aboutsummaryrefslogtreecommitdiff
path: root/scripts/mock_icd_generator.py
blob: 48d9465faa8b2fa5ae7960c2f28e7fc906891174 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
#!/usr/bin/python3 -i
#
# Copyright (c) 2015-2017 The Khronos Group Inc.
# Copyright (c) 2015-2017 Valve Corporation
# Copyright (c) 2015-2017 LunarG, Inc.
# Copyright (c) 2015-2017 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Tobin Ehlis <tobine@google.com>
#
# This script generates a Mock ICD that intercepts almost all Vulkan
#  functions. That layer is not intended to be useful or even compilable
#  in its initial state. Rather it's intended to be a starting point that
#  can be copied and customized to assist in creation of a new layer.

import os,re,sys
from generator import *
from common_codegen import *


# Mock header code
HEADER_C_CODE = '''
using mutex_t = std::mutex;
using lock_guard_t = std::lock_guard<mutex_t>;
using unique_lock_t = std::unique_lock<mutex_t>;

static mutex_t global_lock;
static uint64_t global_unique_handle = 1;
static const uint32_t SUPPORTED_LOADER_ICD_INTERFACE_VERSION = 5;
static uint32_t loader_interface_version = 0;
static bool negotiate_loader_icd_interface_called = false;
static void* CreateDispObjHandle() {
    auto handle = new VK_LOADER_DATA;
    set_loader_magic_value(handle);
    return handle;
}
static void DestroyDispObjHandle(void* handle) {
    delete reinterpret_cast<VK_LOADER_DATA*>(handle);
}
'''

# Manual code at the top of the cpp source file
SOURCE_CPP_PREFIX = '''
using std::unordered_map;

// Map device memory handle to any mapped allocations that we'll need to free on unmap
static unordered_map<VkDeviceMemory, std::vector<void*>> mapped_memory_map;

static VkPhysicalDevice physical_device = nullptr;
static unordered_map<VkDevice, unordered_map<uint32_t, unordered_map<uint32_t, VkQueue>>> queue_map;
static unordered_map<VkDevice, unordered_map<VkBuffer, VkBufferCreateInfo>> buffer_map;

// TODO: Would like to codegen this but limits aren't in XML
static VkPhysicalDeviceLimits SetLimits(VkPhysicalDeviceLimits *limits) {
    limits->maxImageDimension1D = 4096;
    limits->maxImageDimension2D = 4096;
    limits->maxImageDimension3D = 256;
    limits->maxImageDimensionCube = 4096;
    limits->maxImageArrayLayers = 256;
    limits->maxTexelBufferElements = 65536;
    limits->maxUniformBufferRange = 16384;
    limits->maxStorageBufferRange = 134217728;
    limits->maxPushConstantsSize = 128;
    limits->maxMemoryAllocationCount = 4096;
    limits->maxSamplerAllocationCount = 4000;
    limits->bufferImageGranularity = 1;
    limits->sparseAddressSpaceSize = 2147483648;
    limits->maxBoundDescriptorSets = 4;
    limits->maxPerStageDescriptorSamplers = 16;
    limits->maxPerStageDescriptorUniformBuffers = 12;
    limits->maxPerStageDescriptorStorageBuffers = 4;
    limits->maxPerStageDescriptorSampledImages = 16;
    limits->maxPerStageDescriptorStorageImages = 4;
    limits->maxPerStageDescriptorInputAttachments = 4;
    limits->maxPerStageResources = 128^2;
    limits->maxDescriptorSetSamplers = 96^8;
    limits->maxDescriptorSetUniformBuffers = 72^8;
    limits->maxDescriptorSetUniformBuffersDynamic = 8;
    limits->maxDescriptorSetStorageBuffers = 24^8;
    limits->maxDescriptorSetStorageBuffersDynamic = 4;
    limits->maxDescriptorSetSampledImages = 96^8;
    limits->maxDescriptorSetStorageImages = 24^8;
    limits->maxDescriptorSetInputAttachments = 4;
    limits->maxVertexInputAttributes = 16;
    limits->maxVertexInputBindings = 16;
    limits->maxVertexInputAttributeOffset = 2047;
    limits->maxVertexInputBindingStride = 2048;
    limits->maxVertexOutputComponents = 64;
    limits->maxTessellationGenerationLevel = 64;
    limits->maxTessellationPatchSize = 32;
    limits->maxTessellationControlPerVertexInputComponents = 64;
    limits->maxTessellationControlPerVertexOutputComponents = 64;
    limits->maxTessellationControlPerPatchOutputComponents = 120;
    limits->maxTessellationControlTotalOutputComponents = 2048;
    limits->maxTessellationEvaluationInputComponents = 64;
    limits->maxTessellationEvaluationOutputComponents = 64;
    limits->maxGeometryShaderInvocations = 32;
    limits->maxGeometryInputComponents = 64;
    limits->maxGeometryOutputComponents = 64;
    limits->maxGeometryOutputVertices = 256;
    limits->maxGeometryTotalOutputComponents = 1024;
    limits->maxFragmentInputComponents = 64;
    limits->maxFragmentOutputAttachments = 4;
    limits->maxFragmentDualSrcAttachments = 1;
    limits->maxFragmentCombinedOutputResources = 4;
    limits->maxComputeSharedMemorySize = 16384;
    limits->maxComputeWorkGroupCount[0] = 65535;
    limits->maxComputeWorkGroupCount[1] = 65535;
    limits->maxComputeWorkGroupCount[2] = 65535;
    limits->maxComputeWorkGroupInvocations = 128;
    limits->maxComputeWorkGroupSize[0] = 128;
    limits->maxComputeWorkGroupSize[1] = 128;
    limits->maxComputeWorkGroupSize[2] = 64;
    limits->subPixelPrecisionBits = 4;
    limits->subTexelPrecisionBits = 4;
    limits->mipmapPrecisionBits = 4;
    limits->maxDrawIndexedIndexValue = (2^32) - 1;
    limits->maxDrawIndirectCount = (2^16) - 1;
    limits->maxSamplerLodBias = 2.0f;
    limits->maxSamplerAnisotropy = 16;
    limits->maxViewports = 16;
    limits->maxViewportDimensions[0] = 4096;
    limits->maxViewportDimensions[1] = 4096;
    limits->viewportBoundsRange[0] = -8192;
    limits->viewportBoundsRange[1] = 8191;
    limits->viewportSubPixelBits = 0;
    limits->minMemoryMapAlignment = 64;
    limits->minTexelBufferOffsetAlignment = 16;
    limits->minUniformBufferOffsetAlignment = 16;
    limits->minStorageBufferOffsetAlignment = 16;
    limits->minTexelOffset = -8;
    limits->maxTexelOffset = 7;
    limits->minTexelGatherOffset = -8;
    limits->maxTexelGatherOffset = 7;
    limits->minInterpolationOffset = 0.0f;
    limits->maxInterpolationOffset = 0.5f;
    limits->subPixelInterpolationOffsetBits = 4;
    limits->maxFramebufferWidth = 4096;
    limits->maxFramebufferHeight = 4096;
    limits->maxFramebufferLayers = 256;
    limits->framebufferColorSampleCounts = 0x7F;
    limits->framebufferDepthSampleCounts = 0x7F;
    limits->framebufferStencilSampleCounts = 0x7F;
    limits->framebufferNoAttachmentsSampleCounts = 0x7F;
    limits->maxColorAttachments = 4;
    limits->sampledImageColorSampleCounts = 0x7F;
    limits->sampledImageIntegerSampleCounts = 0x7F;
    limits->sampledImageDepthSampleCounts = 0x7F;
    limits->sampledImageStencilSampleCounts = 0x7F;
    limits->storageImageSampleCounts = 0x7F;
    limits->maxSampleMaskWords = 1;
    limits->timestampComputeAndGraphics = VK_TRUE;
    limits->timestampPeriod = 1;
    limits->maxClipDistances = 8;
    limits->maxCullDistances = 8;
    limits->maxCombinedClipAndCullDistances = 8;
    limits->discreteQueuePriorities = 2;
    limits->pointSizeRange[0] = 1.0f;
    limits->pointSizeRange[1] = 64.0f;
    limits->lineWidthRange[0] = 1.0f;
    limits->lineWidthRange[1] = 8.0f;
    limits->pointSizeGranularity = 1.0f;
    limits->lineWidthGranularity = 1.0f;
    limits->strictLines = VK_TRUE;
    limits->standardSampleLocations = VK_TRUE;
    limits->optimalBufferCopyOffsetAlignment = 1;
    limits->optimalBufferCopyRowPitchAlignment = 1;
    limits->nonCoherentAtomSize = 256;

    return *limits;
}

void SetBoolArrayTrue(VkBool32* bool_array, uint32_t num_bools)
{
    for (uint32_t i = 0; i < num_bools; ++i) {
        bool_array[i] = VK_TRUE;
    }
}
'''

# Manual code at the end of the cpp source file
SOURCE_CPP_POSTFIX = '''

static VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL GetPhysicalDeviceProcAddr(VkInstance instance, const char *funcName) {
    // TODO: This function should only care about physical device functions and return nullptr for other functions
    const auto &item = name_to_funcptr_map.find(funcName);
    if (item != name_to_funcptr_map.end()) {
        return reinterpret_cast<PFN_vkVoidFunction>(item->second);
    }
    // Mock should intercept all functions so if we get here just return null
    return nullptr;
}

} // namespace vkmock

#if defined(__GNUC__) && __GNUC__ >= 4
#define EXPORT __attribute__((visibility("default")))
#elif defined(__SUNPRO_C) && (__SUNPRO_C >= 0x590)
#define EXPORT __attribute__((visibility("default")))
#else
#define EXPORT
#endif

extern "C" {

EXPORT VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(VkInstance instance, const char* pName) {
    if (!vkmock::negotiate_loader_icd_interface_called) {
        vkmock::loader_interface_version = 1;
    }
    return vkmock::GetInstanceProcAddr(instance, pName);
}

EXPORT VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetPhysicalDeviceProcAddr(VkInstance instance, const char* pName) {
    return vkmock::GetPhysicalDeviceProcAddr(instance, pName);
}

EXPORT VKAPI_ATTR VkResult VKAPI_CALL vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t* pSupportedVersion) {
    vkmock::negotiate_loader_icd_interface_called = true;
    vkmock::loader_interface_version = *pSupportedVersion;
    if (*pSupportedVersion > vkmock::SUPPORTED_LOADER_ICD_INTERFACE_VERSION) {
        *pSupportedVersion = vkmock::SUPPORTED_LOADER_ICD_INTERFACE_VERSION;
    }
    return VK_SUCCESS;
}


EXPORT VKAPI_ATTR void VKAPI_CALL vkDestroySurfaceKHR(
    VkInstance                                  instance,
    VkSurfaceKHR                                surface,
    const VkAllocationCallbacks*                pAllocator)
{
    vkmock::DestroySurfaceKHR(instance, surface, pAllocator);
}

EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkGetPhysicalDeviceSurfaceSupportKHR(
    VkPhysicalDevice                            physicalDevice,
    uint32_t                                    queueFamilyIndex,
    VkSurfaceKHR                                surface,
    VkBool32*                                   pSupported)
{
    return vkmock::GetPhysicalDeviceSurfaceSupportKHR(physicalDevice, queueFamilyIndex, surface, pSupported);
}

EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkGetPhysicalDeviceSurfaceCapabilitiesKHR(
    VkPhysicalDevice                            physicalDevice,
    VkSurfaceKHR                                surface,
    VkSurfaceCapabilitiesKHR*                   pSurfaceCapabilities)
{
    return vkmock::GetPhysicalDeviceSurfaceCapabilitiesKHR(physicalDevice, surface, pSurfaceCapabilities);
}

EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkGetPhysicalDeviceSurfaceFormatsKHR(
    VkPhysicalDevice                            physicalDevice,
    VkSurfaceKHR                                surface,
    uint32_t*                                   pSurfaceFormatCount,
    VkSurfaceFormatKHR*                         pSurfaceFormats)
{
    return vkmock::GetPhysicalDeviceSurfaceFormatsKHR(physicalDevice, surface, pSurfaceFormatCount, pSurfaceFormats);
}

EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkGetPhysicalDeviceSurfacePresentModesKHR(
    VkPhysicalDevice                            physicalDevice,
    VkSurfaceKHR                                surface,
    uint32_t*                                   pPresentModeCount,
    VkPresentModeKHR*                           pPresentModes)
{
    return vkmock::GetPhysicalDeviceSurfacePresentModesKHR(physicalDevice, surface, pPresentModeCount, pPresentModes);
}

EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkCreateDisplayPlaneSurfaceKHR(
    VkInstance                                  instance,
    const VkDisplaySurfaceCreateInfoKHR*        pCreateInfo,
    const VkAllocationCallbacks*                pAllocator,
    VkSurfaceKHR*                               pSurface)
{
    return vkmock::CreateDisplayPlaneSurfaceKHR(instance, pCreateInfo, pAllocator, pSurface);
}

#ifdef VK_USE_PLATFORM_XLIB_KHR

EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkCreateXlibSurfaceKHR(
    VkInstance                                  instance,
    const VkXlibSurfaceCreateInfoKHR*           pCreateInfo,
    const VkAllocationCallbacks*                pAllocator,
    VkSurfaceKHR*                               pSurface)
{
    return vkmock::CreateXlibSurfaceKHR(instance, pCreateInfo, pAllocator, pSurface);
}
#endif /* VK_USE_PLATFORM_XLIB_KHR */

#ifdef VK_USE_PLATFORM_XCB_KHR

EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkCreateXcbSurfaceKHR(
    VkInstance                                  instance,
    const VkXcbSurfaceCreateInfoKHR*            pCreateInfo,
    const VkAllocationCallbacks*                pAllocator,
    VkSurfaceKHR*                               pSurface)
{
    return vkmock::CreateXcbSurfaceKHR(instance, pCreateInfo, pAllocator, pSurface);
}
#endif /* VK_USE_PLATFORM_XCB_KHR */

#ifdef VK_USE_PLATFORM_WAYLAND_KHR

EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkCreateWaylandSurfaceKHR(
    VkInstance                                  instance,
    const VkWaylandSurfaceCreateInfoKHR*        pCreateInfo,
    const VkAllocationCallbacks*                pAllocator,
    VkSurfaceKHR*                               pSurface)
{
    return vkmock::CreateWaylandSurfaceKHR(instance, pCreateInfo, pAllocator, pSurface);
}
#endif /* VK_USE_PLATFORM_WAYLAND_KHR */

#ifdef VK_USE_PLATFORM_ANDROID_KHR

EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkCreateAndroidSurfaceKHR(
    VkInstance                                  instance,
    const VkAndroidSurfaceCreateInfoKHR*        pCreateInfo,
    const VkAllocationCallbacks*                pAllocator,
    VkSurfaceKHR*                               pSurface)
{
    return vkmock::CreateAndroidSurfaceKHR(instance, pCreateInfo, pAllocator, pSurface);
}
#endif /* VK_USE_PLATFORM_ANDROID_KHR */

#ifdef VK_USE_PLATFORM_WIN32_KHR

EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkCreateWin32SurfaceKHR(
    VkInstance                                  instance,
    const VkWin32SurfaceCreateInfoKHR*          pCreateInfo,
    const VkAllocationCallbacks*                pAllocator,
    VkSurfaceKHR*                               pSurface)
{
    return vkmock::CreateWin32SurfaceKHR(instance, pCreateInfo, pAllocator, pSurface);
}
#endif /* VK_USE_PLATFORM_WIN32_KHR */

EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkGetDeviceGroupSurfacePresentModesKHR(
    VkDevice                                    device,
    VkSurfaceKHR                                surface,
    VkDeviceGroupPresentModeFlagsKHR*           pModes)
{
    return vkmock::GetDeviceGroupSurfacePresentModesKHR(device, surface, pModes);
}

EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkGetPhysicalDevicePresentRectanglesKHR(
    VkPhysicalDevice                            physicalDevice,
    VkSurfaceKHR                                surface,
    uint32_t*                                   pRectCount,
    VkRect2D*                                   pRects)
{
    return vkmock::GetPhysicalDevicePresentRectanglesKHR(physicalDevice, surface, pRectCount, pRects);
}

#ifdef VK_USE_PLATFORM_VI_NN

EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkCreateViSurfaceNN(
    VkInstance                                  instance,
    const VkViSurfaceCreateInfoNN*              pCreateInfo,
    const VkAllocationCallbacks*                pAllocator,
    VkSurfaceKHR*                               pSurface)
{
    return vkmock::CreateViSurfaceNN(instance, pCreateInfo, pAllocator, pSurface);
}
#endif /* VK_USE_PLATFORM_VI_NN */

EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkGetPhysicalDeviceSurfaceCapabilities2EXT(
    VkPhysicalDevice                            physicalDevice,
    VkSurfaceKHR                                surface,
    VkSurfaceCapabilities2EXT*                  pSurfaceCapabilities)
{
    return vkmock::GetPhysicalDeviceSurfaceCapabilities2EXT(physicalDevice, surface, pSurfaceCapabilities);
}

#ifdef VK_USE_PLATFORM_IOS_MVK

EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkCreateIOSSurfaceMVK(
    VkInstance                                  instance,
    const VkIOSSurfaceCreateInfoMVK*            pCreateInfo,
    const VkAllocationCallbacks*                pAllocator,
    VkSurfaceKHR*                               pSurface)
{
    return vkmock::CreateIOSSurfaceMVK(instance, pCreateInfo, pAllocator, pSurface);
}
#endif /* VK_USE_PLATFORM_IOS_MVK */

#ifdef VK_USE_PLATFORM_MACOS_MVK

EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkCreateMacOSSurfaceMVK(
    VkInstance                                  instance,
    const VkMacOSSurfaceCreateInfoMVK*          pCreateInfo,
    const VkAllocationCallbacks*                pAllocator,
    VkSurfaceKHR*                               pSurface)
{
    return vkmock::CreateMacOSSurfaceMVK(instance, pCreateInfo, pAllocator, pSurface);
}
#endif /* VK_USE_PLATFORM_MACOS_MVK */

} // end extern "C"

'''

CUSTOM_C_INTERCEPTS = {
'vkCreateInstance': '''
    // TODO: If loader ver <=4 ICD must fail with VK_ERROR_INCOMPATIBLE_DRIVER for all vkCreateInstance calls with
    //  apiVersion set to > Vulkan 1.0 because the loader is still at interface version <= 4. Otherwise, the
    //  ICD should behave as normal.
    if (loader_interface_version <= 4) {
        return VK_ERROR_INCOMPATIBLE_DRIVER;
    }
    *pInstance = (VkInstance)CreateDispObjHandle();
    // TODO: If emulating specific device caps, will need to add intelligence here
    return VK_SUCCESS;
''',
'vkDestroyInstance': '''
    // Destroy physical device
    DestroyDispObjHandle((void*)physical_device);

    DestroyDispObjHandle((void*)instance);
''',
'vkEnumeratePhysicalDevices': '''
    if (pPhysicalDevices) {
        if (!physical_device) {
            physical_device = (VkPhysicalDevice)CreateDispObjHandle();
        }
        *pPhysicalDevices = physical_device;
    } else {
        *pPhysicalDeviceCount = 1;
    }
    return VK_SUCCESS;
''',
'vkCreateDevice': '''
    *pDevice = (VkDevice)CreateDispObjHandle();
    // TODO: If emulating specific device caps, will need to add intelligence here
    return VK_SUCCESS;
''',
'vkDestroyDevice': '''
    unique_lock_t lock(global_lock);
    // First destroy sub-device objects
    // Destroy Queues
    for (auto dev_queue_map_pair : queue_map) {
        for (auto queue_family_map_pair : queue_map[dev_queue_map_pair.first]) {
            for (auto index_queue_pair : queue_map[dev_queue_map_pair.first][queue_family_map_pair.first]) {
                DestroyDispObjHandle((void*)index_queue_pair.second);
            }
        }
    }
    queue_map.clear();
    // Now destroy device
    DestroyDispObjHandle((void*)device);
    // TODO: If emulating specific device caps, will need to add intelligence here
''',
'vkGetDeviceQueue': '''
    unique_lock_t lock(global_lock);
    auto queue = queue_map[device][queueFamilyIndex][queueIndex];
    if (queue) {
        *pQueue = queue;
    } else {
        *pQueue = queue_map[device][queueFamilyIndex][queueIndex] = (VkQueue)CreateDispObjHandle();
    }
    // TODO: If emulating specific device caps, will need to add intelligence here
    return;
''',
'vkGetDeviceQueue2': '''
    GetDeviceQueue(device, pQueueInfo->queueFamilyIndex, pQueueInfo->queueIndex, pQueue);
    // TODO: Add further support for GetDeviceQueue2 features
''',
'vkEnumerateInstanceLayerProperties': '''
    return VK_SUCCESS;
''',
'vkEnumerateDeviceLayerProperties': '''
    return VK_SUCCESS;
''',
'vkEnumerateInstanceExtensionProperties': '''
    // If requesting number of extensions, return that
    if (!pLayerName) {
        if (!pProperties) {
            *pPropertyCount = (uint32_t)instance_extension_map.size();
        } else {
            uint32_t i = 0;
            for (const auto &name_ver_pair : instance_extension_map) {
                if (i == *pPropertyCount) {
                    break;
                }
                std::strncpy(pProperties[i].extensionName, name_ver_pair.first.c_str(), sizeof(pProperties[i].extensionName));
                pProperties[i].extensionName[sizeof(pProperties[i].extensionName) - 1] = 0;
                pProperties[i].specVersion = name_ver_pair.second;
                ++i;
            }
            if (i != instance_extension_map.size()) {
                return VK_INCOMPLETE;
            }
        }
    }
    // If requesting extension properties, fill in data struct for number of extensions
    return VK_SUCCESS;
''',
'vkEnumerateDeviceExtensionProperties': '''
    // If requesting number of extensions, return that
    if (!pLayerName) {
        if (!pProperties) {
            *pPropertyCount = (uint32_t)device_extension_map.size();
        } else {
            uint32_t i = 0;
            for (const auto &name_ver_pair : device_extension_map) {
                if (i == *pPropertyCount) {
                    break;
                }
                std::strncpy(pProperties[i].extensionName, name_ver_pair.first.c_str(), sizeof(pProperties[i].extensionName));
                pProperties[i].extensionName[sizeof(pProperties[i].extensionName) - 1] = 0;
                pProperties[i].specVersion = name_ver_pair.second;
                ++i;
            }
            if (i != device_extension_map.size()) {
                return VK_INCOMPLETE;
            }
        }
    }
    // If requesting extension properties, fill in data struct for number of extensions
    return VK_SUCCESS;
''',
'vkGetPhysicalDeviceSurfacePresentModesKHR': '''
    // Currently always say that all present modes are supported
    if (!pPresentModes) {
        *pPresentModeCount = 6;
    } else {
        // Intentionally falling through and just filling however many modes are requested
        switch(*pPresentModeCount) {
        case 6:
            pPresentModes[5] = VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR;
            // fall through
        case 5:
            pPresentModes[4] = VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR;
            // fall through
        case 4:
            pPresentModes[3] = VK_PRESENT_MODE_FIFO_RELAXED_KHR;
            // fall through
        case 3:
            pPresentModes[2] = VK_PRESENT_MODE_FIFO_KHR;
            // fall through
        case 2:
            pPresentModes[1] = VK_PRESENT_MODE_MAILBOX_KHR;
            // fall through
        default:
            pPresentModes[0] = VK_PRESENT_MODE_IMMEDIATE_KHR;
            break;
        }
    }
    return VK_SUCCESS;
''',
'vkGetPhysicalDeviceSurfaceFormatsKHR': '''
    // Currently always say that RGBA8 & BGRA8 are supported
    if (!pSurfaceFormats) {
        *pSurfaceFormatCount = 2;
    } else {
        // Intentionally falling through and just filling however many types are requested
        switch(*pSurfaceFormatCount) {
        case 2:
            pSurfaceFormats[1].format = VK_FORMAT_R8G8B8A8_UNORM;
            pSurfaceFormats[1].colorSpace = VK_COLOR_SPACE_SRGB_NONLINEAR_KHR;
            // fall through
        default:
            pSurfaceFormats[0].format = VK_FORMAT_B8G8R8A8_UNORM;
            pSurfaceFormats[0].colorSpace = VK_COLOR_SPACE_SRGB_NONLINEAR_KHR;
            break;
        }
    }
    return VK_SUCCESS;
''',
'vkGetPhysicalDeviceSurfaceFormats2KHR': '''
    // Currently always say that RGBA8 & BGRA8 are supported
    if (!pSurfaceFormats) {
        *pSurfaceFormatCount = 2;
    } else {
        // Intentionally falling through and just filling however many types are requested
        switch(*pSurfaceFormatCount) {
        case 2:
            pSurfaceFormats[1].pNext = nullptr;
            pSurfaceFormats[1].surfaceFormat.format = VK_FORMAT_R8G8B8A8_UNORM;
            pSurfaceFormats[1].surfaceFormat.colorSpace = VK_COLOR_SPACE_SRGB_NONLINEAR_KHR;
            // fall through
        default:
            pSurfaceFormats[1].pNext = nullptr;
            pSurfaceFormats[0].surfaceFormat.format = VK_FORMAT_B8G8R8A8_UNORM;
            pSurfaceFormats[0].surfaceFormat.colorSpace = VK_COLOR_SPACE_SRGB_NONLINEAR_KHR;
            break;
        }
    }
    return VK_SUCCESS;
''',
'vkGetPhysicalDeviceSurfaceSupportKHR': '''
    // Currently say that all surface/queue combos are supported
    *pSupported = VK_TRUE;
    return VK_SUCCESS;
''',
'vkGetPhysicalDeviceSurfaceCapabilitiesKHR': '''
    // In general just say max supported is available for requested surface
    pSurfaceCapabilities->minImageCount = 1;
    pSurfaceCapabilities->maxImageCount = 0;
    pSurfaceCapabilities->currentExtent.width = 0xFFFFFFFF;
    pSurfaceCapabilities->currentExtent.height = 0xFFFFFFFF;
    pSurfaceCapabilities->minImageExtent.width = 1;
    pSurfaceCapabilities->minImageExtent.height = 1;
    pSurfaceCapabilities->maxImageExtent.width = 3840;
    pSurfaceCapabilities->maxImageExtent.height = 2160;
    pSurfaceCapabilities->maxImageArrayLayers = 128;
    pSurfaceCapabilities->supportedTransforms = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR |
                                                VK_SURFACE_TRANSFORM_ROTATE_90_BIT_KHR |
                                                VK_SURFACE_TRANSFORM_ROTATE_180_BIT_KHR |
                                                VK_SURFACE_TRANSFORM_ROTATE_270_BIT_KHR |
                                                VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_BIT_KHR |
                                                VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_90_BIT_KHR |
                                                VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_180_BIT_KHR |
                                                VK_SURFACE_TRANSFORM_HORIZONTAL_MIRROR_ROTATE_270_BIT_KHR |
                                                VK_SURFACE_TRANSFORM_INHERIT_BIT_KHR;
    pSurfaceCapabilities->currentTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
    pSurfaceCapabilities->supportedCompositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR |
                                                    VK_COMPOSITE_ALPHA_PRE_MULTIPLIED_BIT_KHR |
                                                    VK_COMPOSITE_ALPHA_POST_MULTIPLIED_BIT_KHR |
                                                    VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR;
    pSurfaceCapabilities->supportedUsageFlags = VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
                                                VK_IMAGE_USAGE_TRANSFER_DST_BIT |
                                                VK_IMAGE_USAGE_SAMPLED_BIT |
                                                VK_IMAGE_USAGE_STORAGE_BIT |
                                                VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
                                                VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT |
                                                VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT |
                                                VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT;
    return VK_SUCCESS;
''',
'vkGetPhysicalDeviceSurfaceCapabilities2KHR': '''
    GetPhysicalDeviceSurfaceCapabilitiesKHR(physicalDevice, pSurfaceInfo->surface, &pSurfaceCapabilities->surfaceCapabilities);
    return VK_SUCCESS;
''',
'vkGetInstanceProcAddr': '''
    if (!negotiate_loader_icd_interface_called) {
        loader_interface_version = 0;
    }
    const auto &item = name_to_funcptr_map.find(pName);
    if (item != name_to_funcptr_map.end()) {
        return reinterpret_cast<PFN_vkVoidFunction>(item->second);
    }
    // Mock should intercept all functions so if we get here just return null
    return nullptr;
''',
'vkGetDeviceProcAddr': '''
    return GetInstanceProcAddr(nullptr, pName);
''',
'vkGetPhysicalDeviceMemoryProperties': '''
    pMemoryProperties->memoryTypeCount = 2;
    pMemoryProperties->memoryTypes[0].propertyFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
    pMemoryProperties->memoryTypes[0].heapIndex = 0;
    pMemoryProperties->memoryTypes[1].propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
    pMemoryProperties->memoryTypes[1].heapIndex = 1;
    pMemoryProperties->memoryHeapCount = 2;
    pMemoryProperties->memoryHeaps[0].flags = 0;
    pMemoryProperties->memoryHeaps[0].size = 8000000000;
    pMemoryProperties->memoryHeaps[1].flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT;
    pMemoryProperties->memoryHeaps[1].size = 8000000000;
''',
'vkGetPhysicalDeviceMemoryProperties2KHR': '''
    GetPhysicalDeviceMemoryProperties(physicalDevice, &pMemoryProperties->memoryProperties);
''',
'vkGetPhysicalDeviceQueueFamilyProperties': '''
    if (!pQueueFamilyProperties) {
        *pQueueFamilyPropertyCount = 1;
    } else {
        if (*pQueueFamilyPropertyCount) {
            pQueueFamilyProperties[0].queueFlags = VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT | VK_QUEUE_TRANSFER_BIT | VK_QUEUE_SPARSE_BINDING_BIT;
            pQueueFamilyProperties[0].queueCount = 1;
            pQueueFamilyProperties[0].timestampValidBits = 0;
            pQueueFamilyProperties[0].minImageTransferGranularity = {1,1,1};
        }
    }
''',
'vkGetPhysicalDeviceQueueFamilyProperties2KHR': '''
    if (pQueueFamilyPropertyCount && pQueueFamilyProperties) {
        GetPhysicalDeviceQueueFamilyProperties(physicalDevice, pQueueFamilyPropertyCount, &pQueueFamilyProperties->queueFamilyProperties);
    } else {
        GetPhysicalDeviceQueueFamilyProperties(physicalDevice, pQueueFamilyPropertyCount, nullptr);
    }
''',
'vkGetPhysicalDeviceFeatures': '''
    uint32_t num_bools = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
    VkBool32 *bool_array = &pFeatures->robustBufferAccess;
    SetBoolArrayTrue(bool_array, num_bools);
''',
'vkGetPhysicalDeviceFeatures2KHR': '''
    GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
    uint32_t num_bools = 0; // Count number of VkBool32s in extension structs
    VkBool32* feat_bools = nullptr;
    const auto *desc_idx_features = lvl_find_in_chain<VkPhysicalDeviceDescriptorIndexingFeaturesEXT>(pFeatures->pNext);
    if (desc_idx_features) {
        const auto bool_size = sizeof(VkPhysicalDeviceDescriptorIndexingFeaturesEXT) - offsetof(VkPhysicalDeviceDescriptorIndexingFeaturesEXT, shaderInputAttachmentArrayDynamicIndexing);
        num_bools = bool_size/sizeof(VkBool32);
        feat_bools = (VkBool32*)&desc_idx_features->shaderInputAttachmentArrayDynamicIndexing;
        SetBoolArrayTrue(feat_bools, num_bools);
    }
    const auto *blendop_features = lvl_find_in_chain<VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT>(pFeatures->pNext);
    if (blendop_features) {
        const auto bool_size = sizeof(VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT) - offsetof(VkPhysicalDeviceBlendOperationAdvancedFeaturesEXT, advancedBlendCoherentOperations);
        num_bools = bool_size/sizeof(VkBool32);
        feat_bools = (VkBool32*)&blendop_features->advancedBlendCoherentOperations;
        SetBoolArrayTrue(feat_bools, num_bools);
    }
''',
'vkGetPhysicalDeviceFormatProperties': '''
    if (VK_FORMAT_UNDEFINED == format) {
        *pFormatProperties = { 0x0, 0x0, 0x0 };
    } else {
        // TODO: Just returning full support for everything initially
        *pFormatProperties = { 0x00FFFFFF, 0x00FFFFFF, 0x00FFFFFF };
    }
''',
'vkGetPhysicalDeviceFormatProperties2KHR': '''
    GetPhysicalDeviceFormatProperties(physicalDevice, format, &pFormatProperties->formatProperties);
''',
'vkGetPhysicalDeviceImageFormatProperties': '''
    // A hardcoded unsupported format
    if (format == VK_FORMAT_E5B9G9R9_UFLOAT_PACK32) {
        return VK_ERROR_FORMAT_NOT_SUPPORTED;
    }

    // TODO: Just hard-coding some values for now
    // TODO: If tiling is linear, limit the mips, levels, & sample count
    if (VK_IMAGE_TILING_LINEAR == tiling) {
        *pImageFormatProperties = { { 4096, 4096, 256 }, 1, 1, VK_SAMPLE_COUNT_1_BIT, 4294967296 };
    } else {
        // We hard-code support for all sample counts except 64 bits.
        *pImageFormatProperties = { { 4096, 4096, 256 }, 12, 256, 0x7F & ~VK_SAMPLE_COUNT_64_BIT, 4294967296 };
    }
    return VK_SUCCESS;
''',
'vkGetPhysicalDeviceImageFormatProperties2KHR': '''
    GetPhysicalDeviceImageFormatProperties(physicalDevice, pImageFormatInfo->format, pImageFormatInfo->type, pImageFormatInfo->tiling, pImageFormatInfo->usage, pImageFormatInfo->flags, &pImageFormatProperties->imageFormatProperties);
    return VK_SUCCESS;
''',
'vkGetPhysicalDeviceProperties': '''
    // TODO: Just hard-coding some values for now
    pProperties->apiVersion = VK_API_VERSION_1_0;
    pProperties->driverVersion = 1;
    pProperties->vendorID = 0xba5eba11;
    pProperties->deviceID = 0xf005ba11;
    pProperties->deviceType = VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU;
    //std::string devName = "Vulkan Mock Device";
    strcpy(pProperties->deviceName, "Vulkan Mock Device");
    pProperties->pipelineCacheUUID[0] = 18;
    pProperties->limits = SetLimits(&pProperties->limits);
    pProperties->sparseProperties = { VK_TRUE, VK_TRUE, VK_TRUE, VK_TRUE, VK_TRUE };
''',
'vkGetPhysicalDeviceProperties2KHR': '''
    GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
    const auto *desc_idx_props = lvl_find_in_chain<VkPhysicalDeviceDescriptorIndexingPropertiesEXT>(pProperties->pNext);
    if (desc_idx_props) {
        VkPhysicalDeviceDescriptorIndexingPropertiesEXT* write_props = (VkPhysicalDeviceDescriptorIndexingPropertiesEXT*)desc_idx_props;
        write_props->maxUpdateAfterBindDescriptorsInAllPools = 500000;
        write_props->shaderUniformBufferArrayNonUniformIndexingNative = false;
        write_props->shaderSampledImageArrayNonUniformIndexingNative = false;
        write_props->shaderStorageBufferArrayNonUniformIndexingNative = false;
        write_props->shaderStorageImageArrayNonUniformIndexingNative = false;
        write_props->shaderInputAttachmentArrayNonUniformIndexingNative = false;
        write_props->robustBufferAccessUpdateAfterBind = true;
        write_props->quadDivergentImplicitLod = true;
        write_props->maxPerStageDescriptorUpdateAfterBindSamplers = 500000;
        write_props->maxPerStageDescriptorUpdateAfterBindUniformBuffers = 500000;
        write_props->maxPerStageDescriptorUpdateAfterBindStorageBuffers = 500000;
        write_props->maxPerStageDescriptorUpdateAfterBindSampledImages = 500000;
        write_props->maxPerStageDescriptorUpdateAfterBindStorageImages = 500000;
        write_props->maxPerStageDescriptorUpdateAfterBindInputAttachments = 500000;
        write_props->maxPerStageUpdateAfterBindResources = 500000;
        write_props->maxDescriptorSetUpdateAfterBindSamplers = 500000;
        write_props->maxDescriptorSetUpdateAfterBindUniformBuffers = 96;
        write_props->maxDescriptorSetUpdateAfterBindUniformBuffersDynamic = 8;
        write_props->maxDescriptorSetUpdateAfterBindStorageBuffers = 500000;
        write_props->maxDescriptorSetUpdateAfterBindStorageBuffersDynamic = 4;
        write_props->maxDescriptorSetUpdateAfterBindSampledImages = 500000;
        write_props->maxDescriptorSetUpdateAfterBindStorageImages = 500000;
        write_props->maxDescriptorSetUpdateAfterBindInputAttachments = 500000;
    }

    const auto *push_descriptor_props = lvl_find_in_chain<VkPhysicalDevicePushDescriptorPropertiesKHR>(pProperties->pNext);
    if (push_descriptor_props) {
        VkPhysicalDevicePushDescriptorPropertiesKHR* write_props = (VkPhysicalDevicePushDescriptorPropertiesKHR*)push_descriptor_props;
        write_props->maxPushDescriptors = 256;
    }
''',
'vkGetPhysicalDeviceExternalSemaphoreProperties':'''
    // Hard code support for all handle types and features
    pExternalSemaphoreProperties->exportFromImportedHandleTypes = 0x1F;
    pExternalSemaphoreProperties->compatibleHandleTypes = 0x1F;
    pExternalSemaphoreProperties->externalSemaphoreFeatures = 0x3;
''',
'vkGetPhysicalDeviceExternalSemaphorePropertiesKHR':'''
    GetPhysicalDeviceExternalSemaphoreProperties(physicalDevice, pExternalSemaphoreInfo, pExternalSemaphoreProperties);
''',
'vkGetPhysicalDeviceExternalFenceProperties':'''
    // Hard-code support for all handle types and features
    pExternalFenceProperties->exportFromImportedHandleTypes = 0xF;
    pExternalFenceProperties->compatibleHandleTypes = 0xF;
    pExternalFenceProperties->externalFenceFeatures = 0x3;
''',
'vkGetPhysicalDeviceExternalFencePropertiesKHR':'''
    GetPhysicalDeviceExternalFenceProperties(physicalDevice, pExternalFenceInfo, pExternalFenceProperties);
''',
'vkGetPhysicalDeviceExternalBufferProperties':'''
    // Hard-code support for all handle types and features
    pExternalBufferProperties->externalMemoryProperties.externalMemoryFeatures = 0x7;
    pExternalBufferProperties->externalMemoryProperties.exportFromImportedHandleTypes = 0x1FF;
    pExternalBufferProperties->externalMemoryProperties.compatibleHandleTypes = 0x1FF;
''',
'vkGetPhysicalDeviceExternalBufferPropertiesKHR':'''
    GetPhysicalDeviceExternalBufferProperties(physicalDevice, pExternalBufferInfo, pExternalBufferProperties);
''',
'vkGetBufferMemoryRequirements': '''
    // TODO: Just hard-coding reqs for now
    pMemoryRequirements->size = 4096;
    pMemoryRequirements->alignment = 1;
    pMemoryRequirements->memoryTypeBits = 0xFFFF;
    // Return a better size based on the buffer size from the create info.
    auto d_iter = buffer_map.find(device);
    if (d_iter != buffer_map.end()) {
        auto iter = d_iter->second.find(buffer);
        if (iter != d_iter->second.end()) {
            pMemoryRequirements->size = ((iter->second.size + 4095) / 4096) * 4096;
        }
    }
''',
'vkGetBufferMemoryRequirements2KHR': '''
    GetBufferMemoryRequirements(device, pInfo->buffer, &pMemoryRequirements->memoryRequirements);
''',
'vkGetImageMemoryRequirements': '''
    // TODO: Just hard-coding reqs for now
    pMemoryRequirements->size = 4096;
    pMemoryRequirements->alignment = 1;

    // Here we hard-code that the memory type at index 3 doesn't support this image.
    pMemoryRequirements->memoryTypeBits = 0xFFFF & ~(0x1 << 3);
''',
'vkGetImageMemoryRequirements2KHR': '''
    GetImageMemoryRequirements(device, pInfo->image, &pMemoryRequirements->memoryRequirements);
''',
'vkMapMemory': '''
    unique_lock_t lock(global_lock);
    // TODO: Just hard-coding 64k whole size for now
    if (VK_WHOLE_SIZE == size)
        size = 0x10000;
    void* map_addr = malloc((size_t)size);
    mapped_memory_map[memory].push_back(map_addr);
    *ppData = map_addr;
    return VK_SUCCESS;
''',
'vkUnmapMemory': '''
    unique_lock_t lock(global_lock);
    for (auto map_addr : mapped_memory_map[memory]) {
        free(map_addr);
    }
    mapped_memory_map.erase(memory);
''',
'vkGetImageSubresourceLayout': '''
    // Need safe values. Callers are computing memory offsets from pLayout, with no return code to flag failure. 
    *pLayout = VkSubresourceLayout(); // Default constructor zero values.
''',
'vkGetSwapchainImagesKHR': '''
    if (!pSwapchainImages) {
        *pSwapchainImageCount = 1;
    } else if (*pSwapchainImageCount > 0) {
        pSwapchainImages[0] = (VkImage)global_unique_handle++;
        if (*pSwapchainImageCount != 1) {
            return VK_INCOMPLETE;
        }
    }
    return VK_SUCCESS;
''',
'vkAcquireNextImagesKHR': '''
    *pImageIndex = 0;
    return VK_SUCCESS;
''',
'vkCreateBuffer': '''
    unique_lock_t lock(global_lock);
    *pBuffer = (VkBuffer)global_unique_handle++;
    buffer_map[device][*pBuffer] = *pCreateInfo;
    return VK_SUCCESS;
''',
'vkDestroyBuffer': '''
    unique_lock_t lock(global_lock);
    buffer_map[device].erase(buffer);
''',
}

# MockICDGeneratorOptions - subclass of GeneratorOptions.
#
# Adds options used by MockICDOutputGenerator objects during Mock
# ICD generation.
#
# Additional members
#   prefixText - list of strings to prefix generated header with
#     (usually a copyright statement + calling convention macros).
#   protectFile - True if multiple inclusion protection should be
#     generated (based on the filename) around the entire header.
#   protectFeature - True if #ifndef..#endif protection should be
#     generated around a feature interface in the header file.
#   genFuncPointers - True if function pointer typedefs should be
#     generated
#   protectProto - If conditional protection should be generated
#     around prototype declarations, set to either '#ifdef'
#     to require opt-in (#ifdef protectProtoStr) or '#ifndef'
#     to require opt-out (#ifndef protectProtoStr). Otherwise
#     set to None.
#   protectProtoStr - #ifdef/#ifndef symbol to use around prototype
#     declarations, if protectProto is set
#   apicall - string to use for the function declaration prefix,
#     such as APICALL on Windows.
#   apientry - string to use for the calling convention macro,
#     in typedefs, such as APIENTRY.
#   apientryp - string to use for the calling convention macro
#     in function pointer typedefs, such as APIENTRYP.
#   indentFuncProto - True if prototype declarations should put each
#     parameter on a separate line
#   indentFuncPointer - True if typedefed function pointers should put each
#     parameter on a separate line
#   alignFuncParam - if nonzero and parameters are being put on a
#     separate line, align parameter names at the specified column
class MockICDGeneratorOptions(GeneratorOptions):
    def __init__(self,
                 conventions = None,
                 filename = None,
                 directory = '.',
                 apiname = None,
                 profile = None,
                 versions = '.*',
                 emitversions = '.*',
                 defaultExtensions = None,
                 addExtensions = None,
                 removeExtensions = None,
                 emitExtensions = None,
                 sortProcedure = regSortFeatures,
                 prefixText = "",
                 genFuncPointers = True,
                 protectFile = True,
                 protectFeature = True,
                 protectProto = None,
                 protectProtoStr = None,
                 apicall = '',
                 apientry = '',
                 apientryp = '',
                 indentFuncProto = True,
                 indentFuncPointer = False,
                 alignFuncParam = 0,
                 expandEnumerants = True,
                 helper_file_type = ''):
        GeneratorOptions.__init__(self, conventions, filename, directory, apiname, profile,
                                  versions, emitversions, defaultExtensions,
                                  addExtensions, removeExtensions, emitExtensions, sortProcedure)
        self.prefixText      = prefixText
        self.genFuncPointers = genFuncPointers
        self.protectFile     = protectFile
        self.protectFeature  = protectFeature
        self.protectProto    = protectProto
        self.protectProtoStr = protectProtoStr
        self.apicall         = apicall
        self.apientry        = apientry
        self.apientryp       = apientryp
        self.indentFuncProto = indentFuncProto
        self.indentFuncPointer = indentFuncPointer
        self.alignFuncParam  = alignFuncParam

# MockICDOutputGenerator - subclass of OutputGenerator.
# Generates a mock vulkan ICD.
#  This is intended to be a minimal replacement for a vulkan device in order
#  to enable Vulkan Validation testing.
#
# ---- methods ----
# MockOutputGenerator(errFile, warnFile, diagFile) - args as for
#   OutputGenerator. Defines additional internal state.
# ---- methods overriding base class ----
# beginFile(genOpts)
# endFile()
# beginFeature(interface, emit)
# endFeature()
# genType(typeinfo,name)
# genStruct(typeinfo,name)
# genGroup(groupinfo,name)
# genEnum(enuminfo, name)
# genCmd(cmdinfo)
class MockICDOutputGenerator(OutputGenerator):
    """Generate specified API interfaces in a specific style, such as a C header"""
    # This is an ordered list of sections in the header file.
    TYPE_SECTIONS = ['include', 'define', 'basetype', 'handle', 'enum',
                     'group', 'bitmask', 'funcpointer', 'struct']
    ALL_SECTIONS = TYPE_SECTIONS + ['command']
    def __init__(self,
                 errFile = sys.stderr,
                 warnFile = sys.stderr,
                 diagFile = sys.stdout):
        OutputGenerator.__init__(self, errFile, warnFile, diagFile)
        # Internal state - accumulators for different inner block text
        self.sections = dict([(section, []) for section in self.ALL_SECTIONS])
        self.intercepts = []

    # Check if the parameter passed in is a pointer to an array
    def paramIsArray(self, param):
        return param.attrib.get('len') is not None

    # Check if the parameter passed in is a pointer
    def paramIsPointer(self, param):
        ispointer = False
        for elem in param:
            if ((elem.tag is not 'type') and (elem.tail is not None)) and '*' in elem.tail:
                ispointer = True
        return ispointer

    # Check if an object is a non-dispatchable handle
    def isHandleTypeNonDispatchable(self, handletype):
        handle = self.registry.tree.find("types/type/[name='" + handletype + "'][@category='handle']")
        if handle is not None and handle.find('type').text == 'VK_DEFINE_NON_DISPATCHABLE_HANDLE':
            return True
        else:
            return False

    # Check if an object is a dispatchable handle
    def isHandleTypeDispatchable(self, handletype):
        handle = self.registry.tree.find("types/type/[name='" + handletype + "'][@category='handle']")
        if handle is not None and handle.find('type').text == 'VK_DEFINE_HANDLE':
            return True
        else:
            return False

    def beginFile(self, genOpts):
        OutputGenerator.beginFile(self, genOpts)
        # C-specific
        #
        # Multiple inclusion protection & C++ namespace.
        self.header = False
        if (genOpts.protectFile and self.genOpts.filename and 'h' == self.genOpts.filename[-1]):
            self.header = True
            headerSym = '__' + re.sub('\.h', '_h_', os.path.basename(self.genOpts.filename))
            write('#ifndef', headerSym, file=self.outFile)
            write('#define', headerSym, '1', file=self.outFile)
            self.newline()
        #
        # User-supplied prefix text, if any (list of strings)
        if (genOpts.prefixText):
            for s in genOpts.prefixText:
                write(s, file=self.outFile)
        if self.header:
            write('#include <unordered_map>', file=self.outFile)
            write('#include <mutex>', file=self.outFile)
            write('#include <string>', file=self.outFile)
            write('#include <cstring>', file=self.outFile)
            write('#include "vulkan/vk_icd.h"', file=self.outFile)
        else:
            write('#include "mock_icd.h"', file=self.outFile)
            write('#include <stdlib.h>', file=self.outFile)
            write('#include <vector>', file=self.outFile)
            write('#include "vk_typemap_helper.h"', file=self.outFile)

        write('namespace vkmock {', file=self.outFile)
        if self.header:
            self.newline()
            write(HEADER_C_CODE, file=self.outFile)
            # Include all of the extensions in ICD except specific ignored ones
            device_exts = []
            instance_exts = []
            # Ignore extensions that ICDs should not implement or are not safe to report
            ignore_exts = ['VK_EXT_validation_cache']
            for ext in self.registry.tree.findall("extensions/extension"):
                if ext.attrib['supported'] != 'disabled': # Only include enabled extensions
                    if (ext.attrib['name'] in ignore_exts):
                        pass
                    elif (ext.attrib.get('type') and 'instance' == ext.attrib['type']):
                        instance_exts.append('    {"%s", %s},' % (ext.attrib['name'], ext[0][0].attrib['value']))
                    else:
                        device_exts.append('    {"%s", %s},' % (ext.attrib['name'], ext[0][0].attrib['value']))
            write('// Map of instance extension name to version', file=self.outFile)
            write('static const std::unordered_map<std::string, uint32_t> instance_extension_map = {', file=self.outFile)
            write('\n'.join(instance_exts), file=self.outFile)
            write('};', file=self.outFile)
            write('// Map of device extension name to version', file=self.outFile)
            write('static const std::unordered_map<std::string, uint32_t> device_extension_map = {', file=self.outFile)
            write('\n'.join(device_exts), file=self.outFile)
            write('};', file=self.outFile)

        else:
            self.newline()
            write(SOURCE_CPP_PREFIX, file=self.outFile)

    def endFile(self):
        # C-specific
        # Finish C++ namespace and multiple inclusion protection
        self.newline()
        if self.header:
            # record intercepted procedures
            write('// Map of all APIs to be intercepted by this layer', file=self.outFile)
            write('static const std::unordered_map<std::string, void*> name_to_funcptr_map = {', file=self.outFile)
            write('\n'.join(self.intercepts), file=self.outFile)
            write('};\n', file=self.outFile)
            self.newline()
            write('} // namespace vkmock', file=self.outFile)
            self.newline()
            write('#endif', file=self.outFile)
        else: # Loader-layer-interface, need to implement global interface functions
            write(SOURCE_CPP_POSTFIX, file=self.outFile)
        # Finish processing in superclass
        OutputGenerator.endFile(self)
    def beginFeature(self, interface, emit):
        #write('// starting beginFeature', file=self.outFile)
        # Start processing in superclass
        OutputGenerator.beginFeature(self, interface, emit)
        self.featureExtraProtect = GetFeatureProtect(interface)
        # C-specific
        # Accumulate includes, defines, types, enums, function pointer typedefs,
        # end function prototypes separately for this feature. They're only
        # printed in endFeature().
        self.sections = dict([(section, []) for section in self.ALL_SECTIONS])
        #write('// ending beginFeature', file=self.outFile)
    def endFeature(self):
        # C-specific
        # Actually write the interface to the output file.
        #write('// starting endFeature', file=self.outFile)
        if (self.emit):
            self.newline()
            if (self.genOpts.protectFeature):
                write('#ifndef', self.featureName, file=self.outFile)
            # If type declarations are needed by other features based on
            # this one, it may be necessary to suppress the ExtraProtect,
            # or move it below the 'for section...' loop.
            #write('// endFeature looking at self.featureExtraProtect', file=self.outFile)
            if (self.featureExtraProtect != None):
                write('#ifdef', self.featureExtraProtect, file=self.outFile)
            #write('#define', self.featureName, '1', file=self.outFile)
            for section in self.TYPE_SECTIONS:
                #write('// endFeature writing section'+section, file=self.outFile)
                contents = self.sections[section]
                if contents:
                    write('\n'.join(contents), file=self.outFile)
                    self.newline()
            #write('// endFeature looking at self.sections[command]', file=self.outFile)
            if (self.sections['command']):
                write('\n'.join(self.sections['command']), end=u'', file=self.outFile)
                self.newline()
            if (self.featureExtraProtect != None):
                write('#endif /*', self.featureExtraProtect, '*/', file=self.outFile)
            if (self.genOpts.protectFeature):
                write('#endif /*', self.featureName, '*/', file=self.outFile)
        # Finish processing in superclass
        OutputGenerator.endFeature(self)
        #write('// ending endFeature', file=self.outFile)
    #
    # Append a definition to the specified section
    def appendSection(self, section, text):
        # self.sections[section].append('SECTION: ' + section + '\n')
        self.sections[section].append(text)
    #
    # Type generation
    def genType(self, typeinfo, name, alias):
        pass
    #
    # Struct (e.g. C "struct" type) generation.
    # This is a special case of the <type> tag where the contents are
    # interpreted as a set of <member> tags instead of freeform C
    # C type declarations. The <member> tags are just like <param>
    # tags - they are a declaration of a struct or union member.
    # Only simple member declarations are supported (no nested
    # structs etc.)
    def genStruct(self, typeinfo, typeName, alias):
        OutputGenerator.genStruct(self, typeinfo, typeName, alias)
        body = 'typedef ' + typeinfo.elem.get('category') + ' ' + typeName + ' {\n'
        # paramdecl = self.makeCParamDecl(typeinfo.elem, self.genOpts.alignFuncParam)
        for member in typeinfo.elem.findall('.//member'):
            body += self.makeCParamDecl(member, self.genOpts.alignFuncParam)
            body += ';\n'
        body += '} ' + typeName + ';\n'
        self.appendSection('struct', body)
    #
    # Group (e.g. C "enum" type) generation.
    # These are concatenated together with other types.
    def genGroup(self, groupinfo, groupName, alias):
        pass
    # Enumerant generation
    # <enum> tags may specify their values in several ways, but are usually
    # just integers.
    def genEnum(self, enuminfo, name, alias):
        pass
    #
    # Command generation
    def genCmd(self, cmdinfo, name, alias):
        decls = self.makeCDecls(cmdinfo.elem)
        if self.header: # In the header declare all intercepts
            self.appendSection('command', '')
            self.appendSection('command', 'static %s' % (decls[0]))
            if (self.featureExtraProtect != None):
                self.intercepts += [ '#ifdef %s' % self.featureExtraProtect ]
            self.intercepts += [ '    {"%s", (void*)%s},' % (name,name[2:]) ]
            if (self.featureExtraProtect != None):
                self.intercepts += [ '#endif' ]
            return

        manual_functions = [
            # Include functions here to be interecpted w/ manually implemented function bodies
            'vkGetDeviceProcAddr',
            'vkGetInstanceProcAddr',
            'vkCreateDevice',
            'vkDestroyDevice',
            'vkCreateInstance',
            'vkDestroyInstance',
            #'vkCreateDebugReportCallbackEXT',
            #'vkDestroyDebugReportCallbackEXT',
            'vkEnumerateInstanceLayerProperties',
            'vkEnumerateInstanceExtensionProperties',
            'vkEnumerateDeviceLayerProperties',
            'vkEnumerateDeviceExtensionProperties',
        ]
        if name in manual_functions:
            self.appendSection('command', '')
            if name not in CUSTOM_C_INTERCEPTS:
                self.appendSection('command', '// declare only')
                self.appendSection('command', 'static %s' % (decls[0]))
                self.appendSection('command', '// TODO: Implement custom intercept body')
            else:
                self.appendSection('command', 'static %s' % (decls[0][:-1]))
                self.appendSection('command', '{\n%s}' % (CUSTOM_C_INTERCEPTS[name]))
            self.intercepts += [ '    {"%s", (void*)%s},' % (name,name[2:]) ]
            return
        # record that the function will be intercepted
        if (self.featureExtraProtect != None):
            self.intercepts += [ '#ifdef %s' % self.featureExtraProtect ]
        self.intercepts += [ '    {"%s", (void*)%s},' % (name,name[2:]) ]
        if (self.featureExtraProtect != None):
            self.intercepts += [ '#endif' ]

        OutputGenerator.genCmd(self, cmdinfo, name, alias)
        #
        self.appendSection('command', '')
        self.appendSection('command', 'static %s' % (decls[0][:-1]))
        if name in CUSTOM_C_INTERCEPTS:
            self.appendSection('command', '{%s}' % (CUSTOM_C_INTERCEPTS[name]))
            return

        # Declare result variable, if any.
        resulttype = cmdinfo.elem.find('proto/type')
        if (resulttype != None and resulttype.text == 'void'):
            resulttype = None
        # if the name w/ KHR postfix is in the CUSTOM_C_INTERCEPTS
        # Call the KHR custom version instead of generating separate code
        khr_name = name + "KHR"
        if khr_name in CUSTOM_C_INTERCEPTS:
            return_string = ''
            if resulttype != None:
                return_string = 'return '
            params = cmdinfo.elem.findall('param/name')
            param_names = []
            for param in params:
                param_names.append(param.text)
            self.appendSection('command', '{\n    %s%s(%s);\n}' % (return_string, khr_name[2:], ", ".join(param_names)))
            return
        self.appendSection('command', '{')

        api_function_name = cmdinfo.elem.attrib.get('name')
        # GET THE TYPE OF FUNCTION
        if True in [ftxt in api_function_name for ftxt in ['Create', 'Allocate']]:
            # Get last param
            last_param = cmdinfo.elem.findall('param')[-1]
            lp_txt = last_param.find('name').text
            lp_len = None
            if ('len' in last_param.attrib):
                lp_len = last_param.attrib['len']
                lp_len = lp_len.replace('::', '->')
            lp_type = last_param.find('type').text
            handle_type = 'dispatchable'
            allocator_txt = 'CreateDispObjHandle()';
            if (self.isHandleTypeNonDispatchable(lp_type)):
                handle_type = 'non-' + handle_type
                allocator_txt = 'global_unique_handle++';
            # Need to lock in both cases
            self.appendSection('command', '    unique_lock_t lock(global_lock);')
            if (lp_len != None):
                #print("%s last params (%s) has len %s" % (handle_type, lp_txt, lp_len))
                self.appendSection('command', '    for (uint32_t i = 0; i < %s; ++i) {' % (lp_len))
                self.appendSection('command', '        %s[i] = (%s)%s;' % (lp_txt, lp_type, allocator_txt))
                self.appendSection('command', '    }')
            else:
                #print("Single %s last param is '%s' w/ type '%s'" % (handle_type, lp_txt, lp_type))
                self.appendSection('command', '    *%s = (%s)%s;' % (lp_txt, lp_type, allocator_txt))
        elif True in [ftxt in api_function_name for ftxt in ['Destroy', 'Free']]:
            self.appendSection('command', '//Destroy object')
        else:
            self.appendSection('command', '//Not a CREATE or DESTROY function')

        # Return result variable, if any.
        if (resulttype != None):
            if api_function_name == 'vkGetEventStatus':
                self.appendSection('command', '    return VK_EVENT_SET;')
            else:
                self.appendSection('command', '    return VK_SUCCESS;')
        self.appendSection('command', '}')
    #
    # override makeProtoName to drop the "vk" prefix
    def makeProtoName(self, name, tail):
        return self.genOpts.apientry + name[2:] + tail