_OPERATION(CONV_2D, V1_0, kConvCriteria);
TEST_SINGLE_OPERATION(DEPTHWISE_CONV_2D, V1_0, kConvCriteria);
TEST_SINGLE_OPERATION(CONCATENATION, V1_0, kMediumCriteria);
TEST_SINGLE_OPERATION(RESIZE_BILINEAR, V1_0, kRelaxedCriteria);
TEST_SINGLE_OPERATION(DEPTH_TO_SPACE, V1_0, kStrictCriteria);
TEST_SINGLE_OPERATION(SPACE_TO_DEPTH, V1_0, kStrictCriteria);
TEST_SINGLE_OPERATION(EMBEDDING_LOOKUP, V1_0, kStrictCriteria);
TEST_SINGLE_OPERATION(HASHTABLE_LOOKUP, V1_0, kStrictCriteria);
TEST_SINGLE_OPERATION(FULLY_CONNECTED, V1_0, kRelaxedCriteria);
TEST_SINGLE_OPERATION(RESHAPE, V1_0, kStrictCriteria);
TEST_SINGLE_OPERATION(DEQUANTIZE, V1_0, kMediumCriteria);

/*-- NNAPI 1.1 Operations ---------------------------------------------------*/

TEST_SINGLE_OPERATION(SUB, V1_1, kMediumCriteria);
TEST_SINGLE_OPERATION(DIV, V1_1, kRelaxedCriteria);
TEST_SINGLE_OPERATION(BATCH_TO_SPACE_ND, V1_1, kStrictCriteria);
TEST_SINGLE_OPERATION(SPACE_TO_BATCH_ND, V1_1, kStrictCriteria);
TEST_SINGLE_OPERATION(MEAN, V1_1, kRelaxedCriteria);
TEST_SINGLE_OPERATION(PAD, V1_1, kStrictCriteria);
TEST_SINGLE_OPERATION(TRANSPOSE, V1_1, kStrictCriteria);
TEST_SINGLE_OPERATION(SQUEEZE, V1_1, kStrictCriteria);
TEST_SINGLE_OPERATION(STRIDED_SLICE, V1_1, kStrictCriteria);

/*-- NNAPI 1.0 and 1.1 Operations with Extended Behavior in 1.2 -------------*/

TEST_SINGLE_OPERATION(ADD, V1_2, kMediumCriteria);
TEST_SINGLE_OPERATION(MUL, V1_2, kMediumCriteria);
TEST_SINGLE_OPERATION(SUB, V1_2, kMediumCriteria);
TEST_SINGLE_OPERATION(DIV, V1_2, kRelaxedCriteria);
TEST_SINGLE_OPERATION(FLOOR, V1_2, kMediumCriteria);
TEST_SINGLE_OPERATION(LOGISTIC, V1_2, kRelaxedCriteria);
TEST_SINGLE_OPERATION(RELU, V1_2, kMediumCriteria);
TEST_SINGLE_OPERATION(RELU1, V1_2, kMediumCriteria);
TEST_SINGLE_OPERATION(RELU6, V1_2, kMediumCriteria);
TEST_SINGLE_OPERATION(TANH, V1_2, kRelaxedCriteria);
TEST_SINGLE_OPERATION(CONCATENATION, V1_2, kMediumCriteria);
TEST_SINGLE_OPERATION(DEPTH_TO_SPACE, V1_2, kStrictCriteria);
TEST_SINGLE_OPERATION(SPACE_TO_DEPTH, V1_2, kStrictCriteria);
TEST_SINGLE_OPERATION(BATCH_TO_SPACE_ND, V1_2, kStrictCriteria);
TEST_SINGLE_OPERATION(SPACE_TO_BATCH_ND, V1_2, kStrictCriteria);
TEST_SINGLE_OPERATION(FULLY_CONNECTED, V1_2, kRelaxedCriteria);
TEST_SINGLE_OPERATION(RESHAPE, V1_2, kStrictCriteria);
TEST_SINGLE_OPERATION(MEAN, V1_2, kRelaxedCriteria);
TEST_SINGLE_OPERATION(PAD, V1_2, kStrictCriteria);
TEST_SINGLE_OPERATION(TRANSPOSE, V1_2, kStrictCriteria);
TEST_SINGLE_OPERATION(CONV_2D, V1_2, kConvCriteria);
TEST_SINGLE_OPERATION(DEPTHWISE_CONV_2D, V1_2, kConvCriteria);
TEST_SINGLE_OPERATION(AVERAGE_POOL_2D, V1_2, kRelaxedCriteria);
TEST_SINGLE_OPERATION(L2_POOL_2D, V1_2, kRelaxedCriteria);
TEST_SINGLE_OPERATION(MAX_POOL_2D, V1_2, kRelaxedCriteria);
TEST_SINGLE_OPERATION(RESIZE_BILINEAR, V1_2, kRelaxedCriteria);
TEST_SINGLE_OPERATION(SOFTMAX, V1_2, kRelaxedCriteria);
TEST_SINGLE_OPERATION(L2_NORMALIZATION, V1_2, kRelaxedCriteria);
TEST_SINGLE_OPERATION(LOCAL_RESPONSE_NORMALIZATION, V1_2, kRelaxedCriteria);
TEST_SINGLE_OPERATION(DEQUANTIZE, V1_2, kMediumCriteria);
TEST_SINGLE_OPERATION(SQUEEZE, V1_2, kStrictCriteria);
TEST_SINGLE_OPERATION(STRIDED_SLICE, V1_2, kStrictCriteria);

/*-- NNAPI 1.2 Operations ---------------------------------------------------*/

// TODO: The following 1.2 operation signatures are currently not defined:
// - ANEURALNETWORKS_AXIS_ALIGNED_BBOX_TRANSFORM
// - ANEURALNETWORKS_BIDIRECTIONAL_SEQUENCE_LSTM
// - ANEURALNETWORKS_BIDIRECTIONAL_SEQUENCE_RNN
// - ANEURALNETWORKS_BOX_WITH_NMS_LIMIT
// - ANEURALNETWORKS_DETECTION_POSTPROCESSING
// - ANEURALNETWORKS_GENERATE_PROPOSALS
// - ANEURALNETWORKS_QUANTIZED_16BIT_LSTM
// - ANEURALNETWORKS_RANDOM_MULTINOMIAL
// - ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_LSTM
// - ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_RNN

TEST_SINGLE_OPERATION(ABS, V1_2, kMediumCriteria);
TEST_SINGLE_OPERATION(EXP, V1_2, kRelaxedCriteria);
TEST_SINGLE_OPERATION(LOG, V1_2, kRelaxedCriteria);
TEST_SINGLE_OPERATION(NEG, V1_2, kMediumCriteria);
TEST_SINGLE_OPERATION(RSQRT, V1_2, kRelaxedCriteria);
TEST_SINGLE_OPERATION(SIN, V1_2, kRelaxedCriteria);
TEST_SINGLE_OPERATION(SQRT, V1_2, kRelaxedCriteria);
TEST_SINGLE_OPERATION(ARGMAX, V1_2, kStrictCriteria);
TEST_SINGLE_OPERATION(ARGMIN, V1_2, kStrictCriteria);
TEST_SINGLE_OPERATION(EQUAL, V1_2, kStrictCriteria);
TEST_SINGLE_OPERATION(GREATER, V1_2, kStrictCriteria);
TEST_SINGLE_OPERATION(GREATER_EQUAL, V1_2, kStrictCriteria);
TEST_SINGLE_OPERATION(LESS, V1_2, kStrictCriteria);
TEST_SINGLE_OPERATION(LESS_EQUAL, V1_2, kStrictCriteria);
TEST_SINGLE_OPERATION(LOGICAL_AND, V1_2, kStrictCriteria);
TEST_SINGLE_OPERATION(LOGICAL_NOT, V1_2, kStrictCriteria);
TEST_SINGLE_OPERATION(LOGICAL_OR, V1_2, kStrictCriteria);
TEST_SINGLE_OPERATION(NOT_EQUAL, V1_2, kStrictCriteria);
TEST_SINGLE_OPERATION(MAXIMUM, V1_2, kMediumCriteria);
TEST_SINGLE_OPERATION(MINIMUM, V1_2, kMediumCriteria);
TEST_SINGLE_OPERATION(POW, V1_2, kRelaxedCriteria);
TEST_SINGLE_OPERATION(PRELU, V1_2, kMediumCriteria);
TEST_SINGLE_OPERATION(REDUCE_ALL, V1_2, kRelaxedCriteria);
TEST_SINGLE_OPERATION(REDUCE_ANY, V1_2, kRelaxedCriteria);
TEST_SINGLE_OPERATION(REDUCE_MAX, V1_2, kRelaxedCriteria);
TEST_SINGLE_OPERATION(REDUCE_MIN, V1_2, kRelaxedCriteria);
TEST_SINGLE_OPERATION(REDUCE_PROD, V1_2, kRelaxedCriteria);
TEST_SINGLE_OPERATION(REDUCE_SUM, V1_2, kRelaxedCriteria);
TEST_SINGLE_OPERATION(CHANNEL_SHUFFLE, V1_2, kStrictCriteria);
TEST_SINGLE_OPERATION(INSTANCE_NORMALIZATION, V1_2, kRelaxedCriteria);
TEST_SINGLE_OPERATION(LOG_SOFTMAX, V1_2, kRelaxedCriteria);
TEST_SINGLE_OPERATION(GROUPED_CONV_2D, V1_2, kConvCriteria);
TEST_SINGLE_OPERATION(TRANSPOSE_CONV_2D, V1_2, kConvCriteria);
TEST_SINGLE_OPERATION(RESIZE_NEAREST_NEIGHBOR, V1_2, kRelaxedCriteria);
TEST_SINGLE_OPERATION(PAD_V2, V1_2, kStrictCriteria);
TEST_SINGLE_OPERATION(QUANTIZE, V1_2, kMediumCriteria);
TEST_SINGLE_OPERATION(CAST, V1_2, kMediumCriteria);
TEST_SINGLE_OPERATION(EXPAND_DIMS, V1_2, kStrictCriteria);
TEST_SINGLE_OPERATION(TILE, V1_2, kStrictCriteria);
TEST_SINGLE_OPERATION(GATHER, V1_2, kStrictCriteria);
TEST_SINGLE_OPERATION(SELECT, V1_2, kStrictCriteria);
TEST_SINGLE_OPERATION(TOPK_V2, V1_2, kStrictCriteria);
TEST_SINGLE_OPERATION(SLICE, V1_2, kStrictCriteria);
TEST_SINGLE_OPERATION(SPLIT, V1_2, kMediumCriteria);
TEST_SINGLE_OPERATION(ROI_ALIGN, V1_2, kRelaxedCriteria);
TEST_SINGLE_OPERATION(ROI_POOLING, V1_2, kRelaxedCriteria);
TEST_SINGLE_OPERATION(HEATMAP_MAX_KEYPOINT, V1_2, kRelaxedCriteria);

const AccuracyCriteria kSmallGraphCriteria = {
        .float32 = {.atol = 1e-2f, .rtol = 1e-2f, .bias = 4e-4f, .mse = 1e-5f},
        .float16 = {.atol = 1.0f, .rtol = 1.0f, .bias = 5e-2f, .mse = 1e-2f},
        .int32 = {.atol = 1},
        .quant8Asymm = {.atol = 12, .bias = 2, .mse = 2},
        .quant8Symm = {.atol = 12, .bias = 2, .mse = 2},
        .quant16Asymm = {.atol = 12, .bias = 2, .mse = 2},
        .quant16Symm = {.atol = 12, .bias = 2, .mse = 2}};

const AccuracyCriteria kLargeGraphCriteria = {
        .float32 = {.atol = 1e-1f, .rtol = 1e-1f, .bias = 1e-2f, .mse = 1e-4f},
        .float16 = {.atol = 1.0f, .rtol = 1.0f, .bias = 1e-1f, .mse = 5e-2f},
        .int32 = {.atol = 1},
        .quant8Asymm = {.atol = 12, .bias = 2, .mse = 2},
        .quant8Symm = {.atol = 12, .bias = 2, .mse = 2},
        .quant16Asymm = {.atol = 12, .bias = 2, .mse = 2},
        .quant16Symm = {.atol = 12, .bias = 2, .mse = 2}};

// Due to the limitation of the random graph generator, graphs generated with mixed-type or
// mixed-rank operations are likely to result in a disconnected network. Thus, we filter the
// operation signatures by primary data type and rank first, then generate random graph tests for
// each combination.
//
// Two parameterized tests are created for each filter:
// * 5-op graph with dimensions in range [1, 1000].
// * 40-op graph with dimensions in range [1, 10].
//
#define TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(dataType, rank)                  \
    TEST_P(RandomGraphTest, SmallGraph_##dataType##_Rank##rank) {                  \
        OperationFilter filter = {.dataTypes = {Type::dataType}, .ranks = {rank}}; \
        OperationManager::get()->applyFilter(filter);                              \
        mCriteria = kSmallGraphCriteria;                                           \
        testRandomGraph(GraphSize::SMALL, DimensionRange::WIDE);                   \
    }                                                                              \
    TEST_P(RandomGraphTest, LargeGraph_##dataType##_Rank##rank) {                  \
        OperationFilter filter = {.dataTypes = {Type::dataType}, .ranks = {rank}}; \
        OperationManager::get()->applyFilter(filter);                              \
        mCriteria = kLargeGraphCriteria;                                           \
        testRandomGraph(GraphSize::LARGE, DimensionRange::NARROW);                 \
    }

// Random graph test with TENSOR_QUANT8_ASYMM as the primary data type is currently not defined.
// The generated graph with TENSOR_QUANT8_ASYMM as the primary data type will likely to result in
// disconnected graphs due to the mismatch between quantized parameters.

TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_FLOAT32, 4);
TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_FLOAT32, 3);
TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_FLOAT32, 2);
TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_FLOAT32, 1);

TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_FLOAT16, 4);
TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_FLOAT16, 3);
TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_FLOAT16, 2);
TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_FLOAT16, 1);

TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_INT32, 4);
TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_INT32, 3);
TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_INT32, 2);
TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_INT32, 1);

TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_BOOL8, 4);
TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_BOOL8, 3);
TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_BOOL8, 2);
TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_BOOL8, 1);

#ifdef NNTEST_CTS
INSTANTIATE_TEST_CASE_P(TestRandomGraph, SingleOperationTest, ::testing::Range(0u, 50u));
INSTANTIATE_TEST_CASE_P(TestRandomGraph, RandomGraphTest, ::testing::Range(0u, 50u));
#else
INSTANTIATE_TEST_CASE_P(TestRandomGraph, SingleOperationTest, ::testing::Range(0u, 100u));
INSTANTIATE_TEST_CASE_P(TestRandomGraph, RandomGraphTest, ::testing::Range(0u, 100u));
#endif

}  // namespace fuzzing_test
}  // namespace nn
}  // namespace android