aboutsummaryrefslogtreecommitdiff
path: root/source/val/validate_type.cpp
blob: 6a5ea3c1517a0f3f682d12a94c26fed18396917b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
// Copyright (c) 2018 Google LLC.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Ensures type declarations are unique unless allowed by the specification.

#include "source/opcode.h"
#include "source/spirv_target_env.h"
#include "source/val/instruction.h"
#include "source/val/validate.h"
#include "source/val/validation_state.h"
#include "spirv/unified1/spirv.h"

namespace spvtools {
namespace val {
namespace {

// Returns, as an int64_t, the literal value from an OpConstant or the
// default value of an OpSpecConstant, assuming it is an integral type.
// For signed integers, relies the rule that literal value is sign extended
// to fill out to word granularity.  Assumes that the constant value
// has
int64_t ConstantLiteralAsInt64(uint32_t width,
                               const std::vector<uint32_t>& const_words) {
  const uint32_t lo_word = const_words[3];
  if (width <= 32) return int32_t(lo_word);
  assert(width <= 64);
  assert(const_words.size() > 4);
  const uint32_t hi_word = const_words[4];  // Must exist, per spec.
  return static_cast<int64_t>(uint64_t(lo_word) | uint64_t(hi_word) << 32);
}

// Validates that type declarations are unique, unless multiple declarations
// of the same data type are allowed by the specification.
// (see section 2.8 Types and Variables)
// Doesn't do anything if SPV_VAL_ignore_type_decl_unique was declared in the
// module.
spv_result_t ValidateUniqueness(ValidationState_t& _, const Instruction* inst) {
  if (_.HasExtension(Extension::kSPV_VALIDATOR_ignore_type_decl_unique))
    return SPV_SUCCESS;

  const auto opcode = inst->opcode();
  if (opcode != SpvOpTypeArray && opcode != SpvOpTypeRuntimeArray &&
      opcode != SpvOpTypeStruct && opcode != SpvOpTypePointer &&
      !_.RegisterUniqueTypeDeclaration(inst)) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "Duplicate non-aggregate type declarations are not allowed. "
              "Opcode: "
           << spvOpcodeString(opcode) << " id: " << inst->id();
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateTypeInt(ValidationState_t& _, const Instruction* inst) {
  // Validates that the number of bits specified for an Int type is valid.
  // Scalar integer types can be parameterized only with 32-bits.
  // Int8, Int16, and Int64 capabilities allow using 8-bit, 16-bit, and 64-bit
  // integers, respectively.
  auto num_bits = inst->GetOperandAs<const uint32_t>(1);
  if (num_bits != 32) {
    if (num_bits == 8) {
      if (_.features().declare_int8_type) {
        return SPV_SUCCESS;
      }
      return _.diag(SPV_ERROR_INVALID_DATA, inst)
             << "Using an 8-bit integer type requires the Int8 capability,"
                " or an extension that explicitly enables 8-bit integers.";
    } else if (num_bits == 16) {
      if (_.features().declare_int16_type) {
        return SPV_SUCCESS;
      }
      return _.diag(SPV_ERROR_INVALID_DATA, inst)
             << "Using a 16-bit integer type requires the Int16 capability,"
                " or an extension that explicitly enables 16-bit integers.";
    } else if (num_bits == 64) {
      if (_.HasCapability(SpvCapabilityInt64)) {
        return SPV_SUCCESS;
      }
      return _.diag(SPV_ERROR_INVALID_DATA, inst)
             << "Using a 64-bit integer type requires the Int64 capability.";
    } else {
      return _.diag(SPV_ERROR_INVALID_DATA, inst)
             << "Invalid number of bits (" << num_bits
             << ") used for OpTypeInt.";
    }
  }

  const auto signedness_index = 2;
  const auto signedness = inst->GetOperandAs<uint32_t>(signedness_index);
  if (signedness != 0 && signedness != 1) {
    return _.diag(SPV_ERROR_INVALID_VALUE, inst)
           << "OpTypeInt has invalid signedness:";
  }

  // SPIR-V Spec 2.16.3: Validation Rules for Kernel Capabilities: The
  // Signedness in OpTypeInt must always be 0.
  if (SpvOpTypeInt == inst->opcode() && _.HasCapability(SpvCapabilityKernel) &&
      inst->GetOperandAs<uint32_t>(2) != 0u) {
    return _.diag(SPV_ERROR_INVALID_BINARY, inst)
           << "The Signedness in OpTypeInt "
              "must always be 0 when Kernel "
              "capability is used.";
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateTypeFloat(ValidationState_t& _, const Instruction* inst) {
  // Validates that the number of bits specified for an Int type is valid.
  // Scalar integer types can be parameterized only with 32-bits.
  // Int8, Int16, and Int64 capabilities allow using 8-bit, 16-bit, and 64-bit
  // integers, respectively.
  auto num_bits = inst->GetOperandAs<const uint32_t>(1);
  if (num_bits == 32) {
    return SPV_SUCCESS;
  }
  if (num_bits == 16) {
    if (_.features().declare_float16_type) {
      return SPV_SUCCESS;
    }
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "Using a 16-bit floating point "
           << "type requires the Float16 or Float16Buffer capability,"
              " or an extension that explicitly enables 16-bit floating point.";
  }
  if (num_bits == 64) {
    if (_.HasCapability(SpvCapabilityFloat64)) {
      return SPV_SUCCESS;
    }
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "Using a 64-bit floating point "
           << "type requires the Float64 capability.";
  }
  return _.diag(SPV_ERROR_INVALID_DATA, inst)
         << "Invalid number of bits (" << num_bits << ") used for OpTypeFloat.";
}

spv_result_t ValidateTypeVector(ValidationState_t& _, const Instruction* inst) {
  const auto component_index = 1;
  const auto component_id = inst->GetOperandAs<uint32_t>(component_index);
  const auto component_type = _.FindDef(component_id);
  if (!component_type || !spvOpcodeIsScalarType(component_type->opcode())) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpTypeVector Component Type <id> '" << _.getIdName(component_id)
           << "' is not a scalar type.";
  }

  // Validates that the number of components in the vector is valid.
  // Vector types can only be parameterized as having 2, 3, or 4 components.
  // If the Vector16 capability is added, 8 and 16 components are also allowed.
  auto num_components = inst->GetOperandAs<const uint32_t>(2);
  if (num_components == 2 || num_components == 3 || num_components == 4) {
    return SPV_SUCCESS;
  } else if (num_components == 8 || num_components == 16) {
    if (_.HasCapability(SpvCapabilityVector16)) {
      return SPV_SUCCESS;
    }
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "Having " << num_components << " components for "
           << spvOpcodeString(inst->opcode())
           << " requires the Vector16 capability";
  } else {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "Illegal number of components (" << num_components << ") for "
           << spvOpcodeString(inst->opcode());
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateTypeMatrix(ValidationState_t& _, const Instruction* inst) {
  const auto column_type_index = 1;
  const auto column_type_id = inst->GetOperandAs<uint32_t>(column_type_index);
  const auto column_type = _.FindDef(column_type_id);
  if (!column_type || SpvOpTypeVector != column_type->opcode()) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "Columns in a matrix must be of type vector.";
  }

  // Trace back once more to find out the type of components in the vector.
  // Operand 1 is the <id> of the type of data in the vector.
  const auto comp_type_id = column_type->GetOperandAs<uint32_t>(1);
  auto comp_type_instruction = _.FindDef(comp_type_id);
  if (comp_type_instruction->opcode() != SpvOpTypeFloat) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Matrix types can only be "
                                                   "parameterized with "
                                                   "floating-point types.";
  }

  // Validates that the matrix has 2,3, or 4 columns.
  auto num_cols = inst->GetOperandAs<const uint32_t>(2);
  if (num_cols != 2 && num_cols != 3 && num_cols != 4) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst) << "Matrix types can only be "
                                                   "parameterized as having "
                                                   "only 2, 3, or 4 columns.";
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateTypeArray(ValidationState_t& _, const Instruction* inst) {
  const auto element_type_index = 1;
  const auto element_type_id = inst->GetOperandAs<uint32_t>(element_type_index);
  const auto element_type = _.FindDef(element_type_id);
  if (!element_type || !spvOpcodeGeneratesType(element_type->opcode())) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpTypeArray Element Type <id> '" << _.getIdName(element_type_id)
           << "' is not a type.";
  }

  if (element_type->opcode() == SpvOpTypeVoid) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpTypeArray Element Type <id> '" << _.getIdName(element_type_id)
           << "' is a void type.";
  }

  if (spvIsVulkanEnv(_.context()->target_env) &&
      element_type->opcode() == SpvOpTypeRuntimeArray) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpTypeArray Element Type <id> '" << _.getIdName(element_type_id)
           << "' is not valid in "
           << spvLogStringForEnv(_.context()->target_env) << " environments.";
  }

  const auto length_index = 2;
  const auto length_id = inst->GetOperandAs<uint32_t>(length_index);
  const auto length = _.FindDef(length_id);
  if (!length || !spvOpcodeIsConstant(length->opcode())) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpTypeArray Length <id> '" << _.getIdName(length_id)
           << "' is not a scalar constant type.";
  }

  // NOTE: Check the initialiser value of the constant
  const auto const_inst = length->words();
  const auto const_result_type_index = 1;
  const auto const_result_type = _.FindDef(const_inst[const_result_type_index]);
  if (!const_result_type || SpvOpTypeInt != const_result_type->opcode()) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpTypeArray Length <id> '" << _.getIdName(length_id)
           << "' is not a constant integer type.";
  }

  switch (length->opcode()) {
    case SpvOpSpecConstant:
    case SpvOpConstant: {
      auto& type_words = const_result_type->words();
      const bool is_signed = type_words[3] > 0;
      const uint32_t width = type_words[2];
      const int64_t ivalue = ConstantLiteralAsInt64(width, length->words());
      if (ivalue == 0 || (ivalue < 0 && is_signed)) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << "OpTypeArray Length <id> '" << _.getIdName(length_id)
               << "' default value must be at least 1: found " << ivalue;
      }
    } break;
    case SpvOpConstantNull:
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "OpTypeArray Length <id> '" << _.getIdName(length_id)
             << "' default value must be at least 1.";
    case SpvOpSpecConstantOp:
      // Assume it's OK, rather than try to evaluate the operation.
      break;
    default:
      assert(0 && "bug in spvOpcodeIsConstant() or result type isn't int");
  }
  return SPV_SUCCESS;
}

spv_result_t ValidateTypeRuntimeArray(ValidationState_t& _,
                                      const Instruction* inst) {
  const auto element_type_index = 1;
  const auto element_id = inst->GetOperandAs<uint32_t>(element_type_index);
  const auto element_type = _.FindDef(element_id);
  if (!element_type || !spvOpcodeGeneratesType(element_type->opcode())) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpTypeRuntimeArray Element Type <id> '"
           << _.getIdName(element_id) << "' is not a type.";
  }

  if (element_type->opcode() == SpvOpTypeVoid) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpTypeRuntimeArray Element Type <id> '"
           << _.getIdName(element_id) << "' is a void type.";
  }

  if (spvIsVulkanEnv(_.context()->target_env) &&
      element_type->opcode() == SpvOpTypeRuntimeArray) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpTypeRuntimeArray Element Type <id> '"
           << _.getIdName(element_id) << "' is not valid in "
           << spvLogStringForEnv(_.context()->target_env) << " environments.";
  }

  return SPV_SUCCESS;
}

bool ContainsOpaqueType(ValidationState_t& _, const Instruction* str) {
  const size_t elem_type_index = 1;
  uint32_t elem_type_id;
  Instruction* elem_type;

  if (spvOpcodeIsBaseOpaqueType(str->opcode())) {
    return true;
  }

  switch (str->opcode()) {
    case SpvOpTypeArray:
    case SpvOpTypeRuntimeArray:
      elem_type_id = str->GetOperandAs<uint32_t>(elem_type_index);
      elem_type = _.FindDef(elem_type_id);
      return ContainsOpaqueType(_, elem_type);
    case SpvOpTypeStruct:
      for (size_t member_type_index = 1;
           member_type_index < str->operands().size(); ++member_type_index) {
        auto member_type_id = str->GetOperandAs<uint32_t>(member_type_index);
        auto member_type = _.FindDef(member_type_id);
        if (ContainsOpaqueType(_, member_type)) return true;
      }
      break;
    default:
      break;
  }
  return false;
}

spv_result_t ValidateTypeStruct(ValidationState_t& _, const Instruction* inst) {
  const uint32_t struct_id = inst->GetOperandAs<uint32_t>(0);
  for (size_t member_type_index = 1;
       member_type_index < inst->operands().size(); ++member_type_index) {
    auto member_type_id = inst->GetOperandAs<uint32_t>(member_type_index);
    if (member_type_id == inst->id()) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "Structure members may not be self references";
    }

    auto member_type = _.FindDef(member_type_id);
    if (!member_type || !spvOpcodeGeneratesType(member_type->opcode())) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "OpTypeStruct Member Type <id> '" << _.getIdName(member_type_id)
             << "' is not a type.";
    }
    if (member_type->opcode() == SpvOpTypeVoid) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "Structures cannot contain a void type.";
    }
    if (SpvOpTypeStruct == member_type->opcode() &&
        _.IsStructTypeWithBuiltInMember(member_type_id)) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "Structure <id> " << _.getIdName(member_type_id)
             << " contains members with BuiltIn decoration. Therefore this "
             << "structure may not be contained as a member of another "
             << "structure "
             << "type. Structure <id> " << _.getIdName(struct_id)
             << " contains structure <id> " << _.getIdName(member_type_id)
             << ".";
    }

    if (spvIsVulkanEnv(_.context()->target_env) &&
        member_type->opcode() == SpvOpTypeRuntimeArray) {
      const bool is_last_member =
          member_type_index == inst->operands().size() - 1;
      if (!is_last_member) {
        return _.diag(SPV_ERROR_INVALID_ID, inst)
               << "In " << spvLogStringForEnv(_.context()->target_env)
               << ", OpTypeRuntimeArray must only be used for the last member "
                  "of an OpTypeStruct";
      }
    }
  }

  bool has_nested_blockOrBufferBlock_struct = false;
  // Struct members start at word 2 of OpTypeStruct instruction.
  for (size_t word_i = 2; word_i < inst->words().size(); ++word_i) {
    auto member = inst->word(word_i);
    auto memberTypeInstr = _.FindDef(member);
    if (memberTypeInstr && SpvOpTypeStruct == memberTypeInstr->opcode()) {
      if (_.HasDecoration(memberTypeInstr->id(), SpvDecorationBlock) ||
          _.HasDecoration(memberTypeInstr->id(), SpvDecorationBufferBlock) ||
          _.GetHasNestedBlockOrBufferBlockStruct(memberTypeInstr->id()))
        has_nested_blockOrBufferBlock_struct = true;
    }
  }

  _.SetHasNestedBlockOrBufferBlockStruct(inst->id(),
                                         has_nested_blockOrBufferBlock_struct);
  if (_.GetHasNestedBlockOrBufferBlockStruct(inst->id()) &&
      (_.HasDecoration(inst->id(), SpvDecorationBufferBlock) ||
       _.HasDecoration(inst->id(), SpvDecorationBlock))) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "rules: A Block or BufferBlock cannot be nested within another "
              "Block or BufferBlock. ";
  }

  std::unordered_set<uint32_t> built_in_members;
  for (auto decoration : _.id_decorations(struct_id)) {
    if (decoration.dec_type() == SpvDecorationBuiltIn &&
        decoration.struct_member_index() != Decoration::kInvalidMember) {
      built_in_members.insert(decoration.struct_member_index());
    }
  }
  int num_struct_members = static_cast<int>(inst->operands().size() - 1);
  int num_builtin_members = static_cast<int>(built_in_members.size());
  if (num_builtin_members > 0 && num_builtin_members != num_struct_members) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "When BuiltIn decoration is applied to a structure-type member, "
           << "all members of that structure type must also be decorated with "
           << "BuiltIn (No allowed mixing of built-in variables and "
           << "non-built-in variables within a single structure). Structure id "
           << struct_id << " does not meet this requirement.";
  }
  if (num_builtin_members > 0) {
    _.RegisterStructTypeWithBuiltInMember(struct_id);
  }

  if (spvIsVulkanEnv(_.context()->target_env) &&
      !_.options()->before_hlsl_legalization && ContainsOpaqueType(_, inst)) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "In " << spvLogStringForEnv(_.context()->target_env)
           << ", OpTypeStruct must not contain an opaque type.";
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateTypePointer(ValidationState_t& _,
                                 const Instruction* inst) {
  auto type_id = inst->GetOperandAs<uint32_t>(2);
  auto type = _.FindDef(type_id);
  if (!type || !spvOpcodeGeneratesType(type->opcode())) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpTypePointer Type <id> '" << _.getIdName(type_id)
           << "' is not a type.";
  }
  // See if this points to a storage image.
  const auto storage_class = inst->GetOperandAs<SpvStorageClass>(1);
  if (storage_class == SpvStorageClassUniformConstant) {
    // Unpack an optional level of arraying.
    if (type->opcode() == SpvOpTypeArray ||
        type->opcode() == SpvOpTypeRuntimeArray) {
      type_id = type->GetOperandAs<uint32_t>(1);
      type = _.FindDef(type_id);
    }
    if (type->opcode() == SpvOpTypeImage) {
      const auto sampled = type->GetOperandAs<uint32_t>(6);
      // 2 indicates this image is known to be be used without a sampler, i.e.
      // a storage image.
      if (sampled == 2) _.RegisterPointerToStorageImage(inst->id());
    }
  }

  if (!_.IsValidStorageClass(storage_class)) {
    return _.diag(SPV_ERROR_INVALID_BINARY, inst)
           << "Invalid storage class for target environment";
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateTypeFunction(ValidationState_t& _,
                                  const Instruction* inst) {
  const auto return_type_id = inst->GetOperandAs<uint32_t>(1);
  const auto return_type = _.FindDef(return_type_id);
  if (!return_type || !spvOpcodeGeneratesType(return_type->opcode())) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpTypeFunction Return Type <id> '" << _.getIdName(return_type_id)
           << "' is not a type.";
  }
  size_t num_args = 0;
  for (size_t param_type_index = 2; param_type_index < inst->operands().size();
       ++param_type_index, ++num_args) {
    const auto param_id = inst->GetOperandAs<uint32_t>(param_type_index);
    const auto param_type = _.FindDef(param_id);
    if (!param_type || !spvOpcodeGeneratesType(param_type->opcode())) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "OpTypeFunction Parameter Type <id> '" << _.getIdName(param_id)
             << "' is not a type.";
    }

    if (param_type->opcode() == SpvOpTypeVoid) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "OpTypeFunction Parameter Type <id> '" << _.getIdName(param_id)
             << "' cannot be OpTypeVoid.";
    }
  }
  const uint32_t num_function_args_limit =
      _.options()->universal_limits_.max_function_args;
  if (num_args > num_function_args_limit) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpTypeFunction may not take more than "
           << num_function_args_limit << " arguments. OpTypeFunction <id> '"
           << _.getIdName(inst->GetOperandAs<uint32_t>(0)) << "' has "
           << num_args << " arguments.";
  }

  // The only valid uses of OpTypeFunction are in an OpFunction, debugging, or
  // decoration instruction.
  for (auto& pair : inst->uses()) {
    const auto* use = pair.first;
    if (use->opcode() != SpvOpFunction && !spvOpcodeIsDebug(use->opcode()) &&
        !use->IsNonSemantic() && !spvOpcodeIsDecoration(use->opcode())) {
      return _.diag(SPV_ERROR_INVALID_ID, use)
             << "Invalid use of function type result id "
             << _.getIdName(inst->id()) << ".";
    }
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateTypeForwardPointer(ValidationState_t& _,
                                        const Instruction* inst) {
  const auto pointer_type_id = inst->GetOperandAs<uint32_t>(0);
  const auto pointer_type_inst = _.FindDef(pointer_type_id);
  if (pointer_type_inst->opcode() != SpvOpTypePointer) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "Pointer type in OpTypeForwardPointer is not a pointer type.";
  }

  const auto storage_class = inst->GetOperandAs<SpvStorageClass>(1);
  if (storage_class != pointer_type_inst->GetOperandAs<uint32_t>(1)) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "Storage class in OpTypeForwardPointer does not match the "
           << "pointer definition.";
  }

  const auto pointee_type_id = pointer_type_inst->GetOperandAs<uint32_t>(2);
  const auto pointee_type = _.FindDef(pointee_type_id);
  if (!pointee_type || pointee_type->opcode() != SpvOpTypeStruct) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "Forward pointers must point to a structure";
  }

  if (spvIsVulkanEnv(_.context()->target_env)) {
    if (storage_class != SpvStorageClassPhysicalStorageBuffer) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << _.VkErrorID(4711)
             << "In Vulkan, OpTypeForwardPointer must have "
             << "a storage class of PhysicalStorageBuffer.";
    }
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateTypeCooperativeMatrixNV(ValidationState_t& _,
                                             const Instruction* inst) {
  const auto component_type_index = 1;
  const auto component_type_id =
      inst->GetOperandAs<uint32_t>(component_type_index);
  const auto component_type = _.FindDef(component_type_id);
  if (!component_type || (SpvOpTypeFloat != component_type->opcode() &&
                          SpvOpTypeInt != component_type->opcode())) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpTypeCooperativeMatrixNV Component Type <id> '"
           << _.getIdName(component_type_id)
           << "' is not a scalar numerical type.";
  }

  const auto scope_index = 2;
  const auto scope_id = inst->GetOperandAs<uint32_t>(scope_index);
  const auto scope = _.FindDef(scope_id);
  if (!scope || !_.IsIntScalarType(scope->type_id()) ||
      !spvOpcodeIsConstant(scope->opcode())) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpTypeCooperativeMatrixNV Scope <id> '" << _.getIdName(scope_id)
           << "' is not a constant instruction with scalar integer type.";
  }

  const auto rows_index = 3;
  const auto rows_id = inst->GetOperandAs<uint32_t>(rows_index);
  const auto rows = _.FindDef(rows_id);
  if (!rows || !_.IsIntScalarType(rows->type_id()) ||
      !spvOpcodeIsConstant(rows->opcode())) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpTypeCooperativeMatrixNV Rows <id> '" << _.getIdName(rows_id)
           << "' is not a constant instruction with scalar integer type.";
  }

  const auto cols_index = 4;
  const auto cols_id = inst->GetOperandAs<uint32_t>(cols_index);
  const auto cols = _.FindDef(cols_id);
  if (!cols || !_.IsIntScalarType(cols->type_id()) ||
      !spvOpcodeIsConstant(cols->opcode())) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpTypeCooperativeMatrixNV Cols <id> '" << _.getIdName(rows_id)
           << "' is not a constant instruction with scalar integer type.";
  }

  return SPV_SUCCESS;
}
}  // namespace

spv_result_t TypePass(ValidationState_t& _, const Instruction* inst) {
  if (!spvOpcodeGeneratesType(inst->opcode()) &&
      inst->opcode() != SpvOpTypeForwardPointer) {
    return SPV_SUCCESS;
  }

  if (auto error = ValidateUniqueness(_, inst)) return error;

  switch (inst->opcode()) {
    case SpvOpTypeInt:
      if (auto error = ValidateTypeInt(_, inst)) return error;
      break;
    case SpvOpTypeFloat:
      if (auto error = ValidateTypeFloat(_, inst)) return error;
      break;
    case SpvOpTypeVector:
      if (auto error = ValidateTypeVector(_, inst)) return error;
      break;
    case SpvOpTypeMatrix:
      if (auto error = ValidateTypeMatrix(_, inst)) return error;
      break;
    case SpvOpTypeArray:
      if (auto error = ValidateTypeArray(_, inst)) return error;
      break;
    case SpvOpTypeRuntimeArray:
      if (auto error = ValidateTypeRuntimeArray(_, inst)) return error;
      break;
    case SpvOpTypeStruct:
      if (auto error = ValidateTypeStruct(_, inst)) return error;
      break;
    case SpvOpTypePointer:
      if (auto error = ValidateTypePointer(_, inst)) return error;
      break;
    case SpvOpTypeFunction:
      if (auto error = ValidateTypeFunction(_, inst)) return error;
      break;
    case SpvOpTypeForwardPointer:
      if (auto error = ValidateTypeForwardPointer(_, inst)) return error;
      break;
    case SpvOpTypeCooperativeMatrixNV:
      if (auto error = ValidateTypeCooperativeMatrixNV(_, inst)) return error;
      break;
    default:
      break;
  }

  return SPV_SUCCESS;
}

}  // namespace val
}  // namespace spvtools