aboutsummaryrefslogtreecommitdiff
path: root/lib/dictBuilder/cover.c
blob: 9e5e7d5b55d80058489bade3bdfb1006cf585578 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
/*
 * Copyright (c) Meta Platforms, Inc. and affiliates.
 * All rights reserved.
 *
 * This source code is licensed under both the BSD-style license (found in the
 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
 * in the COPYING file in the root directory of this source tree).
 * You may select, at your option, one of the above-listed licenses.
 */

/* *****************************************************************************
 * Constructs a dictionary using a heuristic based on the following paper:
 *
 * Liao, Petri, Moffat, Wirth
 * Effective Construction of Relative Lempel-Ziv Dictionaries
 * Published in WWW 2016.
 *
 * Adapted from code originally written by @ot (Giuseppe Ottaviano).
 ******************************************************************************/

/*-*************************************
*  Dependencies
***************************************/
#include <stdio.h>  /* fprintf */
#include <stdlib.h> /* malloc, free, qsort */
#include <string.h> /* memset */
#include <time.h>   /* clock */

#ifndef ZDICT_STATIC_LINKING_ONLY
#  define ZDICT_STATIC_LINKING_ONLY
#endif

#include "../common/mem.h" /* read */
#include "../common/pool.h"
#include "../common/threading.h"
#include "../common/zstd_internal.h" /* includes zstd.h */
#include "../common/bits.h" /* ZSTD_highbit32 */
#include "../zdict.h"
#include "cover.h"

/*-*************************************
*  Constants
***************************************/
/**
* There are 32bit indexes used to ref samples, so limit samples size to 4GB
* on 64bit builds.
* For 32bit builds we choose 1 GB.
* Most 32bit platforms have 2GB user-mode addressable space and we allocate a large
* contiguous buffer, so 1GB is already a high limit.
*/
#define COVER_MAX_SAMPLES_SIZE (sizeof(size_t) == 8 ? ((unsigned)-1) : ((unsigned)1 GB))
#define COVER_DEFAULT_SPLITPOINT 1.0

/*-*************************************
*  Console display
***************************************/
#ifndef LOCALDISPLAYLEVEL
static int g_displayLevel = 0;
#endif
#undef  DISPLAY
#define DISPLAY(...)                                                           \
  {                                                                            \
    fprintf(stderr, __VA_ARGS__);                                              \
    fflush(stderr);                                                            \
  }
#undef  LOCALDISPLAYLEVEL
#define LOCALDISPLAYLEVEL(displayLevel, l, ...)                                \
  if (displayLevel >= l) {                                                     \
    DISPLAY(__VA_ARGS__);                                                      \
  } /* 0 : no display;   1: errors;   2: default;  3: details;  4: debug */
#undef  DISPLAYLEVEL
#define DISPLAYLEVEL(l, ...) LOCALDISPLAYLEVEL(g_displayLevel, l, __VA_ARGS__)

#ifndef LOCALDISPLAYUPDATE
static const clock_t g_refreshRate = CLOCKS_PER_SEC * 15 / 100;
static clock_t g_time = 0;
#endif
#undef  LOCALDISPLAYUPDATE
#define LOCALDISPLAYUPDATE(displayLevel, l, ...)                               \
  if (displayLevel >= l) {                                                     \
    if ((clock() - g_time > g_refreshRate) || (displayLevel >= 4)) {             \
      g_time = clock();                                                        \
      DISPLAY(__VA_ARGS__);                                                    \
    }                                                                          \
  }
#undef  DISPLAYUPDATE
#define DISPLAYUPDATE(l, ...) LOCALDISPLAYUPDATE(g_displayLevel, l, __VA_ARGS__)

/*-*************************************
* Hash table
***************************************
* A small specialized hash map for storing activeDmers.
* The map does not resize, so if it becomes full it will loop forever.
* Thus, the map must be large enough to store every value.
* The map implements linear probing and keeps its load less than 0.5.
*/

#define MAP_EMPTY_VALUE ((U32)-1)
typedef struct COVER_map_pair_t_s {
  U32 key;
  U32 value;
} COVER_map_pair_t;

typedef struct COVER_map_s {
  COVER_map_pair_t *data;
  U32 sizeLog;
  U32 size;
  U32 sizeMask;
} COVER_map_t;

/**
 * Clear the map.
 */
static void COVER_map_clear(COVER_map_t *map) {
  memset(map->data, MAP_EMPTY_VALUE, map->size * sizeof(COVER_map_pair_t));
}

/**
 * Initializes a map of the given size.
 * Returns 1 on success and 0 on failure.
 * The map must be destroyed with COVER_map_destroy().
 * The map is only guaranteed to be large enough to hold size elements.
 */
static int COVER_map_init(COVER_map_t *map, U32 size) {
  map->sizeLog = ZSTD_highbit32(size) + 2;
  map->size = (U32)1 << map->sizeLog;
  map->sizeMask = map->size - 1;
  map->data = (COVER_map_pair_t *)malloc(map->size * sizeof(COVER_map_pair_t));
  if (!map->data) {
    map->sizeLog = 0;
    map->size = 0;
    return 0;
  }
  COVER_map_clear(map);
  return 1;
}

/**
 * Internal hash function
 */
static const U32 COVER_prime4bytes = 2654435761U;
static U32 COVER_map_hash(COVER_map_t *map, U32 key) {
  return (key * COVER_prime4bytes) >> (32 - map->sizeLog);
}

/**
 * Helper function that returns the index that a key should be placed into.
 */
static U32 COVER_map_index(COVER_map_t *map, U32 key) {
  const U32 hash = COVER_map_hash(map, key);
  U32 i;
  for (i = hash;; i = (i + 1) & map->sizeMask) {
    COVER_map_pair_t *pos = &map->data[i];
    if (pos->value == MAP_EMPTY_VALUE) {
      return i;
    }
    if (pos->key == key) {
      return i;
    }
  }
}

/**
 * Returns the pointer to the value for key.
 * If key is not in the map, it is inserted and the value is set to 0.
 * The map must not be full.
 */
static U32 *COVER_map_at(COVER_map_t *map, U32 key) {
  COVER_map_pair_t *pos = &map->data[COVER_map_index(map, key)];
  if (pos->value == MAP_EMPTY_VALUE) {
    pos->key = key;
    pos->value = 0;
  }
  return &pos->value;
}

/**
 * Deletes key from the map if present.
 */
static void COVER_map_remove(COVER_map_t *map, U32 key) {
  U32 i = COVER_map_index(map, key);
  COVER_map_pair_t *del = &map->data[i];
  U32 shift = 1;
  if (del->value == MAP_EMPTY_VALUE) {
    return;
  }
  for (i = (i + 1) & map->sizeMask;; i = (i + 1) & map->sizeMask) {
    COVER_map_pair_t *const pos = &map->data[i];
    /* If the position is empty we are done */
    if (pos->value == MAP_EMPTY_VALUE) {
      del->value = MAP_EMPTY_VALUE;
      return;
    }
    /* If pos can be moved to del do so */
    if (((i - COVER_map_hash(map, pos->key)) & map->sizeMask) >= shift) {
      del->key = pos->key;
      del->value = pos->value;
      del = pos;
      shift = 1;
    } else {
      ++shift;
    }
  }
}

/**
 * Destroys a map that is inited with COVER_map_init().
 */
static void COVER_map_destroy(COVER_map_t *map) {
  if (map->data) {
    free(map->data);
  }
  map->data = NULL;
  map->size = 0;
}

/*-*************************************
* Context
***************************************/

typedef struct {
  const BYTE *samples;
  size_t *offsets;
  const size_t *samplesSizes;
  size_t nbSamples;
  size_t nbTrainSamples;
  size_t nbTestSamples;
  U32 *suffix;
  size_t suffixSize;
  U32 *freqs;
  U32 *dmerAt;
  unsigned d;
} COVER_ctx_t;

/* We need a global context for qsort... */
static COVER_ctx_t *g_coverCtx = NULL;

/*-*************************************
*  Helper functions
***************************************/

/**
 * Returns the sum of the sample sizes.
 */
size_t COVER_sum(const size_t *samplesSizes, unsigned nbSamples) {
  size_t sum = 0;
  unsigned i;
  for (i = 0; i < nbSamples; ++i) {
    sum += samplesSizes[i];
  }
  return sum;
}

/**
 * Returns -1 if the dmer at lp is less than the dmer at rp.
 * Return 0 if the dmers at lp and rp are equal.
 * Returns 1 if the dmer at lp is greater than the dmer at rp.
 */
static int COVER_cmp(COVER_ctx_t *ctx, const void *lp, const void *rp) {
  U32 const lhs = *(U32 const *)lp;
  U32 const rhs = *(U32 const *)rp;
  return memcmp(ctx->samples + lhs, ctx->samples + rhs, ctx->d);
}
/**
 * Faster version for d <= 8.
 */
static int COVER_cmp8(COVER_ctx_t *ctx, const void *lp, const void *rp) {
  U64 const mask = (ctx->d == 8) ? (U64)-1 : (((U64)1 << (8 * ctx->d)) - 1);
  U64 const lhs = MEM_readLE64(ctx->samples + *(U32 const *)lp) & mask;
  U64 const rhs = MEM_readLE64(ctx->samples + *(U32 const *)rp) & mask;
  if (lhs < rhs) {
    return -1;
  }
  return (lhs > rhs);
}

/**
 * Same as COVER_cmp() except ties are broken by pointer value
 * NOTE: g_coverCtx must be set to call this function.  A global is required because
 * qsort doesn't take an opaque pointer.
 */
static int WIN_CDECL COVER_strict_cmp(const void *lp, const void *rp) {
  int result = COVER_cmp(g_coverCtx, lp, rp);
  if (result == 0) {
    result = lp < rp ? -1 : 1;
  }
  return result;
}
/**
 * Faster version for d <= 8.
 */
static int WIN_CDECL COVER_strict_cmp8(const void *lp, const void *rp) {
  int result = COVER_cmp8(g_coverCtx, lp, rp);
  if (result == 0) {
    result = lp < rp ? -1 : 1;
  }
  return result;
}

/**
 * Returns the first pointer in [first, last) whose element does not compare
 * less than value.  If no such element exists it returns last.
 */
static const size_t *COVER_lower_bound(const size_t *first, const size_t *last,
                                       size_t value) {
  size_t count = last - first;
  while (count != 0) {
    size_t step = count / 2;
    const size_t *ptr = first;
    ptr += step;
    if (*ptr < value) {
      first = ++ptr;
      count -= step + 1;
    } else {
      count = step;
    }
  }
  return first;
}

/**
 * Generic groupBy function.
 * Groups an array sorted by cmp into groups with equivalent values.
 * Calls grp for each group.
 */
static void
COVER_groupBy(const void *data, size_t count, size_t size, COVER_ctx_t *ctx,
              int (*cmp)(COVER_ctx_t *, const void *, const void *),
              void (*grp)(COVER_ctx_t *, const void *, const void *)) {
  const BYTE *ptr = (const BYTE *)data;
  size_t num = 0;
  while (num < count) {
    const BYTE *grpEnd = ptr + size;
    ++num;
    while (num < count && cmp(ctx, ptr, grpEnd) == 0) {
      grpEnd += size;
      ++num;
    }
    grp(ctx, ptr, grpEnd);
    ptr = grpEnd;
  }
}

/*-*************************************
*  Cover functions
***************************************/

/**
 * Called on each group of positions with the same dmer.
 * Counts the frequency of each dmer and saves it in the suffix array.
 * Fills `ctx->dmerAt`.
 */
static void COVER_group(COVER_ctx_t *ctx, const void *group,
                        const void *groupEnd) {
  /* The group consists of all the positions with the same first d bytes. */
  const U32 *grpPtr = (const U32 *)group;
  const U32 *grpEnd = (const U32 *)groupEnd;
  /* The dmerId is how we will reference this dmer.
   * This allows us to map the whole dmer space to a much smaller space, the
   * size of the suffix array.
   */
  const U32 dmerId = (U32)(grpPtr - ctx->suffix);
  /* Count the number of samples this dmer shows up in */
  U32 freq = 0;
  /* Details */
  const size_t *curOffsetPtr = ctx->offsets;
  const size_t *offsetsEnd = ctx->offsets + ctx->nbSamples;
  /* Once *grpPtr >= curSampleEnd this occurrence of the dmer is in a
   * different sample than the last.
   */
  size_t curSampleEnd = ctx->offsets[0];
  for (; grpPtr != grpEnd; ++grpPtr) {
    /* Save the dmerId for this position so we can get back to it. */
    ctx->dmerAt[*grpPtr] = dmerId;
    /* Dictionaries only help for the first reference to the dmer.
     * After that zstd can reference the match from the previous reference.
     * So only count each dmer once for each sample it is in.
     */
    if (*grpPtr < curSampleEnd) {
      continue;
    }
    freq += 1;
    /* Binary search to find the end of the sample *grpPtr is in.
     * In the common case that grpPtr + 1 == grpEnd we can skip the binary
     * search because the loop is over.
     */
    if (grpPtr + 1 != grpEnd) {
      const size_t *sampleEndPtr =
          COVER_lower_bound(curOffsetPtr, offsetsEnd, *grpPtr);
      curSampleEnd = *sampleEndPtr;
      curOffsetPtr = sampleEndPtr + 1;
    }
  }
  /* At this point we are never going to look at this segment of the suffix
   * array again.  We take advantage of this fact to save memory.
   * We store the frequency of the dmer in the first position of the group,
   * which is dmerId.
   */
  ctx->suffix[dmerId] = freq;
}


/**
 * Selects the best segment in an epoch.
 * Segments of are scored according to the function:
 *
 * Let F(d) be the frequency of dmer d.
 * Let S_i be the dmer at position i of segment S which has length k.
 *
 *     Score(S) = F(S_1) + F(S_2) + ... + F(S_{k-d+1})
 *
 * Once the dmer d is in the dictionary we set F(d) = 0.
 */
static COVER_segment_t COVER_selectSegment(const COVER_ctx_t *ctx, U32 *freqs,
                                           COVER_map_t *activeDmers, U32 begin,
                                           U32 end,
                                           ZDICT_cover_params_t parameters) {
  /* Constants */
  const U32 k = parameters.k;
  const U32 d = parameters.d;
  const U32 dmersInK = k - d + 1;
  /* Try each segment (activeSegment) and save the best (bestSegment) */
  COVER_segment_t bestSegment = {0, 0, 0};
  COVER_segment_t activeSegment;
  /* Reset the activeDmers in the segment */
  COVER_map_clear(activeDmers);
  /* The activeSegment starts at the beginning of the epoch. */
  activeSegment.begin = begin;
  activeSegment.end = begin;
  activeSegment.score = 0;
  /* Slide the activeSegment through the whole epoch.
   * Save the best segment in bestSegment.
   */
  while (activeSegment.end < end) {
    /* The dmerId for the dmer at the next position */
    U32 newDmer = ctx->dmerAt[activeSegment.end];
    /* The entry in activeDmers for this dmerId */
    U32 *newDmerOcc = COVER_map_at(activeDmers, newDmer);
    /* If the dmer isn't already present in the segment add its score. */
    if (*newDmerOcc == 0) {
      /* The paper suggest using the L-0.5 norm, but experiments show that it
       * doesn't help.
       */
      activeSegment.score += freqs[newDmer];
    }
    /* Add the dmer to the segment */
    activeSegment.end += 1;
    *newDmerOcc += 1;

    /* If the window is now too large, drop the first position */
    if (activeSegment.end - activeSegment.begin == dmersInK + 1) {
      U32 delDmer = ctx->dmerAt[activeSegment.begin];
      U32 *delDmerOcc = COVER_map_at(activeDmers, delDmer);
      activeSegment.begin += 1;
      *delDmerOcc -= 1;
      /* If this is the last occurrence of the dmer, subtract its score */
      if (*delDmerOcc == 0) {
        COVER_map_remove(activeDmers, delDmer);
        activeSegment.score -= freqs[delDmer];
      }
    }

    /* If this segment is the best so far save it */
    if (activeSegment.score > bestSegment.score) {
      bestSegment = activeSegment;
    }
  }
  {
    /* Trim off the zero frequency head and tail from the segment. */
    U32 newBegin = bestSegment.end;
    U32 newEnd = bestSegment.begin;
    U32 pos;
    for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
      U32 freq = freqs[ctx->dmerAt[pos]];
      if (freq != 0) {
        newBegin = MIN(newBegin, pos);
        newEnd = pos + 1;
      }
    }
    bestSegment.begin = newBegin;
    bestSegment.end = newEnd;
  }
  {
    /* Zero out the frequency of each dmer covered by the chosen segment. */
    U32 pos;
    for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
      freqs[ctx->dmerAt[pos]] = 0;
    }
  }
  return bestSegment;
}

/**
 * Check the validity of the parameters.
 * Returns non-zero if the parameters are valid and 0 otherwise.
 */
static int COVER_checkParameters(ZDICT_cover_params_t parameters,
                                 size_t maxDictSize) {
  /* k and d are required parameters */
  if (parameters.d == 0 || parameters.k == 0) {
    return 0;
  }
  /* k <= maxDictSize */
  if (parameters.k > maxDictSize) {
    return 0;
  }
  /* d <= k */
  if (parameters.d > parameters.k) {
    return 0;
  }
  /* 0 < splitPoint <= 1 */
  if (parameters.splitPoint <= 0 || parameters.splitPoint > 1){
    return 0;
  }
  return 1;
}

/**
 * Clean up a context initialized with `COVER_ctx_init()`.
 */
static void COVER_ctx_destroy(COVER_ctx_t *ctx) {
  if (!ctx) {
    return;
  }
  if (ctx->suffix) {
    free(ctx->suffix);
    ctx->suffix = NULL;
  }
  if (ctx->freqs) {
    free(ctx->freqs);
    ctx->freqs = NULL;
  }
  if (ctx->dmerAt) {
    free(ctx->dmerAt);
    ctx->dmerAt = NULL;
  }
  if (ctx->offsets) {
    free(ctx->offsets);
    ctx->offsets = NULL;
  }
}

/**
 * Prepare a context for dictionary building.
 * The context is only dependent on the parameter `d` and can be used multiple
 * times.
 * Returns 0 on success or error code on error.
 * The context must be destroyed with `COVER_ctx_destroy()`.
 */
static size_t COVER_ctx_init(COVER_ctx_t *ctx, const void *samplesBuffer,
                          const size_t *samplesSizes, unsigned nbSamples,
                          unsigned d, double splitPoint) {
  const BYTE *const samples = (const BYTE *)samplesBuffer;
  const size_t totalSamplesSize = COVER_sum(samplesSizes, nbSamples);
  /* Split samples into testing and training sets */
  const unsigned nbTrainSamples = splitPoint < 1.0 ? (unsigned)((double)nbSamples * splitPoint) : nbSamples;
  const unsigned nbTestSamples = splitPoint < 1.0 ? nbSamples - nbTrainSamples : nbSamples;
  const size_t trainingSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes, nbTrainSamples) : totalSamplesSize;
  const size_t testSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes + nbTrainSamples, nbTestSamples) : totalSamplesSize;
  /* Checks */
  if (totalSamplesSize < MAX(d, sizeof(U64)) ||
      totalSamplesSize >= (size_t)COVER_MAX_SAMPLES_SIZE) {
    DISPLAYLEVEL(1, "Total samples size is too large (%u MB), maximum size is %u MB\n",
                 (unsigned)(totalSamplesSize>>20), (COVER_MAX_SAMPLES_SIZE >> 20));
    return ERROR(srcSize_wrong);
  }
  /* Check if there are at least 5 training samples */
  if (nbTrainSamples < 5) {
    DISPLAYLEVEL(1, "Total number of training samples is %u and is invalid.", nbTrainSamples);
    return ERROR(srcSize_wrong);
  }
  /* Check if there's testing sample */
  if (nbTestSamples < 1) {
    DISPLAYLEVEL(1, "Total number of testing samples is %u and is invalid.", nbTestSamples);
    return ERROR(srcSize_wrong);
  }
  /* Zero the context */
  memset(ctx, 0, sizeof(*ctx));
  DISPLAYLEVEL(2, "Training on %u samples of total size %u\n", nbTrainSamples,
               (unsigned)trainingSamplesSize);
  DISPLAYLEVEL(2, "Testing on %u samples of total size %u\n", nbTestSamples,
               (unsigned)testSamplesSize);
  ctx->samples = samples;
  ctx->samplesSizes = samplesSizes;
  ctx->nbSamples = nbSamples;
  ctx->nbTrainSamples = nbTrainSamples;
  ctx->nbTestSamples = nbTestSamples;
  /* Partial suffix array */
  ctx->suffixSize = trainingSamplesSize - MAX(d, sizeof(U64)) + 1;
  ctx->suffix = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
  /* Maps index to the dmerID */
  ctx->dmerAt = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
  /* The offsets of each file */
  ctx->offsets = (size_t *)malloc((nbSamples + 1) * sizeof(size_t));
  if (!ctx->suffix || !ctx->dmerAt || !ctx->offsets) {
    DISPLAYLEVEL(1, "Failed to allocate scratch buffers\n");
    COVER_ctx_destroy(ctx);
    return ERROR(memory_allocation);
  }
  ctx->freqs = NULL;
  ctx->d = d;

  /* Fill offsets from the samplesSizes */
  {
    U32 i;
    ctx->offsets[0] = 0;
    for (i = 1; i <= nbSamples; ++i) {
      ctx->offsets[i] = ctx->offsets[i - 1] + samplesSizes[i - 1];
    }
  }
  DISPLAYLEVEL(2, "Constructing partial suffix array\n");
  {
    /* suffix is a partial suffix array.
     * It only sorts suffixes by their first parameters.d bytes.
     * The sort is stable, so each dmer group is sorted by position in input.
     */
    U32 i;
    for (i = 0; i < ctx->suffixSize; ++i) {
      ctx->suffix[i] = i;
    }
    /* qsort doesn't take an opaque pointer, so pass as a global.
     * On OpenBSD qsort() is not guaranteed to be stable, their mergesort() is.
     */
    g_coverCtx = ctx;
#if defined(__OpenBSD__)
    mergesort(ctx->suffix, ctx->suffixSize, sizeof(U32),
          (ctx->d <= 8 ? &COVER_strict_cmp8 : &COVER_strict_cmp));
#else
    qsort(ctx->suffix, ctx->suffixSize, sizeof(U32),
          (ctx->d <= 8 ? &COVER_strict_cmp8 : &COVER_strict_cmp));
#endif
  }
  DISPLAYLEVEL(2, "Computing frequencies\n");
  /* For each dmer group (group of positions with the same first d bytes):
   * 1. For each position we set dmerAt[position] = dmerID.  The dmerID is
   *    (groupBeginPtr - suffix).  This allows us to go from position to
   *    dmerID so we can look up values in freq.
   * 2. We calculate how many samples the dmer occurs in and save it in
   *    freqs[dmerId].
   */
  COVER_groupBy(ctx->suffix, ctx->suffixSize, sizeof(U32), ctx,
                (ctx->d <= 8 ? &COVER_cmp8 : &COVER_cmp), &COVER_group);
  ctx->freqs = ctx->suffix;
  ctx->suffix = NULL;
  return 0;
}

void COVER_warnOnSmallCorpus(size_t maxDictSize, size_t nbDmers, int displayLevel)
{
  const double ratio = (double)nbDmers / (double)maxDictSize;
  if (ratio >= 10) {
      return;
  }
  LOCALDISPLAYLEVEL(displayLevel, 1,
                    "WARNING: The maximum dictionary size %u is too large "
                    "compared to the source size %u! "
                    "size(source)/size(dictionary) = %f, but it should be >= "
                    "10! This may lead to a subpar dictionary! We recommend "
                    "training on sources at least 10x, and preferably 100x "
                    "the size of the dictionary! \n", (U32)maxDictSize,
                    (U32)nbDmers, ratio);
}

COVER_epoch_info_t COVER_computeEpochs(U32 maxDictSize,
                                       U32 nbDmers, U32 k, U32 passes)
{
  const U32 minEpochSize = k * 10;
  COVER_epoch_info_t epochs;
  epochs.num = MAX(1, maxDictSize / k / passes);
  epochs.size = nbDmers / epochs.num;
  if (epochs.size >= minEpochSize) {
      assert(epochs.size * epochs.num <= nbDmers);
      return epochs;
  }
  epochs.size = MIN(minEpochSize, nbDmers);
  epochs.num = nbDmers / epochs.size;
  assert(epochs.size * epochs.num <= nbDmers);
  return epochs;
}

/**
 * Given the prepared context build the dictionary.
 */
static size_t COVER_buildDictionary(const COVER_ctx_t *ctx, U32 *freqs,
                                    COVER_map_t *activeDmers, void *dictBuffer,
                                    size_t dictBufferCapacity,
                                    ZDICT_cover_params_t parameters) {
  BYTE *const dict = (BYTE *)dictBuffer;
  size_t tail = dictBufferCapacity;
  /* Divide the data into epochs. We will select one segment from each epoch. */
  const COVER_epoch_info_t epochs = COVER_computeEpochs(
      (U32)dictBufferCapacity, (U32)ctx->suffixSize, parameters.k, 4);
  const size_t maxZeroScoreRun = MAX(10, MIN(100, epochs.num >> 3));
  size_t zeroScoreRun = 0;
  size_t epoch;
  DISPLAYLEVEL(2, "Breaking content into %u epochs of size %u\n",
                (U32)epochs.num, (U32)epochs.size);
  /* Loop through the epochs until there are no more segments or the dictionary
   * is full.
   */
  for (epoch = 0; tail > 0; epoch = (epoch + 1) % epochs.num) {
    const U32 epochBegin = (U32)(epoch * epochs.size);
    const U32 epochEnd = epochBegin + epochs.size;
    size_t segmentSize;
    /* Select a segment */
    COVER_segment_t segment = COVER_selectSegment(
        ctx, freqs, activeDmers, epochBegin, epochEnd, parameters);
    /* If the segment covers no dmers, then we are out of content.
     * There may be new content in other epochs, for continue for some time.
     */
    if (segment.score == 0) {
      if (++zeroScoreRun >= maxZeroScoreRun) {
          break;
      }
      continue;
    }
    zeroScoreRun = 0;
    /* Trim the segment if necessary and if it is too small then we are done */
    segmentSize = MIN(segment.end - segment.begin + parameters.d - 1, tail);
    if (segmentSize < parameters.d) {
      break;
    }
    /* We fill the dictionary from the back to allow the best segments to be
     * referenced with the smallest offsets.
     */
    tail -= segmentSize;
    memcpy(dict + tail, ctx->samples + segment.begin, segmentSize);
    DISPLAYUPDATE(
        2, "\r%u%%       ",
        (unsigned)(((dictBufferCapacity - tail) * 100) / dictBufferCapacity));
  }
  DISPLAYLEVEL(2, "\r%79s\r", "");
  return tail;
}

ZDICTLIB_API size_t ZDICT_trainFromBuffer_cover(
    void *dictBuffer, size_t dictBufferCapacity,
    const void *samplesBuffer, const size_t *samplesSizes, unsigned nbSamples,
    ZDICT_cover_params_t parameters)
{
  BYTE* const dict = (BYTE*)dictBuffer;
  COVER_ctx_t ctx;
  COVER_map_t activeDmers;
  parameters.splitPoint = 1.0;
  /* Initialize global data */
  g_displayLevel = (int)parameters.zParams.notificationLevel;
  /* Checks */
  if (!COVER_checkParameters(parameters, dictBufferCapacity)) {
    DISPLAYLEVEL(1, "Cover parameters incorrect\n");
    return ERROR(parameter_outOfBound);
  }
  if (nbSamples == 0) {
    DISPLAYLEVEL(1, "Cover must have at least one input file\n");
    return ERROR(srcSize_wrong);
  }
  if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
    DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
                 ZDICT_DICTSIZE_MIN);
    return ERROR(dstSize_tooSmall);
  }
  /* Initialize context and activeDmers */
  {
    size_t const initVal = COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples,
                      parameters.d, parameters.splitPoint);
    if (ZSTD_isError(initVal)) {
      return initVal;
    }
  }
  COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.suffixSize, g_displayLevel);
  if (!COVER_map_init(&activeDmers, parameters.k - parameters.d + 1)) {
    DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n");
    COVER_ctx_destroy(&ctx);
    return ERROR(memory_allocation);
  }

  DISPLAYLEVEL(2, "Building dictionary\n");
  {
    const size_t tail =
        COVER_buildDictionary(&ctx, ctx.freqs, &activeDmers, dictBuffer,
                              dictBufferCapacity, parameters);
    const size_t dictionarySize = ZDICT_finalizeDictionary(
        dict, dictBufferCapacity, dict + tail, dictBufferCapacity - tail,
        samplesBuffer, samplesSizes, nbSamples, parameters.zParams);
    if (!ZSTD_isError(dictionarySize)) {
      DISPLAYLEVEL(2, "Constructed dictionary of size %u\n",
                   (unsigned)dictionarySize);
    }
    COVER_ctx_destroy(&ctx);
    COVER_map_destroy(&activeDmers);
    return dictionarySize;
  }
}



size_t COVER_checkTotalCompressedSize(const ZDICT_cover_params_t parameters,
                                    const size_t *samplesSizes, const BYTE *samples,
                                    size_t *offsets,
                                    size_t nbTrainSamples, size_t nbSamples,
                                    BYTE *const dict, size_t dictBufferCapacity) {
  size_t totalCompressedSize = ERROR(GENERIC);
  /* Pointers */
  ZSTD_CCtx *cctx;
  ZSTD_CDict *cdict;
  void *dst;
  /* Local variables */
  size_t dstCapacity;
  size_t i;
  /* Allocate dst with enough space to compress the maximum sized sample */
  {
    size_t maxSampleSize = 0;
    i = parameters.splitPoint < 1.0 ? nbTrainSamples : 0;
    for (; i < nbSamples; ++i) {
      maxSampleSize = MAX(samplesSizes[i], maxSampleSize);
    }
    dstCapacity = ZSTD_compressBound(maxSampleSize);
    dst = malloc(dstCapacity);
  }
  /* Create the cctx and cdict */
  cctx = ZSTD_createCCtx();
  cdict = ZSTD_createCDict(dict, dictBufferCapacity,
                           parameters.zParams.compressionLevel);
  if (!dst || !cctx || !cdict) {
    goto _compressCleanup;
  }
  /* Compress each sample and sum their sizes (or error) */
  totalCompressedSize = dictBufferCapacity;
  i = parameters.splitPoint < 1.0 ? nbTrainSamples : 0;
  for (; i < nbSamples; ++i) {
    const size_t size = ZSTD_compress_usingCDict(
        cctx, dst, dstCapacity, samples + offsets[i],
        samplesSizes[i], cdict);
    if (ZSTD_isError(size)) {
      totalCompressedSize = size;
      goto _compressCleanup;
    }
    totalCompressedSize += size;
  }
_compressCleanup:
  ZSTD_freeCCtx(cctx);
  ZSTD_freeCDict(cdict);
  if (dst) {
    free(dst);
  }
  return totalCompressedSize;
}


/**
 * Initialize the `COVER_best_t`.
 */
void COVER_best_init(COVER_best_t *best) {
  if (best==NULL) return; /* compatible with init on NULL */
  (void)ZSTD_pthread_mutex_init(&best->mutex, NULL);
  (void)ZSTD_pthread_cond_init(&best->cond, NULL);
  best->liveJobs = 0;
  best->dict = NULL;
  best->dictSize = 0;
  best->compressedSize = (size_t)-1;
  memset(&best->parameters, 0, sizeof(best->parameters));
}

/**
 * Wait until liveJobs == 0.
 */
void COVER_best_wait(COVER_best_t *best) {
  if (!best) {
    return;
  }
  ZSTD_pthread_mutex_lock(&best->mutex);
  while (best->liveJobs != 0) {
    ZSTD_pthread_cond_wait(&best->cond, &best->mutex);
  }
  ZSTD_pthread_mutex_unlock(&best->mutex);
}

/**
 * Call COVER_best_wait() and then destroy the COVER_best_t.
 */
void COVER_best_destroy(COVER_best_t *best) {
  if (!best) {
    return;
  }
  COVER_best_wait(best);
  if (best->dict) {
    free(best->dict);
  }
  ZSTD_pthread_mutex_destroy(&best->mutex);
  ZSTD_pthread_cond_destroy(&best->cond);
}

/**
 * Called when a thread is about to be launched.
 * Increments liveJobs.
 */
void COVER_best_start(COVER_best_t *best) {
  if (!best) {
    return;
  }
  ZSTD_pthread_mutex_lock(&best->mutex);
  ++best->liveJobs;
  ZSTD_pthread_mutex_unlock(&best->mutex);
}

/**
 * Called when a thread finishes executing, both on error or success.
 * Decrements liveJobs and signals any waiting threads if liveJobs == 0.
 * If this dictionary is the best so far save it and its parameters.
 */
void COVER_best_finish(COVER_best_t *best, ZDICT_cover_params_t parameters,
                              COVER_dictSelection_t selection) {
  void* dict = selection.dictContent;
  size_t compressedSize = selection.totalCompressedSize;
  size_t dictSize = selection.dictSize;
  if (!best) {
    return;
  }
  {
    size_t liveJobs;
    ZSTD_pthread_mutex_lock(&best->mutex);
    --best->liveJobs;
    liveJobs = best->liveJobs;
    /* If the new dictionary is better */
    if (compressedSize < best->compressedSize) {
      /* Allocate space if necessary */
      if (!best->dict || best->dictSize < dictSize) {
        if (best->dict) {
          free(best->dict);
        }
        best->dict = malloc(dictSize);
        if (!best->dict) {
          best->compressedSize = ERROR(GENERIC);
          best->dictSize = 0;
          ZSTD_pthread_cond_signal(&best->cond);
          ZSTD_pthread_mutex_unlock(&best->mutex);
          return;
        }
      }
      /* Save the dictionary, parameters, and size */
      if (dict) {
        memcpy(best->dict, dict, dictSize);
        best->dictSize = dictSize;
        best->parameters = parameters;
        best->compressedSize = compressedSize;
      }
    }
    if (liveJobs == 0) {
      ZSTD_pthread_cond_broadcast(&best->cond);
    }
    ZSTD_pthread_mutex_unlock(&best->mutex);
  }
}

static COVER_dictSelection_t setDictSelection(BYTE* buf, size_t s, size_t csz)
{
    COVER_dictSelection_t ds;
    ds.dictContent = buf;
    ds.dictSize = s;
    ds.totalCompressedSize = csz;
    return ds;
}

COVER_dictSelection_t COVER_dictSelectionError(size_t error) {
    return setDictSelection(NULL, 0, error);
}

unsigned COVER_dictSelectionIsError(COVER_dictSelection_t selection) {
  return (ZSTD_isError(selection.totalCompressedSize) || !selection.dictContent);
}

void COVER_dictSelectionFree(COVER_dictSelection_t selection){
  free(selection.dictContent);
}

COVER_dictSelection_t COVER_selectDict(BYTE* customDictContent, size_t dictBufferCapacity,
        size_t dictContentSize, const BYTE* samplesBuffer, const size_t* samplesSizes, unsigned nbFinalizeSamples,
        size_t nbCheckSamples, size_t nbSamples, ZDICT_cover_params_t params, size_t* offsets, size_t totalCompressedSize) {

  size_t largestDict = 0;
  size_t largestCompressed = 0;
  BYTE* customDictContentEnd = customDictContent + dictContentSize;

  BYTE * largestDictbuffer = (BYTE *)malloc(dictBufferCapacity);
  BYTE * candidateDictBuffer = (BYTE *)malloc(dictBufferCapacity);
  double regressionTolerance = ((double)params.shrinkDictMaxRegression / 100.0) + 1.00;

  if (!largestDictbuffer || !candidateDictBuffer) {
    free(largestDictbuffer);
    free(candidateDictBuffer);
    return COVER_dictSelectionError(dictContentSize);
  }

  /* Initial dictionary size and compressed size */
  memcpy(largestDictbuffer, customDictContent, dictContentSize);
  dictContentSize = ZDICT_finalizeDictionary(
    largestDictbuffer, dictBufferCapacity, customDictContent, dictContentSize,
    samplesBuffer, samplesSizes, nbFinalizeSamples, params.zParams);

  if (ZDICT_isError(dictContentSize)) {
    free(largestDictbuffer);
    free(candidateDictBuffer);
    return COVER_dictSelectionError(dictContentSize);
  }

  totalCompressedSize = COVER_checkTotalCompressedSize(params, samplesSizes,
                                                       samplesBuffer, offsets,
                                                       nbCheckSamples, nbSamples,
                                                       largestDictbuffer, dictContentSize);

  if (ZSTD_isError(totalCompressedSize)) {
    free(largestDictbuffer);
    free(candidateDictBuffer);
    return COVER_dictSelectionError(totalCompressedSize);
  }

  if (params.shrinkDict == 0) {
    free(candidateDictBuffer);
    return setDictSelection(largestDictbuffer, dictContentSize, totalCompressedSize);
  }

  largestDict = dictContentSize;
  largestCompressed = totalCompressedSize;
  dictContentSize = ZDICT_DICTSIZE_MIN;

  /* Largest dict is initially at least ZDICT_DICTSIZE_MIN */
  while (dictContentSize < largestDict) {
    memcpy(candidateDictBuffer, largestDictbuffer, largestDict);
    dictContentSize = ZDICT_finalizeDictionary(
      candidateDictBuffer, dictBufferCapacity, customDictContentEnd - dictContentSize, dictContentSize,
      samplesBuffer, samplesSizes, nbFinalizeSamples, params.zParams);

    if (ZDICT_isError(dictContentSize)) {
      free(largestDictbuffer);
      free(candidateDictBuffer);
      return COVER_dictSelectionError(dictContentSize);

    }

    totalCompressedSize = COVER_checkTotalCompressedSize(params, samplesSizes,
                                                         samplesBuffer, offsets,
                                                         nbCheckSamples, nbSamples,
                                                         candidateDictBuffer, dictContentSize);

    if (ZSTD_isError(totalCompressedSize)) {
      free(largestDictbuffer);
      free(candidateDictBuffer);
      return COVER_dictSelectionError(totalCompressedSize);
    }

    if ((double)totalCompressedSize <= (double)largestCompressed * regressionTolerance) {
      free(largestDictbuffer);
      return setDictSelection( candidateDictBuffer, dictContentSize, totalCompressedSize );
    }
    dictContentSize *= 2;
  }
  dictContentSize = largestDict;
  totalCompressedSize = largestCompressed;
  free(candidateDictBuffer);
  return setDictSelection( largestDictbuffer, dictContentSize, totalCompressedSize );
}

/**
 * Parameters for COVER_tryParameters().
 */
typedef struct COVER_tryParameters_data_s {
  const COVER_ctx_t *ctx;
  COVER_best_t *best;
  size_t dictBufferCapacity;
  ZDICT_cover_params_t parameters;
} COVER_tryParameters_data_t;

/**
 * Tries a set of parameters and updates the COVER_best_t with the results.
 * This function is thread safe if zstd is compiled with multithreaded support.
 * It takes its parameters as an *OWNING* opaque pointer to support threading.
 */
static void COVER_tryParameters(void *opaque)
{
  /* Save parameters as local variables */
  COVER_tryParameters_data_t *const data = (COVER_tryParameters_data_t*)opaque;
  const COVER_ctx_t *const ctx = data->ctx;
  const ZDICT_cover_params_t parameters = data->parameters;
  size_t dictBufferCapacity = data->dictBufferCapacity;
  size_t totalCompressedSize = ERROR(GENERIC);
  /* Allocate space for hash table, dict, and freqs */
  COVER_map_t activeDmers;
  BYTE* const dict = (BYTE*)malloc(dictBufferCapacity);
  COVER_dictSelection_t selection = COVER_dictSelectionError(ERROR(GENERIC));
  U32* const freqs = (U32*)malloc(ctx->suffixSize * sizeof(U32));
  if (!COVER_map_init(&activeDmers, parameters.k - parameters.d + 1)) {
    DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n");
    goto _cleanup;
  }
  if (!dict || !freqs) {
    DISPLAYLEVEL(1, "Failed to allocate buffers: out of memory\n");
    goto _cleanup;
  }
  /* Copy the frequencies because we need to modify them */
  memcpy(freqs, ctx->freqs, ctx->suffixSize * sizeof(U32));
  /* Build the dictionary */
  {
    const size_t tail = COVER_buildDictionary(ctx, freqs, &activeDmers, dict,
                                              dictBufferCapacity, parameters);
    selection = COVER_selectDict(dict + tail, dictBufferCapacity, dictBufferCapacity - tail,
        ctx->samples, ctx->samplesSizes, (unsigned)ctx->nbTrainSamples, ctx->nbTrainSamples, ctx->nbSamples, parameters, ctx->offsets,
        totalCompressedSize);

    if (COVER_dictSelectionIsError(selection)) {
      DISPLAYLEVEL(1, "Failed to select dictionary\n");
      goto _cleanup;
    }
  }
_cleanup:
  free(dict);
  COVER_best_finish(data->best, parameters, selection);
  free(data);
  COVER_map_destroy(&activeDmers);
  COVER_dictSelectionFree(selection);
  free(freqs);
}

ZDICTLIB_API size_t ZDICT_optimizeTrainFromBuffer_cover(
    void* dictBuffer, size_t dictBufferCapacity, const void* samplesBuffer,
    const size_t* samplesSizes, unsigned nbSamples,
    ZDICT_cover_params_t* parameters)
{
  /* constants */
  const unsigned nbThreads = parameters->nbThreads;
  const double splitPoint =
      parameters->splitPoint <= 0.0 ? COVER_DEFAULT_SPLITPOINT : parameters->splitPoint;
  const unsigned kMinD = parameters->d == 0 ? 6 : parameters->d;
  const unsigned kMaxD = parameters->d == 0 ? 8 : parameters->d;
  const unsigned kMinK = parameters->k == 0 ? 50 : parameters->k;
  const unsigned kMaxK = parameters->k == 0 ? 2000 : parameters->k;
  const unsigned kSteps = parameters->steps == 0 ? 40 : parameters->steps;
  const unsigned kStepSize = MAX((kMaxK - kMinK) / kSteps, 1);
  const unsigned kIterations =
      (1 + (kMaxD - kMinD) / 2) * (1 + (kMaxK - kMinK) / kStepSize);
  const unsigned shrinkDict = 0;
  /* Local variables */
  const int displayLevel = parameters->zParams.notificationLevel;
  unsigned iteration = 1;
  unsigned d;
  unsigned k;
  COVER_best_t best;
  POOL_ctx *pool = NULL;
  int warned = 0;

  /* Checks */
  if (splitPoint <= 0 || splitPoint > 1) {
    LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect parameters\n");
    return ERROR(parameter_outOfBound);
  }
  if (kMinK < kMaxD || kMaxK < kMinK) {
    LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect parameters\n");
    return ERROR(parameter_outOfBound);
  }
  if (nbSamples == 0) {
    DISPLAYLEVEL(1, "Cover must have at least one input file\n");
    return ERROR(srcSize_wrong);
  }
  if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
    DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
                 ZDICT_DICTSIZE_MIN);
    return ERROR(dstSize_tooSmall);
  }
  if (nbThreads > 1) {
    pool = POOL_create(nbThreads, 1);
    if (!pool) {
      return ERROR(memory_allocation);
    }
  }
  /* Initialization */
  COVER_best_init(&best);
  /* Turn down global display level to clean up display at level 2 and below */
  g_displayLevel = displayLevel == 0 ? 0 : displayLevel - 1;
  /* Loop through d first because each new value needs a new context */
  LOCALDISPLAYLEVEL(displayLevel, 2, "Trying %u different sets of parameters\n",
                    kIterations);
  for (d = kMinD; d <= kMaxD; d += 2) {
    /* Initialize the context for this value of d */
    COVER_ctx_t ctx;
    LOCALDISPLAYLEVEL(displayLevel, 3, "d=%u\n", d);
    {
      const size_t initVal = COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples, d, splitPoint);
      if (ZSTD_isError(initVal)) {
        LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to initialize context\n");
        COVER_best_destroy(&best);
        POOL_free(pool);
        return initVal;
      }
    }
    if (!warned) {
      COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.suffixSize, displayLevel);
      warned = 1;
    }
    /* Loop through k reusing the same context */
    for (k = kMinK; k <= kMaxK; k += kStepSize) {
      /* Prepare the arguments */
      COVER_tryParameters_data_t *data = (COVER_tryParameters_data_t *)malloc(
          sizeof(COVER_tryParameters_data_t));
      LOCALDISPLAYLEVEL(displayLevel, 3, "k=%u\n", k);
      if (!data) {
        LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to allocate parameters\n");
        COVER_best_destroy(&best);
        COVER_ctx_destroy(&ctx);
        POOL_free(pool);
        return ERROR(memory_allocation);
      }
      data->ctx = &ctx;
      data->best = &best;
      data->dictBufferCapacity = dictBufferCapacity;
      data->parameters = *parameters;
      data->parameters.k = k;
      data->parameters.d = d;
      data->parameters.splitPoint = splitPoint;
      data->parameters.steps = kSteps;
      data->parameters.shrinkDict = shrinkDict;
      data->parameters.zParams.notificationLevel = g_displayLevel;
      /* Check the parameters */
      if (!COVER_checkParameters(data->parameters, dictBufferCapacity)) {
        DISPLAYLEVEL(1, "Cover parameters incorrect\n");
        free(data);
        continue;
      }
      /* Call the function and pass ownership of data to it */
      COVER_best_start(&best);
      if (pool) {
        POOL_add(pool, &COVER_tryParameters, data);
      } else {
        COVER_tryParameters(data);
      }
      /* Print status */
      LOCALDISPLAYUPDATE(displayLevel, 2, "\r%u%%       ",
                         (unsigned)((iteration * 100) / kIterations));
      ++iteration;
    }
    COVER_best_wait(&best);
    COVER_ctx_destroy(&ctx);
  }
  LOCALDISPLAYLEVEL(displayLevel, 2, "\r%79s\r", "");
  /* Fill the output buffer and parameters with output of the best parameters */
  {
    const size_t dictSize = best.dictSize;
    if (ZSTD_isError(best.compressedSize)) {
      const size_t compressedSize = best.compressedSize;
      COVER_best_destroy(&best);
      POOL_free(pool);
      return compressedSize;
    }
    *parameters = best.parameters;
    memcpy(dictBuffer, best.dict, dictSize);
    COVER_best_destroy(&best);
    POOL_free(pool);
    return dictSize;
  }
}