aboutsummaryrefslogtreecommitdiff
path: root/src/aarch64/instructions-aarch64.cc
blob: b3e28384bdb2593cbdbc1313519c10da170004a5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
// Copyright 2015, VIXL authors
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
//   * Redistributions of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//   * Redistributions in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//   * Neither the name of ARM Limited nor the names of its contributors may be
//     used to endorse or promote products derived from this software without
//     specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "instructions-aarch64.h"
#include "assembler-aarch64.h"

namespace vixl {
namespace aarch64 {

static uint64_t RepeatBitsAcrossReg(unsigned reg_size,
                                    uint64_t value,
                                    unsigned width) {
  VIXL_ASSERT((width == 2) || (width == 4) || (width == 8) || (width == 16) ||
              (width == 32));
  VIXL_ASSERT((reg_size == kBRegSize) || (reg_size == kHRegSize) ||
              (reg_size == kSRegSize) || (reg_size == kDRegSize));
  uint64_t result = value & ((UINT64_C(1) << width) - 1);
  for (unsigned i = width; i < reg_size; i *= 2) {
    result |= (result << i);
  }
  return result;
}

bool Instruction::CanTakeSVEMovprfx(const Instruction* movprfx) const {
  bool movprfx_is_predicated = movprfx->Mask(SVEMovprfxMask) == MOVPRFX_z_p_z;
  bool movprfx_is_unpredicated =
      movprfx->Mask(SVEConstructivePrefix_UnpredicatedMask) == MOVPRFX_z_z;
  VIXL_ASSERT(movprfx_is_predicated != movprfx_is_unpredicated);

  int movprfx_zd = movprfx->GetRd();
  int movprfx_pg = movprfx_is_predicated ? movprfx->GetPgLow8() : -1;
  VectorFormat movprfx_vform =
      movprfx_is_predicated ? movprfx->GetSVEVectorFormat() : kFormatUndefined;

  bool pg_matches_low8 = movprfx_pg == GetPgLow8();
  bool vform_matches = movprfx_vform == GetSVEVectorFormat();
  bool zd_matches = movprfx_zd == GetRd();
  bool zd_matches_zm = movprfx_zd == GetRm();
  bool zd_matches_zn = movprfx_zd == GetRn();

  switch (Mask(SVEBitwiseLogicalWithImm_UnpredicatedMask)) {
    case AND_z_zi:
    case EOR_z_zi:
    case ORR_z_zi:
      return movprfx_is_unpredicated && zd_matches;
  }
  switch (Mask(SVEBitwiseLogical_PredicatedMask)) {
    case AND_z_p_zz:
    case BIC_z_p_zz:
    case EOR_z_p_zz:
    case ORR_z_p_zz:
      if (movprfx_is_predicated && !(pg_matches_low8 && vform_matches)) {
        return false;
      }
      // The movprfx's `zd` must not alias any other inputs.
      if (movprfx_zd == GetRx<9, 5>()) return false;
      return zd_matches;
  }
  switch (Mask(SVEBitwiseShiftByImm_PredicatedMask)) {
    case ASRD_z_p_zi:
    case ASR_z_p_zi:
    case LSL_z_p_zi:
    case LSR_z_p_zi:
      if (movprfx_is_predicated) {
        if (!pg_matches_low8) return false;
        unsigned tsz = ExtractBits<0x00c00300>();
        VectorFormat instr_vform =
            SVEFormatFromLaneSizeInBytesLog2(HighestSetBitPosition(tsz));
        if (movprfx_vform != instr_vform) return false;
      }
      return zd_matches;
  }
  switch (Mask(SVEBitwiseShiftByVector_PredicatedMask)) {
    case ASRR_z_p_zz:
    case ASR_z_p_zz:
    case LSLR_z_p_zz:
    case LSL_z_p_zz:
    case LSRR_z_p_zz:
    case LSR_z_p_zz:
      if (movprfx_is_predicated && !(pg_matches_low8 && vform_matches)) {
        return false;
      }
      // The movprfx's `zd` must not alias any other inputs.
      if (movprfx_zd == GetRx<9, 5>()) return false;
      return zd_matches;
  }
  switch (Mask(SVEBitwiseShiftByWideElements_PredicatedMask)) {
    case ASR_z_p_zw:
    case LSL_z_p_zw:
    case LSR_z_p_zw:
      if (movprfx_is_predicated && !(pg_matches_low8 && vform_matches)) {
        return false;
      }
      // The movprfx's `zd` must not alias any other inputs.
      if (movprfx_zd == GetRx<9, 5>()) return false;
      return zd_matches;
  }
  switch (Mask(SVEConditionallyBroadcastElementToVectorMask)) {
    case CLASTA_z_p_zz:
    case CLASTB_z_p_zz:
      // The movprfx's `zd` must not alias any other inputs.
      if (movprfx_zd == GetRx<9, 5>()) return false;
      return movprfx_is_unpredicated && zd_matches;
  }
  switch (Mask(SVECopyFPImm_PredicatedMask)) {
    case FCPY_z_p_i:
      if (movprfx_is_predicated) {
        if (!vform_matches) return false;
        if (movprfx_pg != GetRx<19, 16>()) return false;
      }
      return zd_matches;
  }
  switch (Mask(SVECopyGeneralRegisterToVector_PredicatedMask)) {
    case CPY_z_p_r:
      if (movprfx_is_predicated && !(pg_matches_low8 && vform_matches)) {
        return false;
      }
      return zd_matches;
  }
  switch (Mask(SVECopyIntImm_PredicatedMask)) {
    case CPY_z_p_i:
      if (movprfx_is_predicated) {
        if (!vform_matches) return false;
        if (movprfx_pg != GetRx<19, 16>()) return false;
      }
      // Only the merging form can take movprfx.
      if (ExtractBit(14) == 0) return false;
      return zd_matches;
  }
  switch (Mask(SVECopySIMDFPScalarRegisterToVector_PredicatedMask)) {
    case CPY_z_p_v:
      if (movprfx_is_predicated && !(pg_matches_low8 && vform_matches)) {
        return false;
      }
      return zd_matches && !zd_matches_zn;
  }
  switch (Mask(SVEFPArithmeticWithImm_PredicatedMask)) {
    case FADD_z_p_zs:
    case FMAXNM_z_p_zs:
    case FMAX_z_p_zs:
    case FMINNM_z_p_zs:
    case FMIN_z_p_zs:
    case FMUL_z_p_zs:
    case FSUBR_z_p_zs:
    case FSUB_z_p_zs:
      if (movprfx_is_predicated && !(pg_matches_low8 && vform_matches)) {
        return false;
      }
      return zd_matches;
  }
  switch (Mask(SVEFPArithmetic_PredicatedMask)) {
    case FABD_z_p_zz:
    case FADD_z_p_zz:
    case FDIVR_z_p_zz:
    case FDIV_z_p_zz:
    case FMAXNM_z_p_zz:
    case FMAX_z_p_zz:
    case FMINNM_z_p_zz:
    case FMIN_z_p_zz:
    case FMULX_z_p_zz:
    case FMUL_z_p_zz:
    case FSCALE_z_p_zz:
    case FSUBR_z_p_zz:
    case FSUB_z_p_zz:
      if (movprfx_is_predicated && !(pg_matches_low8 && vform_matches)) {
        return false;
      }
      // The movprfx's `zd` must not alias any other inputs.
      if (movprfx_zd == GetRx<9, 5>()) return false;
      return zd_matches;
  }
  switch (Mask(SVEFPComplexAdditionMask)) {
    case FCADD_z_p_zz:
      if (movprfx_is_predicated && !(pg_matches_low8 && vform_matches)) {
        return false;
      }
      // The movprfx's `zd` must not alias any other inputs.
      if (movprfx_zd == GetRx<9, 5>()) return false;
      return zd_matches;
  }
  switch (Mask(SVEFPComplexMulAddIndexMask)) {
    case FCMLA_z_zzzi_h:
      // The movprfx's `zd` must not alias any other inputs.
      if (movprfx_zd == GetRx<18, 16>()) return false;
      return movprfx_is_unpredicated && zd_matches && !zd_matches_zn;
    case FCMLA_z_zzzi_s:
      // The movprfx's `zd` must not alias any other inputs.
      if (movprfx_zd == GetRx<19, 16>()) return false;
      return movprfx_is_unpredicated && zd_matches && !zd_matches_zn;
  }
  switch (Mask(SVEFPComplexMulAddMask)) {
    case FCMLA_z_p_zzz:
      if (movprfx_is_predicated && !(pg_matches_low8 && vform_matches)) {
        return false;
      }
      return zd_matches && !zd_matches_zm && !zd_matches_zn;
  }
  switch (Mask(SVEFPConvertPrecisionMask)) {
    case FCVT_z_p_z_d2h:
    case FCVT_z_p_z_d2s:
    case FCVT_z_p_z_h2d:
    case FCVT_z_p_z_h2s:
    case FCVT_z_p_z_s2d:
    case FCVT_z_p_z_s2h:
      if (movprfx_is_predicated && !(pg_matches_low8 && vform_matches)) {
        return false;
      }
      return zd_matches && !zd_matches_zn;
  }
  switch (Mask(SVEFPConvertToIntMask)) {
    case FCVTZS_z_p_z_d2w:
    case FCVTZS_z_p_z_d2x:
    case FCVTZS_z_p_z_fp162h:
    case FCVTZS_z_p_z_fp162w:
    case FCVTZS_z_p_z_fp162x:
    case FCVTZS_z_p_z_s2w:
    case FCVTZS_z_p_z_s2x:
    case FCVTZU_z_p_z_d2w:
    case FCVTZU_z_p_z_d2x:
    case FCVTZU_z_p_z_fp162h:
    case FCVTZU_z_p_z_fp162w:
    case FCVTZU_z_p_z_fp162x:
    case FCVTZU_z_p_z_s2w:
    case FCVTZU_z_p_z_s2x:
      if (movprfx_is_predicated) {
        if (!pg_matches_low8) return false;
        // The movprfx element size must match the instruction's maximum encoded
        // element size. We have to partially decode the opc and opc2 fields to
        // find this.
        unsigned opc = ExtractBits(23, 22);
        unsigned opc2 = ExtractBits(18, 17);
        VectorFormat instr_vform =
            SVEFormatFromLaneSizeInBytesLog2(std::max(opc, opc2));
        if (movprfx_vform != instr_vform) return false;
      }
      return zd_matches && !zd_matches_zn;
  }
  switch (Mask(SVEFPMulAddIndexMask)) {
    case FMLA_z_zzzi_h:
    case FMLA_z_zzzi_h_i3h:
    case FMLA_z_zzzi_s:
    case FMLS_z_zzzi_h:
    case FMLS_z_zzzi_h_i3h:
    case FMLS_z_zzzi_s:
      // The movprfx's `zd` must not alias any other inputs.
      if (movprfx_zd == GetRx<18, 16>()) return false;
      return movprfx_is_unpredicated && zd_matches && !zd_matches_zn;
    case FMLA_z_zzzi_d:
    case FMLS_z_zzzi_d:
      // The movprfx's `zd` must not alias any other inputs.
      if (movprfx_zd == GetRx<19, 16>()) return false;
      return movprfx_is_unpredicated && zd_matches && !zd_matches_zn;
  }
  switch (Mask(SVEFPMulAddMask)) {
    case FMAD_z_p_zzz:
    case FMSB_z_p_zzz:
    case FNMAD_z_p_zzz:
    case FNMSB_z_p_zzz:
      if (movprfx_is_predicated && !(pg_matches_low8 && vform_matches)) {
        return false;
      }
      // The movprfx's `zd` must not alias any other inputs.
      if (movprfx_zd == GetRx<20, 16>()) return false;
      if (movprfx_zd == GetRx<9, 5>()) return false;
      return zd_matches;
    case FMLA_z_p_zzz:
    case FMLS_z_p_zzz:
    case FNMLA_z_p_zzz:
    case FNMLS_z_p_zzz:
      if (movprfx_is_predicated && !(pg_matches_low8 && vform_matches)) {
        return false;
      }
      return zd_matches && !zd_matches_zm && !zd_matches_zn;
  }
  switch (Mask(SVEFPRoundToIntegralValueMask)) {
    case FRINTA_z_p_z:
    case FRINTI_z_p_z:
    case FRINTM_z_p_z:
    case FRINTN_z_p_z:
    case FRINTP_z_p_z:
    case FRINTX_z_p_z:
    case FRINTZ_z_p_z:
      if (movprfx_is_predicated && !(pg_matches_low8 && vform_matches)) {
        return false;
      }
      return zd_matches && !zd_matches_zn;
  }
  switch (Mask(SVEFPTrigMulAddCoefficientMask)) {
    case FTMAD_z_zzi:
      // The movprfx's `zd` must not alias any other inputs.
      if (movprfx_zd == GetRx<9, 5>()) return false;
      return movprfx_is_unpredicated && zd_matches;
  }
  switch (Mask(SVEFPUnaryOpMask)) {
    case FRECPX_z_p_z:
    case FSQRT_z_p_z:
      if (movprfx_is_predicated && !(pg_matches_low8 && vform_matches)) {
        return false;
      }
      return zd_matches && !zd_matches_zn;
  }
  switch (Mask(SVEIncDecByPredicateCountMask)) {
    case DECP_z_p_z:
    case INCP_z_p_z:
    case SQDECP_z_p_z:
    case SQINCP_z_p_z:
    case UQDECP_z_p_z:
    case UQINCP_z_p_z:
      return movprfx_is_unpredicated && zd_matches;
  }
  switch (Mask(SVEIncDecVectorByElementCountMask)) {
    case DECD_z_zs:
    case DECH_z_zs:
    case DECW_z_zs:
    case INCD_z_zs:
    case INCH_z_zs:
    case INCW_z_zs:
      return movprfx_is_unpredicated && zd_matches;
  }
  switch (Mask(SVEInsertGeneralRegisterMask)) {
    case INSR_z_r:
      return movprfx_is_unpredicated && zd_matches;
  }
  switch (Mask(SVEInsertSIMDFPScalarRegisterMask)) {
    case INSR_z_v:
      // The movprfx's `zd` must not alias any other inputs.
      if (movprfx_zd == GetRx<9, 5>()) return false;
      return movprfx_is_unpredicated && zd_matches;
  }
  switch (Mask(SVEIntAddSubtractImm_UnpredicatedMask)) {
    case ADD_z_zi:
    case SQADD_z_zi:
    case SQSUB_z_zi:
    case SUBR_z_zi:
    case SUB_z_zi:
    case UQADD_z_zi:
    case UQSUB_z_zi:
      return movprfx_is_unpredicated && zd_matches;
  }
  switch (Mask(SVEIntAddSubtractVectors_PredicatedMask)) {
    case ADD_z_p_zz:
    case SUBR_z_p_zz:
    case SUB_z_p_zz:
      if (movprfx_is_predicated && !(pg_matches_low8 && vform_matches)) {
        return false;
      }
      // The movprfx's `zd` must not alias any other inputs.
      if (movprfx_zd == GetRx<9, 5>()) return false;
      return zd_matches;
  }
  switch (Mask(SVEIntConvertToFPMask)) {
    case SCVTF_z_p_z_h2fp16:
    case SCVTF_z_p_z_w2d:
    case SCVTF_z_p_z_w2fp16:
    case SCVTF_z_p_z_w2s:
    case SCVTF_z_p_z_x2d:
    case SCVTF_z_p_z_x2fp16:
    case SCVTF_z_p_z_x2s:
    case UCVTF_z_p_z_h2fp16:
    case UCVTF_z_p_z_w2d:
    case UCVTF_z_p_z_w2fp16:
    case UCVTF_z_p_z_w2s:
    case UCVTF_z_p_z_x2d:
    case UCVTF_z_p_z_x2fp16:
    case UCVTF_z_p_z_x2s:
      if (movprfx_is_predicated) {
        if (!pg_matches_low8) return false;
        // The movprfx element size must match the instruction's maximum encoded
        // element size. We have to partially decode the opc and opc2 fields to
        // find this.
        unsigned opc = ExtractBits(23, 22);
        unsigned opc2 = ExtractBits(18, 17);
        VectorFormat instr_vform =
            SVEFormatFromLaneSizeInBytesLog2(std::max(opc, opc2));
        if (movprfx_vform != instr_vform) return false;
      }
      return zd_matches && !zd_matches_zn;
  }
  switch (Mask(SVEIntDivideVectors_PredicatedMask)) {
    case SDIVR_z_p_zz:
    case SDIV_z_p_zz:
    case UDIVR_z_p_zz:
    case UDIV_z_p_zz:
      if (movprfx_is_predicated && !(pg_matches_low8 && vform_matches)) {
        return false;
      }
      // The movprfx's `zd` must not alias any other inputs.
      if (movprfx_zd == GetRx<9, 5>()) return false;
      return zd_matches;
  }
  switch (Mask(SVEIntMinMaxDifference_PredicatedMask)) {
    case SABD_z_p_zz:
    case SMAX_z_p_zz:
    case SMIN_z_p_zz:
    case UABD_z_p_zz:
    case UMAX_z_p_zz:
    case UMIN_z_p_zz:
      if (movprfx_is_predicated && !(pg_matches_low8 && vform_matches)) {
        return false;
      }
      // The movprfx's `zd` must not alias any other inputs.
      if (movprfx_zd == GetRx<9, 5>()) return false;
      return zd_matches;
  }
  switch (Mask(SVEIntMinMaxImm_UnpredicatedMask)) {
    case SMAX_z_zi:
    case SMIN_z_zi:
    case UMAX_z_zi:
    case UMIN_z_zi:
      return movprfx_is_unpredicated && zd_matches;
  }
  switch (Mask(SVEIntMulAddPredicatedMask)) {
    case MAD_z_p_zzz:
    case MSB_z_p_zzz:
      if (movprfx_is_predicated && !(pg_matches_low8 && vform_matches)) {
        return false;
      }
      // The movprfx's `zd` must not alias any other inputs.
      if (movprfx_zd == GetRx<9, 5>()) return false;
      return zd_matches && !zd_matches_zm;
    case MLA_z_p_zzz:
    case MLS_z_p_zzz:
      if (movprfx_is_predicated && !(pg_matches_low8 && vform_matches)) {
        return false;
      }
      return zd_matches && !zd_matches_zm && !zd_matches_zn;
  }
  switch (Mask(SVEIntMulAddUnpredicatedMask)) {
    case SDOT_z_zzz:
    case UDOT_z_zzz:
      return movprfx_is_unpredicated && zd_matches && !zd_matches_zm &&
             !zd_matches_zn;
  }
  switch (Mask(SVEIntMulImm_UnpredicatedMask)) {
    case MUL_z_zi:
      return movprfx_is_unpredicated && zd_matches;
  }
  switch (Mask(SVEIntMulVectors_PredicatedMask)) {
    case MUL_z_p_zz:
    case SMULH_z_p_zz:
    case UMULH_z_p_zz:
      if (movprfx_is_predicated && !(pg_matches_low8 && vform_matches)) {
        return false;
      }
      // The movprfx's `zd` must not alias any other inputs.
      if (movprfx_zd == GetRx<9, 5>()) return false;
      return zd_matches;
  }
  switch (Mask(SVEIntUnaryArithmeticPredicatedMask)) {
    case ABS_z_p_z:
    case CLS_z_p_z:
    case CLZ_z_p_z:
    case CNOT_z_p_z:
    case CNT_z_p_z:
    case FABS_z_p_z:
    case FNEG_z_p_z:
    case NEG_z_p_z:
    case NOT_z_p_z:
    case SXTB_z_p_z:
    case SXTH_z_p_z:
    case SXTW_z_p_z:
    case UXTB_z_p_z:
    case UXTH_z_p_z:
    case UXTW_z_p_z:
      if (movprfx_is_predicated && !(pg_matches_low8 && vform_matches)) {
        return false;
      }
      return zd_matches && !zd_matches_zn;
  }
  switch (Mask(SVEMulIndexMask)) {
    case SDOT_z_zzzi_s:
    case UDOT_z_zzzi_s:
      // The movprfx's `zd` must not alias any other inputs.
      if (movprfx_zd == GetRx<18, 16>()) return false;
      return movprfx_is_unpredicated && zd_matches && !zd_matches_zn;
    case SDOT_z_zzzi_d:
    case UDOT_z_zzzi_d:
      // The movprfx's `zd` must not alias any other inputs.
      if (movprfx_zd == GetRx<19, 16>()) return false;
      return movprfx_is_unpredicated && zd_matches && !zd_matches_zn;
  }
  switch (Mask(SVEPermuteVectorExtractMask)) {
    case EXT_z_zi_des:
      // The movprfx's `zd` must not alias any other inputs.
      if (movprfx_zd == GetRx<9, 5>()) return false;
      return movprfx_is_unpredicated && zd_matches;
  }
  switch (Mask(SVEReverseWithinElementsMask)) {
    case RBIT_z_p_z:
    case REVB_z_z:
    case REVH_z_z:
    case REVW_z_z:
      if (movprfx_is_predicated && !(pg_matches_low8 && vform_matches)) {
        return false;
      }
      return zd_matches && !zd_matches_zn;
  }
  switch (Mask(SVESaturatingIncDecVectorByElementCountMask)) {
    case SQDECD_z_zs:
    case SQDECH_z_zs:
    case SQDECW_z_zs:
    case SQINCD_z_zs:
    case SQINCH_z_zs:
    case SQINCW_z_zs:
    case UQDECD_z_zs:
    case UQDECH_z_zs:
    case UQDECW_z_zs:
    case UQINCD_z_zs:
    case UQINCH_z_zs:
    case UQINCW_z_zs:
      return movprfx_is_unpredicated && zd_matches;
  }
  switch (Mask(SVEVectorSplice_DestructiveMask)) {
    case SPLICE_z_p_zz_des:
      // The movprfx's `zd` must not alias any other inputs.
      if (movprfx_zd == GetRx<9, 5>()) return false;
      return movprfx_is_unpredicated && zd_matches;
  }
  return false;
}  // NOLINT(readability/fn_size)

bool Instruction::IsLoad() const {
  if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
    return false;
  }

  if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
    return Mask(LoadStorePairLBit) != 0;
  } else {
    LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreMask));
    switch (op) {
      case LDRB_w:
      case LDRH_w:
      case LDR_w:
      case LDR_x:
      case LDRSB_w:
      case LDRSB_x:
      case LDRSH_w:
      case LDRSH_x:
      case LDRSW_x:
      case LDR_b:
      case LDR_h:
      case LDR_s:
      case LDR_d:
      case LDR_q:
        return true;
      default:
        return false;
    }
  }
}


bool Instruction::IsStore() const {
  if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
    return false;
  }

  if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
    return Mask(LoadStorePairLBit) == 0;
  } else {
    LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreMask));
    switch (op) {
      case STRB_w:
      case STRH_w:
      case STR_w:
      case STR_x:
      case STR_b:
      case STR_h:
      case STR_s:
      case STR_d:
      case STR_q:
        return true;
      default:
        return false;
    }
  }
}


std::pair<int, int> Instruction::GetSVEPermuteIndexAndLaneSizeLog2() const {
  uint32_t imm_2 = ExtractBits<0x00C00000>();
  uint32_t tsz_5 = ExtractBits<0x001F0000>();
  uint32_t imm_7 = (imm_2 << 5) | tsz_5;
  int lane_size_in_byte_log_2 = std::min(CountTrailingZeros(tsz_5), 5);
  int index = ExtractUnsignedBitfield32(6, lane_size_in_byte_log_2 + 1, imm_7);
  return std::make_pair(index, lane_size_in_byte_log_2);
}


// Logical immediates can't encode zero, so a return value of zero is used to
// indicate a failure case. Specifically, where the constraints on imm_s are
// not met.
uint64_t Instruction::GetImmLogical() const {
  unsigned reg_size = GetSixtyFourBits() ? kXRegSize : kWRegSize;
  int32_t n = GetBitN();
  int32_t imm_s = GetImmSetBits();
  int32_t imm_r = GetImmRotate();
  return DecodeImmBitMask(n, imm_s, imm_r, reg_size);
}

// Logical immediates can't encode zero, so a return value of zero is used to
// indicate a failure case. Specifically, where the constraints on imm_s are
// not met.
uint64_t Instruction::GetSVEImmLogical() const {
  int n = GetSVEBitN();
  int imm_s = GetSVEImmSetBits();
  int imm_r = GetSVEImmRotate();
  int lane_size_in_bytes_log2 = GetSVEBitwiseImmLaneSizeInBytesLog2();
  switch (lane_size_in_bytes_log2) {
    case kDRegSizeInBytesLog2:
    case kSRegSizeInBytesLog2:
    case kHRegSizeInBytesLog2:
    case kBRegSizeInBytesLog2: {
      int lane_size_in_bits = 1 << (lane_size_in_bytes_log2 + 3);
      return DecodeImmBitMask(n, imm_s, imm_r, lane_size_in_bits);
    }
    default:
      return 0;
  }
}

std::pair<int, int> Instruction::GetSVEImmShiftAndLaneSizeLog2(
    bool is_predicated) const {
  Instr tsize =
      is_predicated ? ExtractBits<0x00C00300>() : ExtractBits<0x00D80000>();
  Instr imm_3 =
      is_predicated ? ExtractBits<0x000000E0>() : ExtractBits<0x00070000>();
  if (tsize == 0) {
    // The bit field `tsize` means undefined if it is zero, so return a
    // convenience value kWMinInt to indicate a failure case.
    return std::make_pair(kWMinInt, kWMinInt);
  }

  int lane_size_in_bytes_log_2 = 32 - CountLeadingZeros(tsize, 32) - 1;
  int esize = (1 << lane_size_in_bytes_log_2) * kBitsPerByte;
  int shift = (2 * esize) - ((tsize << 3) | imm_3);
  return std::make_pair(shift, lane_size_in_bytes_log_2);
}

int Instruction::GetSVEMsizeFromDtype(bool is_signed, int dtype_h_lsb) const {
  Instr dtype_h = ExtractBits(dtype_h_lsb + 1, dtype_h_lsb);
  if (is_signed) {
    dtype_h = dtype_h ^ 0x3;
  }
  return dtype_h;
}

int Instruction::GetSVEEsizeFromDtype(bool is_signed, int dtype_l_lsb) const {
  Instr dtype_l = ExtractBits(dtype_l_lsb + 1, dtype_l_lsb);
  if (is_signed) {
    dtype_l = dtype_l ^ 0x3;
  }
  return dtype_l;
}

int Instruction::GetSVEBitwiseImmLaneSizeInBytesLog2() const {
  int n = GetSVEBitN();
  int imm_s = GetSVEImmSetBits();
  unsigned type_bitset =
      (n << SVEImmSetBits_width) | (~imm_s & GetUintMask(SVEImmSetBits_width));

  // An lane size is constructed from the n and imm_s bits according to
  // the following table:
  //
  // N   imms   size
  // 0  0xxxxx   32
  // 0  10xxxx   16
  // 0  110xxx    8
  // 0  1110xx    8
  // 0  11110x    8
  // 1  xxxxxx   64

  if (type_bitset == 0) {
    // Bail out early since `HighestSetBitPosition` doesn't accept zero
    // value input.
    return -1;
  }

  switch (HighestSetBitPosition(type_bitset)) {
    case 6:
      return kDRegSizeInBytesLog2;
    case 5:
      return kSRegSizeInBytesLog2;
    case 4:
      return kHRegSizeInBytesLog2;
    case 3:
    case 2:
    case 1:
      return kBRegSizeInBytesLog2;
    default:
      // RESERVED encoding.
      return -1;
  }
}

uint64_t Instruction::DecodeImmBitMask(int32_t n,
                                       int32_t imm_s,
                                       int32_t imm_r,
                                       int32_t size) const {
  // An integer is constructed from the n, imm_s and imm_r bits according to
  // the following table:
  //
  //  N   imms    immr    size        S             R
  //  1  ssssss  rrrrrr    64    UInt(ssssss)  UInt(rrrrrr)
  //  0  0sssss  xrrrrr    32    UInt(sssss)   UInt(rrrrr)
  //  0  10ssss  xxrrrr    16    UInt(ssss)    UInt(rrrr)
  //  0  110sss  xxxrrr     8    UInt(sss)     UInt(rrr)
  //  0  1110ss  xxxxrr     4    UInt(ss)      UInt(rr)
  //  0  11110s  xxxxxr     2    UInt(s)       UInt(r)
  // (s bits must not be all set)
  //
  // A pattern is constructed of size bits, where the least significant S+1
  // bits are set. The pattern is rotated right by R, and repeated across a
  // 32 or 64-bit value, depending on destination register width.
  //

  if (n == 1) {
    if (imm_s == 0x3f) {
      return 0;
    }
    uint64_t bits = (UINT64_C(1) << (imm_s + 1)) - 1;
    return RotateRight(bits, imm_r, 64);
  } else {
    if ((imm_s >> 1) == 0x1f) {
      return 0;
    }
    for (int width = 0x20; width >= 0x2; width >>= 1) {
      if ((imm_s & width) == 0) {
        int mask = width - 1;
        if ((imm_s & mask) == mask) {
          return 0;
        }
        uint64_t bits = (UINT64_C(1) << ((imm_s & mask) + 1)) - 1;
        return RepeatBitsAcrossReg(size,
                                   RotateRight(bits, imm_r & mask, width),
                                   width);
      }
    }
  }
  VIXL_UNREACHABLE();
  return 0;
}


uint32_t Instruction::GetImmNEONabcdefgh() const {
  return GetImmNEONabc() << 5 | GetImmNEONdefgh();
}


Float16 Instruction::Imm8ToFloat16(uint32_t imm8) {
  // Imm8: abcdefgh (8 bits)
  // Half: aBbb.cdef.gh00.0000 (16 bits)
  // where B is b ^ 1
  uint32_t bits = imm8;
  uint16_t bit7 = (bits >> 7) & 0x1;
  uint16_t bit6 = (bits >> 6) & 0x1;
  uint16_t bit5_to_0 = bits & 0x3f;
  uint16_t result = (bit7 << 15) | ((4 - bit6) << 12) | (bit5_to_0 << 6);
  return RawbitsToFloat16(result);
}


float Instruction::Imm8ToFP32(uint32_t imm8) {
  // Imm8: abcdefgh (8 bits)
  // Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits)
  // where B is b ^ 1
  uint32_t bits = imm8;
  uint32_t bit7 = (bits >> 7) & 0x1;
  uint32_t bit6 = (bits >> 6) & 0x1;
  uint32_t bit5_to_0 = bits & 0x3f;
  uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19);

  return RawbitsToFloat(result);
}


Float16 Instruction::GetImmFP16() const { return Imm8ToFloat16(GetImmFP()); }


float Instruction::GetImmFP32() const { return Imm8ToFP32(GetImmFP()); }


double Instruction::Imm8ToFP64(uint32_t imm8) {
  // Imm8: abcdefgh (8 bits)
  // Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
  //         0000.0000.0000.0000.0000.0000.0000.0000 (64 bits)
  // where B is b ^ 1
  uint32_t bits = imm8;
  uint64_t bit7 = (bits >> 7) & 0x1;
  uint64_t bit6 = (bits >> 6) & 0x1;
  uint64_t bit5_to_0 = bits & 0x3f;
  uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48);

  return RawbitsToDouble(result);
}


double Instruction::GetImmFP64() const { return Imm8ToFP64(GetImmFP()); }


Float16 Instruction::GetImmNEONFP16() const {
  return Imm8ToFloat16(GetImmNEONabcdefgh());
}


float Instruction::GetImmNEONFP32() const {
  return Imm8ToFP32(GetImmNEONabcdefgh());
}


double Instruction::GetImmNEONFP64() const {
  return Imm8ToFP64(GetImmNEONabcdefgh());
}


unsigned CalcLSDataSize(LoadStoreOp op) {
  VIXL_ASSERT((LSSize_offset + LSSize_width) == (kInstructionSize * 8));
  unsigned size = static_cast<Instr>(op) >> LSSize_offset;
  if ((op & LSVector_mask) != 0) {
    // Vector register memory operations encode the access size in the "size"
    // and "opc" fields.
    if ((size == 0) && ((op & LSOpc_mask) >> LSOpc_offset) >= 2) {
      size = kQRegSizeInBytesLog2;
    }
  }
  return size;
}


unsigned CalcLSPairDataSize(LoadStorePairOp op) {
  VIXL_STATIC_ASSERT(kXRegSizeInBytes == kDRegSizeInBytes);
  VIXL_STATIC_ASSERT(kWRegSizeInBytes == kSRegSizeInBytes);
  switch (op) {
    case STP_q:
    case LDP_q:
      return kQRegSizeInBytesLog2;
    case STP_x:
    case LDP_x:
    case STP_d:
    case LDP_d:
      return kXRegSizeInBytesLog2;
    default:
      return kWRegSizeInBytesLog2;
  }
}


int Instruction::GetImmBranchRangeBitwidth(ImmBranchType branch_type) {
  switch (branch_type) {
    case UncondBranchType:
      return ImmUncondBranch_width;
    case CondBranchType:
      return ImmCondBranch_width;
    case CompareBranchType:
      return ImmCmpBranch_width;
    case TestBranchType:
      return ImmTestBranch_width;
    default:
      VIXL_UNREACHABLE();
      return 0;
  }
}


int32_t Instruction::GetImmBranchForwardRange(ImmBranchType branch_type) {
  int32_t encoded_max = 1 << (GetImmBranchRangeBitwidth(branch_type) - 1);
  return encoded_max * kInstructionSize;
}


bool Instruction::IsValidImmPCOffset(ImmBranchType branch_type,
                                     int64_t offset) {
  return IsIntN(GetImmBranchRangeBitwidth(branch_type), offset);
}


const Instruction* Instruction::GetImmPCOffsetTarget() const {
  const Instruction* base = this;
  ptrdiff_t offset;
  if (IsPCRelAddressing()) {
    // ADR and ADRP.
    offset = GetImmPCRel();
    if (Mask(PCRelAddressingMask) == ADRP) {
      base = AlignDown(base, kPageSize);
      offset *= kPageSize;
    } else {
      VIXL_ASSERT(Mask(PCRelAddressingMask) == ADR);
    }
  } else {
    // All PC-relative branches.
    VIXL_ASSERT(GetBranchType() != UnknownBranchType);
    // Relative branch offsets are instruction-size-aligned.
    offset = GetImmBranch() * static_cast<int>(kInstructionSize);
  }
  return base + offset;
}


int Instruction::GetImmBranch() const {
  switch (GetBranchType()) {
    case CondBranchType:
      return GetImmCondBranch();
    case UncondBranchType:
      return GetImmUncondBranch();
    case CompareBranchType:
      return GetImmCmpBranch();
    case TestBranchType:
      return GetImmTestBranch();
    default:
      VIXL_UNREACHABLE();
  }
  return 0;
}


void Instruction::SetImmPCOffsetTarget(const Instruction* target) {
  if (IsPCRelAddressing()) {
    SetPCRelImmTarget(target);
  } else {
    SetBranchImmTarget(target);
  }
}


void Instruction::SetPCRelImmTarget(const Instruction* target) {
  ptrdiff_t imm21;
  if ((Mask(PCRelAddressingMask) == ADR)) {
    imm21 = target - this;
  } else {
    VIXL_ASSERT(Mask(PCRelAddressingMask) == ADRP);
    uintptr_t this_page = reinterpret_cast<uintptr_t>(this) / kPageSize;
    uintptr_t target_page = reinterpret_cast<uintptr_t>(target) / kPageSize;
    imm21 = target_page - this_page;
  }
  Instr imm = Assembler::ImmPCRelAddress(static_cast<int32_t>(imm21));

  SetInstructionBits(Mask(~ImmPCRel_mask) | imm);
}


void Instruction::SetBranchImmTarget(const Instruction* target) {
  VIXL_ASSERT(((target - this) & 3) == 0);
  Instr branch_imm = 0;
  uint32_t imm_mask = 0;
  int offset = static_cast<int>((target - this) >> kInstructionSizeLog2);
  switch (GetBranchType()) {
    case CondBranchType: {
      branch_imm = Assembler::ImmCondBranch(offset);
      imm_mask = ImmCondBranch_mask;
      break;
    }
    case UncondBranchType: {
      branch_imm = Assembler::ImmUncondBranch(offset);
      imm_mask = ImmUncondBranch_mask;
      break;
    }
    case CompareBranchType: {
      branch_imm = Assembler::ImmCmpBranch(offset);
      imm_mask = ImmCmpBranch_mask;
      break;
    }
    case TestBranchType: {
      branch_imm = Assembler::ImmTestBranch(offset);
      imm_mask = ImmTestBranch_mask;
      break;
    }
    default:
      VIXL_UNREACHABLE();
  }
  SetInstructionBits(Mask(~imm_mask) | branch_imm);
}


void Instruction::SetImmLLiteral(const Instruction* source) {
  VIXL_ASSERT(IsWordAligned(source));
  ptrdiff_t offset = (source - this) >> kLiteralEntrySizeLog2;
  Instr imm = Assembler::ImmLLiteral(static_cast<int>(offset));
  Instr mask = ImmLLiteral_mask;

  SetInstructionBits(Mask(~mask) | imm);
}


VectorFormat VectorFormatHalfWidth(VectorFormat vform) {
  switch (vform) {
    case kFormat8H:
      return kFormat8B;
    case kFormat4S:
      return kFormat4H;
    case kFormat2D:
      return kFormat2S;
    case kFormatH:
      return kFormatB;
    case kFormatS:
      return kFormatH;
    case kFormatD:
      return kFormatS;
    case kFormatVnH:
      return kFormatVnB;
    case kFormatVnS:
      return kFormatVnH;
    case kFormatVnD:
      return kFormatVnS;
      break;
    default:
      VIXL_UNREACHABLE();
      return kFormatUndefined;
  }
}


VectorFormat VectorFormatDoubleWidth(VectorFormat vform) {
  VIXL_ASSERT(vform == kFormat8B || vform == kFormat4H || vform == kFormat2S ||
              vform == kFormatB || vform == kFormatH || vform == kFormatS);
  switch (vform) {
    case kFormat8B:
      return kFormat8H;
    case kFormat4H:
      return kFormat4S;
    case kFormat2S:
      return kFormat2D;
    case kFormatB:
      return kFormatH;
    case kFormatH:
      return kFormatS;
    case kFormatS:
      return kFormatD;
    default:
      VIXL_UNREACHABLE();
      return kFormatUndefined;
  }
}


VectorFormat VectorFormatFillQ(VectorFormat vform) {
  switch (vform) {
    case kFormatB:
    case kFormat8B:
    case kFormat16B:
      return kFormat16B;
    case kFormatH:
    case kFormat4H:
    case kFormat8H:
      return kFormat8H;
    case kFormatS:
    case kFormat2S:
    case kFormat4S:
      return kFormat4S;
    case kFormatD:
    case kFormat1D:
    case kFormat2D:
      return kFormat2D;
    default:
      VIXL_UNREACHABLE();
      return kFormatUndefined;
  }
}

VectorFormat VectorFormatHalfWidthDoubleLanes(VectorFormat vform) {
  switch (vform) {
    case kFormat4H:
      return kFormat8B;
    case kFormat8H:
      return kFormat16B;
    case kFormat2S:
      return kFormat4H;
    case kFormat4S:
      return kFormat8H;
    case kFormat1D:
      return kFormat2S;
    case kFormat2D:
      return kFormat4S;
    case kFormatVnH:
      return kFormatVnB;
    case kFormatVnS:
      return kFormatVnH;
    case kFormatVnD:
      return kFormatVnS;
    default:
      VIXL_UNREACHABLE();
      return kFormatUndefined;
  }
}

VectorFormat VectorFormatDoubleLanes(VectorFormat vform) {
  VIXL_ASSERT(vform == kFormat8B || vform == kFormat4H || vform == kFormat2S);
  switch (vform) {
    case kFormat8B:
      return kFormat16B;
    case kFormat4H:
      return kFormat8H;
    case kFormat2S:
      return kFormat4S;
    default:
      VIXL_UNREACHABLE();
      return kFormatUndefined;
  }
}


VectorFormat VectorFormatHalfLanes(VectorFormat vform) {
  VIXL_ASSERT(vform == kFormat16B || vform == kFormat8H || vform == kFormat4S);
  switch (vform) {
    case kFormat16B:
      return kFormat8B;
    case kFormat8H:
      return kFormat4H;
    case kFormat4S:
      return kFormat2S;
    default:
      VIXL_UNREACHABLE();
      return kFormatUndefined;
  }
}


VectorFormat ScalarFormatFromLaneSize(int lane_size_in_bits) {
  switch (lane_size_in_bits) {
    case 8:
      return kFormatB;
    case 16:
      return kFormatH;
    case 32:
      return kFormatS;
    case 64:
      return kFormatD;
    default:
      VIXL_UNREACHABLE();
      return kFormatUndefined;
  }
}


bool IsSVEFormat(VectorFormat vform) {
  switch (vform) {
    case kFormatVnB:
    case kFormatVnH:
    case kFormatVnS:
    case kFormatVnD:
    case kFormatVnQ:
      return true;
    default:
      return false;
  }
}


VectorFormat SVEFormatFromLaneSizeInBytes(int lane_size_in_bytes) {
  switch (lane_size_in_bytes) {
    case 1:
      return kFormatVnB;
    case 2:
      return kFormatVnH;
    case 4:
      return kFormatVnS;
    case 8:
      return kFormatVnD;
    case 16:
      return kFormatVnQ;
    default:
      VIXL_UNREACHABLE();
      return kFormatUndefined;
  }
}


VectorFormat SVEFormatFromLaneSizeInBits(int lane_size_in_bits) {
  switch (lane_size_in_bits) {
    case 8:
    case 16:
    case 32:
    case 64:
    case 128:
      return SVEFormatFromLaneSizeInBytes(lane_size_in_bits / kBitsPerByte);
    default:
      VIXL_UNREACHABLE();
      return kFormatUndefined;
  }
}


VectorFormat SVEFormatFromLaneSizeInBytesLog2(int lane_size_in_bytes_log2) {
  switch (lane_size_in_bytes_log2) {
    case 0:
    case 1:
    case 2:
    case 3:
    case 4:
      return SVEFormatFromLaneSizeInBytes(1 << lane_size_in_bytes_log2);
    default:
      VIXL_UNREACHABLE();
      return kFormatUndefined;
  }
}


VectorFormat ScalarFormatFromFormat(VectorFormat vform) {
  return ScalarFormatFromLaneSize(LaneSizeInBitsFromFormat(vform));
}


unsigned RegisterSizeInBitsFromFormat(VectorFormat vform) {
  VIXL_ASSERT(vform != kFormatUndefined);
  VIXL_ASSERT(!IsSVEFormat(vform));
  switch (vform) {
    case kFormatB:
      return kBRegSize;
    case kFormatH:
      return kHRegSize;
    case kFormatS:
    case kFormat2H:
      return kSRegSize;
    case kFormatD:
    case kFormat8B:
    case kFormat4H:
    case kFormat2S:
    case kFormat1D:
      return kDRegSize;
    case kFormat16B:
    case kFormat8H:
    case kFormat4S:
    case kFormat2D:
      return kQRegSize;
    default:
      VIXL_UNREACHABLE();
      return 0;
  }
}


unsigned RegisterSizeInBytesFromFormat(VectorFormat vform) {
  return RegisterSizeInBitsFromFormat(vform) / 8;
}


unsigned LaneSizeInBitsFromFormat(VectorFormat vform) {
  VIXL_ASSERT(vform != kFormatUndefined);
  switch (vform) {
    case kFormatB:
    case kFormat8B:
    case kFormat16B:
    case kFormatVnB:
      return 8;
    case kFormatH:
    case kFormat2H:
    case kFormat4H:
    case kFormat8H:
    case kFormatVnH:
      return 16;
    case kFormatS:
    case kFormat2S:
    case kFormat4S:
    case kFormatVnS:
      return 32;
    case kFormatD:
    case kFormat1D:
    case kFormat2D:
    case kFormatVnD:
      return 64;
    case kFormatVnQ:
      return 128;
    default:
      VIXL_UNREACHABLE();
      return 0;
  }
}


int LaneSizeInBytesFromFormat(VectorFormat vform) {
  return LaneSizeInBitsFromFormat(vform) / 8;
}


int LaneSizeInBytesLog2FromFormat(VectorFormat vform) {
  VIXL_ASSERT(vform != kFormatUndefined);
  switch (vform) {
    case kFormatB:
    case kFormat8B:
    case kFormat16B:
    case kFormatVnB:
      return 0;
    case kFormatH:
    case kFormat2H:
    case kFormat4H:
    case kFormat8H:
    case kFormatVnH:
      return 1;
    case kFormatS:
    case kFormat2S:
    case kFormat4S:
    case kFormatVnS:
      return 2;
    case kFormatD:
    case kFormat1D:
    case kFormat2D:
    case kFormatVnD:
      return 3;
    case kFormatVnQ:
      return 4;
    default:
      VIXL_UNREACHABLE();
      return 0;
  }
}


int LaneCountFromFormat(VectorFormat vform) {
  VIXL_ASSERT(vform != kFormatUndefined);
  switch (vform) {
    case kFormat16B:
      return 16;
    case kFormat8B:
    case kFormat8H:
      return 8;
    case kFormat4H:
    case kFormat4S:
      return 4;
    case kFormat2H:
    case kFormat2S:
    case kFormat2D:
      return 2;
    case kFormat1D:
    case kFormatB:
    case kFormatH:
    case kFormatS:
    case kFormatD:
      return 1;
    default:
      VIXL_UNREACHABLE();
      return 0;
  }
}


int MaxLaneCountFromFormat(VectorFormat vform) {
  VIXL_ASSERT(vform != kFormatUndefined);
  switch (vform) {
    case kFormatB:
    case kFormat8B:
    case kFormat16B:
      return 16;
    case kFormatH:
    case kFormat4H:
    case kFormat8H:
      return 8;
    case kFormatS:
    case kFormat2S:
    case kFormat4S:
      return 4;
    case kFormatD:
    case kFormat1D:
    case kFormat2D:
      return 2;
    default:
      VIXL_UNREACHABLE();
      return 0;
  }
}


// Does 'vform' indicate a vector format or a scalar format?
bool IsVectorFormat(VectorFormat vform) {
  VIXL_ASSERT(vform != kFormatUndefined);
  switch (vform) {
    case kFormatB:
    case kFormatH:
    case kFormatS:
    case kFormatD:
      return false;
    default:
      return true;
  }
}


int64_t MaxIntFromFormat(VectorFormat vform) {
  int lane_size = LaneSizeInBitsFromFormat(vform);
  return static_cast<int64_t>(GetUintMask(lane_size) >> 1);
}


int64_t MinIntFromFormat(VectorFormat vform) {
  return -MaxIntFromFormat(vform) - 1;
}


uint64_t MaxUintFromFormat(VectorFormat vform) {
  return GetUintMask(LaneSizeInBitsFromFormat(vform));
}

}  // namespace aarch64
}  // namespace vixl