aboutsummaryrefslogtreecommitdiff
path: root/core/src/main/java/com/google/common/truth/PrimitiveFloatArraySubject.java
blob: ae106d5f3b2ba82929ead3a1d1d4d46994a3b30e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
/*
 * Copyright (c) 2014 Google, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.truth;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.truth.Correspondence.tolerance;

import com.google.common.primitives.Floats;
import com.google.errorprone.annotations.CanIgnoreReturnValue;
import java.util.Arrays;
import org.checkerframework.checker.nullness.qual.Nullable;

/**
 * A Subject for {@code float[]}.
 *
 * @author Christian Gruber (cgruber@israfil.net)
 */
public final class PrimitiveFloatArraySubject extends AbstractArraySubject {
  private final float[] actual;

  PrimitiveFloatArraySubject(
      FailureMetadata metadata, float /*@Nullable*/[] o, @Nullable String typeDescription) {
    super(metadata, o, typeDescription);
    this.actual = o;
  }

  /**
   * A check that the actual array and {@code expected} are arrays of the same length and type,
   * containing elements such that each element in {@code expected} is equal to each element in the
   * actual array, and in the same position, with element equality defined the same way that {@link
   * Arrays#equals(float[], float[])} and {@link Float#equals(Object)} define it (which is different
   * to the way that the {@code ==} operator on primitive {@code float} defines it). This method is
   * <i>not</i> recommended when the code under test is doing any kind of arithmetic: use {@link
   * #usingTolerance} with a suitable tolerance in that case, e.g. {@code
   * assertThat(actualArray).usingTolerance(1.0e-5).containsExactly(expectedArray).inOrder()}.
   * (Remember that the exact result of floating point arithmetic is sensitive to apparently trivial
   * changes such as replacing {@code (a + b) + c} with {@code a + (b + c)}, and that unless {@code
   * strictfp} is in force even the result of {@code (a + b) + c} is sensitive to the JVM's choice
   * of precision for the intermediate result.) This method is recommended when the code under test
   * is specified as either copying values without modification from its input or returning
   * well-defined literal or constant values.
   *
   * <ul>
   *   <li>It considers {@link Float#POSITIVE_INFINITY}, {@link Float#NEGATIVE_INFINITY}, and {@link
   *       Float#NaN} to be equal to themselves (contrast with {@code usingTolerance(0.0)} which
   *       does not).
   *   <li>It does <i>not</i> consider {@code -0.0f} to be equal to {@code 0.0f} (contrast with
   *       {@code usingTolerance(0.0)} which does).
   * </ul>
   */
  @Override
  public void isEqualTo(Object expected) {
    super.isEqualTo(expected);
  }

  /**
   * A check that the actual array and {@code expected} are not arrays of the same length and type,
   * containing elements such that each element in {@code expected} is equal to each element in the
   * actual array, and in the same position, with element equality defined the same way that {@link
   * Arrays#equals(float[], float[])} and {@link Float#equals(Object)} define it (which is different
   * to the way that the {@code ==} operator on primitive {@code float} defines it). See {@link
   * #isEqualTo(Object)} for advice on when exact equality is recommended.
   *
   * <ul>
   *   <li>It considers {@link Float#POSITIVE_INFINITY}, {@link Float#NEGATIVE_INFINITY}, and {@link
   *       Float#NaN} to be equal to themselves.
   *   <li>It does <i>not</i> consider {@code -0.0} to be equal to {@code 0.0}.
   * </ul>
   */
  @Override
  public void isNotEqualTo(Object expected) {
    super.isNotEqualTo(expected);
  }

  /**
   * Starts a method chain for a check in which the actual values (i.e. the elements of the array
   * under test) are compared to expected elements using a {@link Correspondence} which considers
   * values to correspond if they are finite values within {@code tolerance} of each other. The
   * check is actually executed by continuing the method chain. For example:
   *
   * <pre>{@code
   * assertThat(actualFloatArray).usingTolerance(1.0e-5f).contains(3.14159f);
   * }</pre>
   *
   * <ul>
   *   <li>It does not consider values to correspond if either value is infinite or NaN.
   *   <li>It considers {@code -0.0f} to be within any tolerance of {@code 0.0f}.
   *   <li>The expected values provided later in the chain will be {@link Number} instances which
   *       will be converted to floats, which may result in a loss of precision for some numeric
   *       types.
   *   <li>The subsequent methods in the chain may throw a {@link NullPointerException} if any
   *       expected {@link Number} instance is null.
   * </ul>
   *
   * @param tolerance an inclusive upper bound on the difference between the float values of the
   *     actual and expected numbers, which must be a non-negative finite value, i.e. not {@link
   *     Float#NaN}, {@link Float#POSITIVE_INFINITY}, or negative, including {@code -0.0f}
   */
  public FloatArrayAsIterable usingTolerance(double tolerance) {
    return new FloatArrayAsIterable(tolerance(tolerance), iterableSubject());
  }

  private static final Correspondence<Float, Number> EXACT_EQUALITY_CORRESPONDENCE =
      Correspondence.from(
          // If we were allowed lambdas, this would be:
          // (a, e) -> Float.floatToIntBits(a) == Float.floatToIntBits(checkedToFloat(e)),
          new Correspondence.BinaryPredicate<Float, Number>() {

            @Override
            public boolean apply(Float actual, Number expected) {
              return Float.floatToIntBits(actual) == Float.floatToIntBits(checkedToFloat(expected));
            }
          },
          "is exactly equal to");

  private static float checkedToFloat(Number expected) {
    checkNotNull(expected);
    checkArgument(
        !(expected instanceof Double),
        "Expected value in assertion using exact float equality was a double, which is not "
            + "supported as a double may not have an exact float representation");
    checkArgument(
        expected instanceof Float || expected instanceof Integer || expected instanceof Long,
        "Expected value in assertion using exact float equality was of unsupported type %s "
            + "(it may not have an exact float representation)",
        expected.getClass());
    if (expected instanceof Integer) {
      checkArgument(
          Math.abs((Integer) expected) <= 1 << 24,
          "Expected value %s in assertion using exact float equality was an int with an absolute "
              + "value greater than 2^24 which has no exact float representation",
          expected);
    }
    if (expected instanceof Long) {
      checkArgument(
          Math.abs((Long) expected) <= 1L << 24,
          "Expected value %s in assertion using exact float equality was a long with an absolute "
              + "value greater than 2^24 which has no exact float representation",
          expected);
    }
    return expected.floatValue();
  }

  /**
   * Starts a method chain for a check in which the actual values (i.e. the elements of the array
   * under test) are compared to expected elements using a {@link Correspondence} which considers
   * values to correspond if they are exactly equal, with equality defined by {@link Float#equals}.
   * This method is <i>not</i> recommended when the code under test is doing any kind of arithmetic:
   * use {@link #usingTolerance} with a suitable tolerance in that case. (Remember that the exact
   * result of floating point arithmetic is sensitive to apparently trivial changes such as
   * replacing {@code (a + b) + c} with {@code a + (b + c)}, and that unless {@code strictfp} is in
   * force even the result of {@code (a + b) + c} is sensitive to the JVM's choice of precision for
   * the intermediate result.) This method is recommended when the code under test is specified as
   * either copying a value without modification from its input or returning a well-defined literal
   * or constant value. The check is actually executed by continuing the method chain. For example:
   *
   * <pre>{@code
   * assertThat(actualFloatArray).usingExactEquality().contains(3.14159f);
   * }</pre>
   *
   * <p>For convenience, some subsequent methods accept expected values as {@link Number} instances.
   * These numbers must be either of type {@link Float}, {@link Integer}, or {@link Long}, and if
   * they are {@link Integer} or {@link Long} then their absolute values must not exceed 2^24 which
   * is 16,777,216. (This restriction ensures that the expected values have exact {@link Float}
   * representations: using exact equality makes no sense if they do not.)
   *
   * <ul>
   *   <li>It considers {@link Float#POSITIVE_INFINITY}, {@link Float#NEGATIVE_INFINITY}, and {@link
   *       Float#NaN} to be equal to themselves (contrast with {@code usingTolerance(0.0)} which
   *       does not).
   *   <li>It does <i>not</i> consider {@code -0.0f} to be equal to {@code 0.0f} (contrast with
   *       {@code usingTolerance(0.0)} which does).
   *   <li>The subsequent methods in the chain may throw a {@link NullPointerException} if any
   *       expected {@link Float} instance is null.
   * </ul>
   */
  public FloatArrayAsIterable usingExactEquality() {
    return new FloatArrayAsIterable(EXACT_EQUALITY_CORRESPONDENCE, iterableSubject());
  }

  /**
   * A partially specified check for doing assertions on the array similar to the assertions
   * supported for {@link Iterable} subjects, in which the elements of the array under test are
   * compared to expected elements using either exact or tolerant float equality: see {@link
   * #usingExactEquality} and {@link #usingTolerance}. Call methods on this object to actually
   * execute the check.
   *
   * <p>In the exact equality case, the methods on this class which take {@link Number} arguments
   * only accept certain instances: again, see {@link #usingExactEquality} for details.
   */
  public static final class FloatArrayAsIterable
      extends IterableSubject.UsingCorrespondence<Float, Number> {

    FloatArrayAsIterable(
        Correspondence<? super Float, Number> correspondence, IterableSubject subject) {
      super(subject, correspondence);
    }

    /**
     * As {@link #containsAtLeast(Object, Object, Object...)} but taking a primitive float array.
     */
    @CanIgnoreReturnValue
    public Ordered containsAtLeast(float[] expected) {
      return containsAtLeastElementsIn(Floats.asList(expected));
    }

    /** As {@link #containsAnyOf(Object, Object, Object...)} but taking a primitive float array. */
    public void containsAnyOf(float[] expected) {
      containsAnyIn(Floats.asList(expected));
    }

    /** As {@link #containsExactly(Object...)} but taking a primitive float array. */
    @CanIgnoreReturnValue
    public Ordered containsExactly(float[] expected) {
      return containsExactlyElementsIn(Floats.asList(expected));
    }

    /** As {@link #containsNoneOf(Object, Object, Object...)} but taking a primitive float array. */
    public void containsNoneOf(float[] excluded) {
      containsNoneIn(Floats.asList(excluded));
    }
  }

  private IterableSubject iterableSubject() {
    return checkNoNeedToDisplayBothValues("asList()")
        .about(iterablesWithCustomFloatToString())
        .that(Floats.asList(actual));
  }

  /*
   * TODO(cpovirk): Should we make Floats.asList().toString() smarter rather than do all this?
   *
   * TODO(cpovirk): Or find a general solution for this and MultimapSubject.IterableEntries. But
   * note that here we don't use _exactly_ PrimitiveFloatArraySubject.this.toString(), as that
   * contains "float[]." Or maybe we should stop including that in
   * PrimitiveFloatArraySubject.this.toString(), too, someday?
   */
  private Factory<IterableSubject, Iterable<?>> iterablesWithCustomFloatToString() {
    return new Factory<IterableSubject, Iterable<?>>() {
      @Override
      public IterableSubject createSubject(FailureMetadata metadata, Iterable<?> actual) {
        return new IterableSubjectWithInheritedToString(metadata, actual);
      }
    };
  }

  private final class IterableSubjectWithInheritedToString extends IterableSubject {

    IterableSubjectWithInheritedToString(FailureMetadata metadata, Iterable<?> actual) {
      super(metadata, actual);
    }

    @Override
    protected String actualCustomStringRepresentation() {
      return PrimitiveFloatArraySubject.this
          .actualCustomStringRepresentationForPackageMembersToCall();
    }
  }
}