aboutsummaryrefslogtreecommitdiff
path: root/src/zopfli/deflate.c
blob: c5abda9ea972913b6ce3535191e96b38c066018c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
/*
Copyright 2011 Google Inc. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Author: lode.vandevenne@gmail.com (Lode Vandevenne)
Author: jyrki.alakuijala@gmail.com (Jyrki Alakuijala)
*/

#include "deflate.h"

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>

#include "blocksplitter.h"
#include "squeeze.h"
#include "symbols.h"
#include "tree.h"

/*
bp = bitpointer, always in range [0, 7].
The outsize is number of necessary bytes to encode the bits.
Given the value of bp and the amount of bytes, the amount of bits represented
is not simply bytesize * 8 + bp because even representing one bit requires a
whole byte. It is: (bp == 0) ? (bytesize * 8) : ((bytesize - 1) * 8 + bp)
*/
static void AddBit(int bit,
                   unsigned char* bp, unsigned char** out, size_t* outsize) {
  if (*bp == 0) ZOPFLI_APPEND_DATA(0, out, outsize);
  (*out)[*outsize - 1] |= bit << *bp;
  *bp = (*bp + 1) & 7;
}

static void AddBits(unsigned symbol, unsigned length,
                    unsigned char* bp, unsigned char** out, size_t* outsize) {
  /* TODO(lode): make more efficient (add more bits at once). */
  unsigned i;
  for (i = 0; i < length; i++) {
    unsigned bit = (symbol >> i) & 1;
    if (*bp == 0) ZOPFLI_APPEND_DATA(0, out, outsize);
    (*out)[*outsize - 1] |= bit << *bp;
    *bp = (*bp + 1) & 7;
  }
}

/*
Adds bits, like AddBits, but the order is inverted. The deflate specification
uses both orders in one standard.
*/
static void AddHuffmanBits(unsigned symbol, unsigned length,
                           unsigned char* bp, unsigned char** out,
                           size_t* outsize) {
  /* TODO(lode): make more efficient (add more bits at once). */
  unsigned i;
  for (i = 0; i < length; i++) {
    unsigned bit = (symbol >> (length - i - 1)) & 1;
    if (*bp == 0) ZOPFLI_APPEND_DATA(0, out, outsize);
    (*out)[*outsize - 1] |= bit << *bp;
    *bp = (*bp + 1) & 7;
  }
}

/*
Ensures there are at least 2 distance codes to support buggy decoders.
Zlib 1.2.1 and below have a bug where it fails if there isn't at least 1
distance code (with length > 0), even though it's valid according to the
deflate spec to have 0 distance codes. On top of that, some mobile phones
require at least two distance codes. To support these decoders too (but
potentially at the cost of a few bytes), add dummy code lengths of 1.
References to this bug can be found in the changelog of
Zlib 1.2.2 and here: http://www.jonof.id.au/forum/index.php?topic=515.0.

d_lengths: the 32 lengths of the distance codes.
*/
static void PatchDistanceCodesForBuggyDecoders(unsigned* d_lengths) {
  int num_dist_codes = 0; /* Amount of non-zero distance codes */
  int i;
  for (i = 0; i < 30 /* Ignore the two unused codes from the spec */; i++) {
    if (d_lengths[i]) num_dist_codes++;
    if (num_dist_codes >= 2) return; /* Two or more codes is fine. */
  }

  if (num_dist_codes == 0) {
    d_lengths[0] = d_lengths[1] = 1;
  } else if (num_dist_codes == 1) {
    d_lengths[d_lengths[0] ? 1 : 0] = 1;
  }
}

/*
Encodes the Huffman tree and returns how many bits its encoding takes. If out
is a null pointer, only returns the size and runs faster.
*/
static size_t EncodeTree(const unsigned* ll_lengths,
                         const unsigned* d_lengths,
                         int use_16, int use_17, int use_18,
                         unsigned char* bp,
                         unsigned char** out, size_t* outsize) {
  unsigned lld_total;  /* Total amount of literal, length, distance codes. */
  /* Runlength encoded version of lengths of litlen and dist trees. */
  unsigned* rle = 0;
  unsigned* rle_bits = 0;  /* Extra bits for rle values 16, 17 and 18. */
  size_t rle_size = 0;  /* Size of rle array. */
  size_t rle_bits_size = 0;  /* Should have same value as rle_size. */
  unsigned hlit = 29;  /* 286 - 257 */
  unsigned hdist = 29;  /* 32 - 1, but gzip does not like hdist > 29.*/
  unsigned hclen;
  unsigned hlit2;
  size_t i, j;
  size_t clcounts[19];
  unsigned clcl[19];  /* Code length code lengths. */
  unsigned clsymbols[19];
  /* The order in which code length code lengths are encoded as per deflate. */
  static const unsigned order[19] = {
    16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
  };
  int size_only = !out;
  size_t result_size = 0;

  for(i = 0; i < 19; i++) clcounts[i] = 0;

  /* Trim zeros. */
  while (hlit > 0 && ll_lengths[257 + hlit - 1] == 0) hlit--;
  while (hdist > 0 && d_lengths[1 + hdist - 1] == 0) hdist--;
  hlit2 = hlit + 257;

  lld_total = hlit2 + hdist + 1;

  for (i = 0; i < lld_total; i++) {
    /* This is an encoding of a huffman tree, so now the length is a symbol */
    unsigned char symbol = i < hlit2 ? ll_lengths[i] : d_lengths[i - hlit2];
    unsigned count = 1;
    if(use_16 || (symbol == 0 && (use_17 || use_18))) {
      for (j = i + 1; j < lld_total && symbol ==
          (j < hlit2 ? ll_lengths[j] : d_lengths[j - hlit2]); j++) {
        count++;
      }
    }
    i += count - 1;

    /* Repetitions of zeroes */
    if (symbol == 0 && count >= 3) {
      if (use_18) {
        while (count >= 11) {
          unsigned count2 = count > 138 ? 138 : count;
          if (!size_only) {
            ZOPFLI_APPEND_DATA(18, &rle, &rle_size);
            ZOPFLI_APPEND_DATA(count2 - 11, &rle_bits, &rle_bits_size);
          }
          clcounts[18]++;
          count -= count2;
        }
      }
      if (use_17) {
        while (count >= 3) {
          unsigned count2 = count > 10 ? 10 : count;
          if (!size_only) {
            ZOPFLI_APPEND_DATA(17, &rle, &rle_size);
            ZOPFLI_APPEND_DATA(count2 - 3, &rle_bits, &rle_bits_size);
          }
          clcounts[17]++;
          count -= count2;
        }
      }
    }

    /* Repetitions of any symbol */
    if (use_16 && count >= 4) {
      count--;  /* Since the first one is hardcoded. */
      clcounts[symbol]++;
      if (!size_only) {
        ZOPFLI_APPEND_DATA(symbol, &rle, &rle_size);
        ZOPFLI_APPEND_DATA(0, &rle_bits, &rle_bits_size);
      }
      while (count >= 3) {
        unsigned count2 = count > 6 ? 6 : count;
        if (!size_only) {
          ZOPFLI_APPEND_DATA(16, &rle, &rle_size);
          ZOPFLI_APPEND_DATA(count2 - 3, &rle_bits, &rle_bits_size);
        }
        clcounts[16]++;
        count -= count2;
      }
    }

    /* No or insufficient repetition */
    clcounts[symbol] += count;
    while (count > 0) {
      if (!size_only) {
        ZOPFLI_APPEND_DATA(symbol, &rle, &rle_size);
        ZOPFLI_APPEND_DATA(0, &rle_bits, &rle_bits_size);
      }
      count--;
    }
  }

  ZopfliCalculateBitLengths(clcounts, 19, 7, clcl);
  if (!size_only) ZopfliLengthsToSymbols(clcl, 19, 7, clsymbols);

  hclen = 15;
  /* Trim zeros. */
  while (hclen > 0 && clcounts[order[hclen + 4 - 1]] == 0) hclen--;

  if (!size_only) {
    AddBits(hlit, 5, bp, out, outsize);
    AddBits(hdist, 5, bp, out, outsize);
    AddBits(hclen, 4, bp, out, outsize);

    for (i = 0; i < hclen + 4; i++) {
      AddBits(clcl[order[i]], 3, bp, out, outsize);
    }

    for (i = 0; i < rle_size; i++) {
      unsigned symbol = clsymbols[rle[i]];
      AddHuffmanBits(symbol, clcl[rle[i]], bp, out, outsize);
      /* Extra bits. */
      if (rle[i] == 16) AddBits(rle_bits[i], 2, bp, out, outsize);
      else if (rle[i] == 17) AddBits(rle_bits[i], 3, bp, out, outsize);
      else if (rle[i] == 18) AddBits(rle_bits[i], 7, bp, out, outsize);
    }
  }

  result_size += 14;  /* hlit, hdist, hclen bits */
  result_size += (hclen + 4) * 3;  /* clcl bits */
  for(i = 0; i < 19; i++) {
    result_size += clcl[i] * clcounts[i];
  }
  /* Extra bits. */
  result_size += clcounts[16] * 2;
  result_size += clcounts[17] * 3;
  result_size += clcounts[18] * 7;

  /* Note: in case of "size_only" these are null pointers so no effect. */
  free(rle);
  free(rle_bits);

  return result_size;
}

static void AddDynamicTree(const unsigned* ll_lengths,
                           const unsigned* d_lengths,
                           unsigned char* bp,
                           unsigned char** out, size_t* outsize) {
  int i;
  int best = 0;
  size_t bestsize = 0;

  for(i = 0; i < 8; i++) {
    size_t size = EncodeTree(ll_lengths, d_lengths,
                             i & 1, i & 2, i & 4,
                             0, 0, 0);
    if (bestsize == 0 || size < bestsize) {
      bestsize = size;
      best = i;
    }
  }

  EncodeTree(ll_lengths, d_lengths,
             best & 1, best & 2, best & 4,
             bp, out, outsize);
}

/*
Gives the exact size of the tree, in bits, as it will be encoded in DEFLATE.
*/
static size_t CalculateTreeSize(const unsigned* ll_lengths,
                                const unsigned* d_lengths) {
  size_t result = 0;
  int i;

  for(i = 0; i < 8; i++) {
    size_t size = EncodeTree(ll_lengths, d_lengths,
                             i & 1, i & 2, i & 4,
                             0, 0, 0);
    if (result == 0 || size < result) result = size;
  }

  return result;
}

/*
Adds all lit/len and dist codes from the lists as huffman symbols. Does not add
end code 256. expected_data_size is the uncompressed block size, used for
assert, but you can set it to 0 to not do the assertion.
*/
static void AddLZ77Data(const ZopfliLZ77Store* lz77,
                        size_t lstart, size_t lend,
                        size_t expected_data_size,
                        const unsigned* ll_symbols, const unsigned* ll_lengths,
                        const unsigned* d_symbols, const unsigned* d_lengths,
                        unsigned char* bp,
                        unsigned char** out, size_t* outsize) {
  size_t testlength = 0;
  size_t i;

  for (i = lstart; i < lend; i++) {
    unsigned dist = lz77->dists[i];
    unsigned litlen = lz77->litlens[i];
    if (dist == 0) {
      assert(litlen < 256);
      assert(ll_lengths[litlen] > 0);
      AddHuffmanBits(ll_symbols[litlen], ll_lengths[litlen], bp, out, outsize);
      testlength++;
    } else {
      unsigned lls = ZopfliGetLengthSymbol(litlen);
      unsigned ds = ZopfliGetDistSymbol(dist);
      assert(litlen >= 3 && litlen <= 288);
      assert(ll_lengths[lls] > 0);
      assert(d_lengths[ds] > 0);
      AddHuffmanBits(ll_symbols[lls], ll_lengths[lls], bp, out, outsize);
      AddBits(ZopfliGetLengthExtraBitsValue(litlen),
              ZopfliGetLengthExtraBits(litlen),
              bp, out, outsize);
      AddHuffmanBits(d_symbols[ds], d_lengths[ds], bp, out, outsize);
      AddBits(ZopfliGetDistExtraBitsValue(dist),
              ZopfliGetDistExtraBits(dist),
              bp, out, outsize);
      testlength += litlen;
    }
  }
  assert(expected_data_size == 0 || testlength == expected_data_size);
}

static void GetFixedTree(unsigned* ll_lengths, unsigned* d_lengths) {
  size_t i;
  for (i = 0; i < 144; i++) ll_lengths[i] = 8;
  for (i = 144; i < 256; i++) ll_lengths[i] = 9;
  for (i = 256; i < 280; i++) ll_lengths[i] = 7;
  for (i = 280; i < 288; i++) ll_lengths[i] = 8;
  for (i = 0; i < 32; i++) d_lengths[i] = 5;
}

/*
Same as CalculateBlockSymbolSize, but for block size smaller than histogram
size.
*/
static size_t CalculateBlockSymbolSizeSmall(const unsigned* ll_lengths,
                                            const unsigned* d_lengths,
                                            const ZopfliLZ77Store* lz77,
                                            size_t lstart, size_t lend) {
  size_t result = 0;
  size_t i;
  for (i = lstart; i < lend; i++) {
    assert(i < lz77->size);
    assert(lz77->litlens[i] < 259);
    if (lz77->dists[i] == 0) {
      result += ll_lengths[lz77->litlens[i]];
    } else {
      int ll_symbol = ZopfliGetLengthSymbol(lz77->litlens[i]);
      int d_symbol = ZopfliGetDistSymbol(lz77->dists[i]);
      result += ll_lengths[ll_symbol];
      result += d_lengths[d_symbol];
      result += ZopfliGetLengthSymbolExtraBits(ll_symbol);
      result += ZopfliGetDistSymbolExtraBits(d_symbol);
    }
  }
  result += ll_lengths[256]; /*end symbol*/
  return result;
}

/*
Same as CalculateBlockSymbolSize, but with the histogram provided by the caller.
*/
static size_t CalculateBlockSymbolSizeGivenCounts(const size_t* ll_counts,
                                                  const size_t* d_counts,
                                                  const unsigned* ll_lengths,
                                                  const unsigned* d_lengths,
                                                  const ZopfliLZ77Store* lz77,
                                                  size_t lstart, size_t lend) {
  size_t result = 0;
  size_t i;
  if (lstart + ZOPFLI_NUM_LL * 3 > lend) {
    return CalculateBlockSymbolSizeSmall(
        ll_lengths, d_lengths, lz77, lstart, lend);
  } else {
    for (i = 0; i < 256; i++) {
      result += ll_lengths[i] * ll_counts[i];
    }
    for (i = 257; i < 286; i++) {
      result += ll_lengths[i] * ll_counts[i];
      result += ZopfliGetLengthSymbolExtraBits(i) * ll_counts[i];
    }
    for (i = 0; i < 30; i++) {
      result += d_lengths[i] * d_counts[i];
      result += ZopfliGetDistSymbolExtraBits(i) * d_counts[i];
    }
    result += ll_lengths[256]; /*end symbol*/
    return result;
  }
}

/*
Calculates size of the part after the header and tree of an LZ77 block, in bits.
*/
static size_t CalculateBlockSymbolSize(const unsigned* ll_lengths,
                                       const unsigned* d_lengths,
                                       const ZopfliLZ77Store* lz77,
                                       size_t lstart, size_t lend) {
  if (lstart + ZOPFLI_NUM_LL * 3 > lend) {
    return CalculateBlockSymbolSizeSmall(
        ll_lengths, d_lengths, lz77, lstart, lend);
  } else {
    size_t ll_counts[ZOPFLI_NUM_LL];
    size_t d_counts[ZOPFLI_NUM_D];
    ZopfliLZ77GetHistogram(lz77, lstart, lend, ll_counts, d_counts);
    return CalculateBlockSymbolSizeGivenCounts(
        ll_counts, d_counts, ll_lengths, d_lengths, lz77, lstart, lend);
  }
}

static size_t AbsDiff(size_t x, size_t y) {
  if (x > y)
    return x - y;
  else
    return y - x;
}

/*
Changes the population counts in a way that the consequent Huffman tree
compression, especially its rle-part, will be more likely to compress this data
more efficiently. length contains the size of the histogram.
*/
void OptimizeHuffmanForRle(int length, size_t* counts) {
  int i, k, stride;
  size_t symbol, sum, limit;
  int* good_for_rle;

  /* 1) We don't want to touch the trailing zeros. We may break the
  rules of the format by adding more data in the distance codes. */
  for (; length >= 0; --length) {
    if (length == 0) {
      return;
    }
    if (counts[length - 1] != 0) {
      /* Now counts[0..length - 1] does not have trailing zeros. */
      break;
    }
  }
  /* 2) Let's mark all population counts that already can be encoded
  with an rle code.*/
  good_for_rle = (int*)malloc((unsigned)length * sizeof(int));
  for (i = 0; i < length; ++i) good_for_rle[i] = 0;

  /* Let's not spoil any of the existing good rle codes.
  Mark any seq of 0's that is longer than 5 as a good_for_rle.
  Mark any seq of non-0's that is longer than 7 as a good_for_rle.*/
  symbol = counts[0];
  stride = 0;
  for (i = 0; i < length + 1; ++i) {
    if (i == length || counts[i] != symbol) {
      if ((symbol == 0 && stride >= 5) || (symbol != 0 && stride >= 7)) {
        for (k = 0; k < stride; ++k) {
          good_for_rle[i - k - 1] = 1;
        }
      }
      stride = 1;
      if (i != length) {
        symbol = counts[i];
      }
    } else {
      ++stride;
    }
  }

  /* 3) Let's replace those population counts that lead to more rle codes. */
  stride = 0;
  limit = counts[0];
  sum = 0;
  for (i = 0; i < length + 1; ++i) {
    if (i == length || good_for_rle[i]
        /* Heuristic for selecting the stride ranges to collapse. */
        || AbsDiff(counts[i], limit) >= 4) {
      if (stride >= 4 || (stride >= 3 && sum == 0)) {
        /* The stride must end, collapse what we have, if we have enough (4). */
        int count = (sum + stride / 2) / stride;
        if (count < 1) count = 1;
        if (sum == 0) {
          /* Don't make an all zeros stride to be upgraded to ones. */
          count = 0;
        }
        for (k = 0; k < stride; ++k) {
          /* We don't want to change value at counts[i],
          that is already belonging to the next stride. Thus - 1. */
          counts[i - k - 1] = count;
        }
      }
      stride = 0;
      sum = 0;
      if (i < length - 3) {
        /* All interesting strides have a count of at least 4,
        at least when non-zeros. */
        limit = (counts[i] + counts[i + 1] +
                 counts[i + 2] + counts[i + 3] + 2) / 4;
      } else if (i < length) {
        limit = counts[i];
      } else {
        limit = 0;
      }
    }
    ++stride;
    if (i != length) {
      sum += counts[i];
    }
  }

  free(good_for_rle);
}

/*
Tries out OptimizeHuffmanForRle for this block, if the result is smaller,
uses it, otherwise keeps the original. Returns size of encoded tree and data in
bits, not including the 3-bit block header.
*/
static double TryOptimizeHuffmanForRle(
    const ZopfliLZ77Store* lz77, size_t lstart, size_t lend,
    const size_t* ll_counts, const size_t* d_counts,
    unsigned* ll_lengths, unsigned* d_lengths) {
  size_t ll_counts2[ZOPFLI_NUM_LL];
  size_t d_counts2[ZOPFLI_NUM_D];
  unsigned ll_lengths2[ZOPFLI_NUM_LL];
  unsigned d_lengths2[ZOPFLI_NUM_D];
  double treesize;
  double datasize;
  double treesize2;
  double datasize2;

  treesize = CalculateTreeSize(ll_lengths, d_lengths);
  datasize = CalculateBlockSymbolSizeGivenCounts(ll_counts, d_counts,
      ll_lengths, d_lengths, lz77, lstart, lend);

  memcpy(ll_counts2, ll_counts, sizeof(ll_counts2));
  memcpy(d_counts2, d_counts, sizeof(d_counts2));
  OptimizeHuffmanForRle(ZOPFLI_NUM_LL, ll_counts2);
  OptimizeHuffmanForRle(ZOPFLI_NUM_D, d_counts2);
  ZopfliCalculateBitLengths(ll_counts2, ZOPFLI_NUM_LL, 15, ll_lengths2);
  ZopfliCalculateBitLengths(d_counts2, ZOPFLI_NUM_D, 15, d_lengths2);
  PatchDistanceCodesForBuggyDecoders(d_lengths2);

  treesize2 = CalculateTreeSize(ll_lengths2, d_lengths2);
  datasize2 = CalculateBlockSymbolSizeGivenCounts(ll_counts, d_counts,
      ll_lengths2, d_lengths2, lz77, lstart, lend);

  if (treesize2 + datasize2 < treesize + datasize) {
    memcpy(ll_lengths, ll_lengths2, sizeof(ll_lengths2));
    memcpy(d_lengths, d_lengths2, sizeof(d_lengths2));
    return treesize2 + datasize2;
  }
  return treesize + datasize;
}

/*
Calculates the bit lengths for the symbols for dynamic blocks. Chooses bit
lengths that give the smallest size of tree encoding + encoding of all the
symbols to have smallest output size. This are not necessarily the ideal Huffman
bit lengths. Returns size of encoded tree and data in bits, not including the
3-bit block header.
*/
static double GetDynamicLengths(const ZopfliLZ77Store* lz77,
                                size_t lstart, size_t lend,
                                unsigned* ll_lengths, unsigned* d_lengths) {
  size_t ll_counts[ZOPFLI_NUM_LL];
  size_t d_counts[ZOPFLI_NUM_D];

  ZopfliLZ77GetHistogram(lz77, lstart, lend, ll_counts, d_counts);
  ll_counts[256] = 1;  /* End symbol. */
  ZopfliCalculateBitLengths(ll_counts, ZOPFLI_NUM_LL, 15, ll_lengths);
  ZopfliCalculateBitLengths(d_counts, ZOPFLI_NUM_D, 15, d_lengths);
  PatchDistanceCodesForBuggyDecoders(d_lengths);
  return TryOptimizeHuffmanForRle(
      lz77, lstart, lend, ll_counts, d_counts, ll_lengths, d_lengths);
}

double ZopfliCalculateBlockSize(const ZopfliLZ77Store* lz77,
                                size_t lstart, size_t lend, int btype) {
  unsigned ll_lengths[ZOPFLI_NUM_LL];
  unsigned d_lengths[ZOPFLI_NUM_D];

  double result = 3; /* bfinal and btype bits */

  if (btype == 0) {
    size_t length = ZopfliLZ77GetByteRange(lz77, lstart, lend);
    size_t rem = length % 65535;
    size_t blocks = length / 65535 + (rem ? 1 : 0);
    /* An uncompressed block must actually be split into multiple blocks if it's
       larger than 65535 bytes long. Eeach block header is 5 bytes: 3 bits,
       padding, LEN and NLEN (potential less padding for first one ignored). */
    return blocks * 5 * 8 + length * 8;
  } if (btype == 1) {
    GetFixedTree(ll_lengths, d_lengths);
    result += CalculateBlockSymbolSize(
        ll_lengths, d_lengths, lz77, lstart, lend);
  } else {
    result += GetDynamicLengths(lz77, lstart, lend, ll_lengths, d_lengths);
  }

  return result;
}

double ZopfliCalculateBlockSizeAutoType(const ZopfliLZ77Store* lz77,
                                        size_t lstart, size_t lend) {
  double uncompressedcost = ZopfliCalculateBlockSize(lz77, lstart, lend, 0);
  /* Don't do the expensive fixed cost calculation for larger blocks that are
     unlikely to use it. */
  double fixedcost = (lz77->size > 1000) ?
      uncompressedcost : ZopfliCalculateBlockSize(lz77, lstart, lend, 1);
  double dyncost = ZopfliCalculateBlockSize(lz77, lstart, lend, 2);
  return (uncompressedcost < fixedcost && uncompressedcost < dyncost)
      ? uncompressedcost
      : (fixedcost < dyncost ? fixedcost : dyncost);
}

/* Since an uncompressed block can be max 65535 in size, it actually adds
multible blocks if needed. */
static void AddNonCompressedBlock(const ZopfliOptions* options, int final,
                                  const unsigned char* in, size_t instart,
                                  size_t inend,
                                  unsigned char* bp,
                                  unsigned char** out, size_t* outsize) {
  size_t pos = instart;
  (void)options;
  for (;;) {
    size_t i;
    unsigned short blocksize = 65535;
    unsigned short nlen;
    int currentfinal;

    if (pos + blocksize > inend) blocksize = inend - pos;
    currentfinal = pos + blocksize >= inend;

    nlen = ~blocksize;

    AddBit(final && currentfinal, bp, out, outsize);
    /* BTYPE 00 */
    AddBit(0, bp, out, outsize);
    AddBit(0, bp, out, outsize);

    /* Any bits of input up to the next byte boundary are ignored. */
    *bp = 0;

    ZOPFLI_APPEND_DATA(blocksize % 256, out, outsize);
    ZOPFLI_APPEND_DATA((blocksize / 256) % 256, out, outsize);
    ZOPFLI_APPEND_DATA(nlen % 256, out, outsize);
    ZOPFLI_APPEND_DATA((nlen / 256) % 256, out, outsize);

    for (i = 0; i < blocksize; i++) {
      ZOPFLI_APPEND_DATA(in[pos + i], out, outsize);
    }

    if (currentfinal) break;
    pos += blocksize;
  }
}

/*
Adds a deflate block with the given LZ77 data to the output.
options: global program options
btype: the block type, must be 1 or 2
final: whether to set the "final" bit on this block, must be the last block
litlens: literal/length array of the LZ77 data, in the same format as in
    ZopfliLZ77Store.
dists: distance array of the LZ77 data, in the same format as in
    ZopfliLZ77Store.
lstart: where to start in the LZ77 data
lend: where to end in the LZ77 data (not inclusive)
expected_data_size: the uncompressed block size, used for assert, but you can
  set it to 0 to not do the assertion.
bp: output bit pointer
out: dynamic output array to append to
outsize: dynamic output array size
*/
static void AddLZ77Block(const ZopfliOptions* options, int btype, int final,
                         const ZopfliLZ77Store* lz77,
                         size_t lstart, size_t lend,
                         size_t expected_data_size,
                         unsigned char* bp,
                         unsigned char** out, size_t* outsize) {
  unsigned ll_lengths[ZOPFLI_NUM_LL];
  unsigned d_lengths[ZOPFLI_NUM_D];
  unsigned ll_symbols[ZOPFLI_NUM_LL];
  unsigned d_symbols[ZOPFLI_NUM_D];
  size_t detect_block_size = *outsize;
  size_t compressed_size;
  size_t uncompressed_size = 0;
  size_t i;
  if (btype == 0) {
    size_t length = ZopfliLZ77GetByteRange(lz77, lstart, lend);
    size_t pos = lstart == lend ? 0 : lz77->pos[lstart];
    size_t end = pos + length;
    AddNonCompressedBlock(options, final,
                          lz77->data, pos, end, bp, out, outsize);
    return;
  }

  AddBit(final, bp, out, outsize);
  AddBit(btype & 1, bp, out, outsize);
  AddBit((btype & 2) >> 1, bp, out, outsize);

  if (btype == 1) {
    /* Fixed block. */
    GetFixedTree(ll_lengths, d_lengths);
  } else {
    /* Dynamic block. */
    unsigned detect_tree_size;
    assert(btype == 2);

    GetDynamicLengths(lz77, lstart, lend, ll_lengths, d_lengths);

    detect_tree_size = *outsize;
    AddDynamicTree(ll_lengths, d_lengths, bp, out, outsize);
    if (options->verbose) {
      fprintf(stderr, "treesize: %d\n", (int)(*outsize - detect_tree_size));
    }
  }

  ZopfliLengthsToSymbols(ll_lengths, ZOPFLI_NUM_LL, 15, ll_symbols);
  ZopfliLengthsToSymbols(d_lengths, ZOPFLI_NUM_D, 15, d_symbols);

  detect_block_size = *outsize;
  AddLZ77Data(lz77, lstart, lend, expected_data_size,
              ll_symbols, ll_lengths, d_symbols, d_lengths,
              bp, out, outsize);
  /* End symbol. */
  AddHuffmanBits(ll_symbols[256], ll_lengths[256], bp, out, outsize);

  for (i = lstart; i < lend; i++) {
    uncompressed_size += lz77->dists[i] == 0 ? 1 : lz77->litlens[i];
  }
  compressed_size = *outsize - detect_block_size;
  if (options->verbose) {
    fprintf(stderr, "compressed block size: %d (%dk) (unc: %d)\n",
           (int)compressed_size, (int)(compressed_size / 1024),
           (int)(uncompressed_size));
  }
}

static void AddLZ77BlockAutoType(const ZopfliOptions* options, int final,
                                 const ZopfliLZ77Store* lz77,
                                 size_t lstart, size_t lend,
                                 size_t expected_data_size,
                                 unsigned char* bp,
                                 unsigned char** out, size_t* outsize) {
  double uncompressedcost = ZopfliCalculateBlockSize(lz77, lstart, lend, 0);
  double fixedcost = ZopfliCalculateBlockSize(lz77, lstart, lend, 1);
  double dyncost = ZopfliCalculateBlockSize(lz77, lstart, lend, 2);

  /* Whether to perform the expensive calculation of creating an optimal block
  with fixed huffman tree to check if smaller. Only do this for small blocks or
  blocks which already are pretty good with fixed huffman tree. */
  int expensivefixed = (lz77->size < 1000) || fixedcost <= dyncost * 1.1;

  ZopfliLZ77Store fixedstore;
  if (lstart == lend) {
    /* Smallest empty block is represented by fixed block */
    AddBits(final, 1, bp, out, outsize);
    AddBits(1, 2, bp, out, outsize);  /* btype 01 */
    AddBits(0, 7, bp, out, outsize);  /* end symbol has code 0000000 */
    return;
  }
  ZopfliInitLZ77Store(lz77->data, &fixedstore);
  if (expensivefixed) {
    /* Recalculate the LZ77 with ZopfliLZ77OptimalFixed */
    size_t instart = lz77->pos[lstart];
    size_t inend = instart + ZopfliLZ77GetByteRange(lz77, lstart, lend);

    ZopfliBlockState s;
    ZopfliInitBlockState(options, instart, inend, 1, &s);
    ZopfliLZ77OptimalFixed(&s, lz77->data, instart, inend, &fixedstore);
    fixedcost = ZopfliCalculateBlockSize(&fixedstore, 0, fixedstore.size, 1);
    ZopfliCleanBlockState(&s);
  }

  if (uncompressedcost < fixedcost && uncompressedcost < dyncost) {
    AddLZ77Block(options, 0, final, lz77, lstart, lend,
                 expected_data_size, bp, out, outsize);
  } else if (fixedcost < dyncost) {
    if (expensivefixed) {
      AddLZ77Block(options, 1, final, &fixedstore, 0, fixedstore.size,
                   expected_data_size, bp, out, outsize);
    } else {
      AddLZ77Block(options, 1, final, lz77, lstart, lend,
                   expected_data_size, bp, out, outsize);
    }
  } else {
    AddLZ77Block(options, 2, final, lz77, lstart, lend,
                 expected_data_size, bp, out, outsize);
  }

  ZopfliCleanLZ77Store(&fixedstore);
}

/*
Deflate a part, to allow ZopfliDeflate() to use multiple master blocks if
needed.
It is possible to call this function multiple times in a row, shifting
instart and inend to next bytes of the data. If instart is larger than 0, then
previous bytes are used as the initial dictionary for LZ77.
This function will usually output multiple deflate blocks. If final is 1, then
the final bit will be set on the last block.
*/
void ZopfliDeflatePart(const ZopfliOptions* options, int btype, int final,
                       const unsigned char* in, size_t instart, size_t inend,
                       unsigned char* bp, unsigned char** out,
                       size_t* outsize) {
  size_t i;
  /* byte coordinates rather than lz77 index */
  size_t* splitpoints_uncompressed = 0;
  size_t npoints = 0;
  size_t* splitpoints = 0;
  double totalcost = 0;
  ZopfliLZ77Store lz77;

  /* If btype=2 is specified, it tries all block types. If a lesser btype is
  given, then however it forces that one. Neither of the lesser types needs
  block splitting as they have no dynamic huffman trees. */
  if (btype == 0) {
    AddNonCompressedBlock(options, final, in, instart, inend, bp, out, outsize);
    return;
  } else if (btype == 1) {
    ZopfliLZ77Store store;
    ZopfliBlockState s;
    ZopfliInitLZ77Store(in, &store);
    ZopfliInitBlockState(options, instart, inend, 1, &s);

    ZopfliLZ77OptimalFixed(&s, in, instart, inend, &store);
    AddLZ77Block(options, btype, final, &store, 0, store.size, 0,
                 bp, out, outsize);

    ZopfliCleanBlockState(&s);
    ZopfliCleanLZ77Store(&store);
    return;
  }


  if (options->blocksplitting) {
    ZopfliBlockSplit(options, in, instart, inend,
                     options->blocksplittingmax,
                     &splitpoints_uncompressed, &npoints);
    splitpoints = (size_t*)malloc(sizeof(*splitpoints) * npoints);
  }

  ZopfliInitLZ77Store(in, &lz77);

  for (i = 0; i <= npoints; i++) {
    size_t start = i == 0 ? instart : splitpoints_uncompressed[i - 1];
    size_t end = i == npoints ? inend : splitpoints_uncompressed[i];
    ZopfliBlockState s;
    ZopfliLZ77Store store;
    ZopfliInitLZ77Store(in, &store);
    ZopfliInitBlockState(options, start, end, 1, &s);
    ZopfliLZ77Optimal(&s, in, start, end, options->numiterations, &store);
    totalcost += ZopfliCalculateBlockSizeAutoType(&store, 0, store.size);

    ZopfliAppendLZ77Store(&store, &lz77);
    if (i < npoints) splitpoints[i] = lz77.size;

    ZopfliCleanBlockState(&s);
    ZopfliCleanLZ77Store(&store);
  }

  /* Second block splitting attempt */
  if (options->blocksplitting && npoints > 1) {
    size_t* splitpoints2 = 0;
    size_t npoints2 = 0;
    double totalcost2 = 0;

    ZopfliBlockSplitLZ77(options, &lz77,
                         options->blocksplittingmax, &splitpoints2, &npoints2);

    for (i = 0; i <= npoints2; i++) {
      size_t start = i == 0 ? 0 : splitpoints2[i - 1];
      size_t end = i == npoints2 ? lz77.size : splitpoints2[i];
      totalcost2 += ZopfliCalculateBlockSizeAutoType(&lz77, start, end);
    }

    if (totalcost2 < totalcost) {
      free(splitpoints);
      splitpoints = splitpoints2;
      npoints = npoints2;
    } else {
      free(splitpoints2);
    }
  }

  for (i = 0; i <= npoints; i++) {
    size_t start = i == 0 ? 0 : splitpoints[i - 1];
    size_t end = i == npoints ? lz77.size : splitpoints[i];
    AddLZ77BlockAutoType(options, i == npoints && final,
                         &lz77, start, end, 0,
                         bp, out, outsize);
  }

  ZopfliCleanLZ77Store(&lz77);
  free(splitpoints);
  free(splitpoints_uncompressed);
}

void ZopfliDeflate(const ZopfliOptions* options, int btype, int final,
                   const unsigned char* in, size_t insize,
                   unsigned char* bp, unsigned char** out, size_t* outsize) {
 size_t offset = *outsize;
#if ZOPFLI_MASTER_BLOCK_SIZE == 0
  ZopfliDeflatePart(options, btype, final, in, 0, insize, bp, out, outsize);
#else
  size_t i = 0;
  do {
    int masterfinal = (i + ZOPFLI_MASTER_BLOCK_SIZE >= insize);
    int final2 = final && masterfinal;
    size_t size = masterfinal ? insize - i : ZOPFLI_MASTER_BLOCK_SIZE;
    ZopfliDeflatePart(options, btype, final2,
                      in, i, i + size, bp, out, outsize);
    i += size;
  } while (i < insize);
#endif
  if (options->verbose) {
    fprintf(stderr,
            "Original Size: %lu, Deflate: %lu, Compression: %f%% Removed\n",
            (unsigned long)insize, (unsigned long)(*outsize - offset),
            100.0 * (double)(insize - (*outsize - offset)) / (double)insize);
  }
}