aboutsummaryrefslogtreecommitdiff
path: root/source/val/validate_composites.cpp
blob: d5b978fff7f526d13e331a5a6ac90b24794d9313 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Validates correctness of composite SPIR-V instructions.

#include "source/val/validate.h"

#include "source/diagnostic.h"
#include "source/opcode.h"
#include "source/spirv_target_env.h"
#include "source/val/instruction.h"
#include "source/val/validation_state.h"

namespace spvtools {
namespace val {
namespace {

// Returns the type of the value accessed by OpCompositeExtract or
// OpCompositeInsert instruction. The function traverses the hierarchy of
// nested data structures (structs, arrays, vectors, matrices) as directed by
// the sequence of indices in the instruction. May return error if traversal
// fails (encountered non-composite, out of bounds, no indices, nesting too
// deep).
spv_result_t GetExtractInsertValueType(ValidationState_t& _,
                                       const Instruction* inst,
                                       uint32_t* member_type) {
  const SpvOp opcode = inst->opcode();
  assert(opcode == SpvOpCompositeExtract || opcode == SpvOpCompositeInsert);
  uint32_t word_index = opcode == SpvOpCompositeExtract ? 4 : 5;
  const uint32_t num_words = static_cast<uint32_t>(inst->words().size());
  const uint32_t composite_id_index = word_index - 1;
  const uint32_t num_indices = num_words - word_index;
  const uint32_t kCompositeExtractInsertMaxNumIndices = 255;

  if (num_indices == 0) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "Expected at least one index to Op"
           << spvOpcodeString(inst->opcode()) << ", zero found";

  } else if (num_indices > kCompositeExtractInsertMaxNumIndices) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "The number of indexes in Op" << spvOpcodeString(opcode)
           << " may not exceed " << kCompositeExtractInsertMaxNumIndices
           << ". Found " << num_indices << " indexes.";
  }

  *member_type = _.GetTypeId(inst->word(composite_id_index));
  if (*member_type == 0) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "Expected Composite to be an object of composite type";
  }

  for (; word_index < num_words; ++word_index) {
    const uint32_t component_index = inst->word(word_index);
    const Instruction* const type_inst = _.FindDef(*member_type);
    assert(type_inst);
    switch (type_inst->opcode()) {
      case SpvOpTypeVector: {
        *member_type = type_inst->word(2);
        const uint32_t vector_size = type_inst->word(3);
        if (component_index >= vector_size) {
          return _.diag(SPV_ERROR_INVALID_DATA, inst)
                 << "Vector access is out of bounds, vector size is "
                 << vector_size << ", but access index is " << component_index;
        }
        break;
      }
      case SpvOpTypeMatrix: {
        *member_type = type_inst->word(2);
        const uint32_t num_cols = type_inst->word(3);
        if (component_index >= num_cols) {
          return _.diag(SPV_ERROR_INVALID_DATA, inst)
                 << "Matrix access is out of bounds, matrix has " << num_cols
                 << " columns, but access index is " << component_index;
        }
        break;
      }
      case SpvOpTypeArray: {
        uint64_t array_size = 0;
        auto size = _.FindDef(type_inst->word(3));
        *member_type = type_inst->word(2);
        if (spvOpcodeIsSpecConstant(size->opcode())) {
          // Cannot verify against the size of this array.
          break;
        }

        if (!_.GetConstantValUint64(type_inst->word(3), &array_size)) {
          assert(0 && "Array type definition is corrupt");
        }
        if (component_index >= array_size) {
          return _.diag(SPV_ERROR_INVALID_DATA, inst)
                 << "Array access is out of bounds, array size is "
                 << array_size << ", but access index is " << component_index;
        }
        break;
      }
      case SpvOpTypeRuntimeArray: {
        *member_type = type_inst->word(2);
        // Array size is unknown.
        break;
      }
      case SpvOpTypeStruct: {
        const size_t num_struct_members = type_inst->words().size() - 2;
        if (component_index >= num_struct_members) {
          return _.diag(SPV_ERROR_INVALID_DATA, inst)
                 << "Index is out of bounds, can not find index "
                 << component_index << " in the structure <id> '"
                 << type_inst->id() << "'. This structure has "
                 << num_struct_members << " members. Largest valid index is "
                 << num_struct_members - 1 << ".";
        }
        *member_type = type_inst->word(component_index + 2);
        break;
      }
      case SpvOpTypeCooperativeMatrixNV: {
        *member_type = type_inst->word(2);
        break;
      }
      default:
        return _.diag(SPV_ERROR_INVALID_DATA, inst)
               << "Reached non-composite type while indexes still remain to "
                  "be traversed.";
    }
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateVectorExtractDynamic(ValidationState_t& _,
                                          const Instruction* inst) {
  const uint32_t result_type = inst->type_id();
  const SpvOp result_opcode = _.GetIdOpcode(result_type);
  if (!spvOpcodeIsScalarType(result_opcode)) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "Expected Result Type to be a scalar type";
  }

  const uint32_t vector_type = _.GetOperandTypeId(inst, 2);
  const SpvOp vector_opcode = _.GetIdOpcode(vector_type);
  if (vector_opcode != SpvOpTypeVector) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "Expected Vector type to be OpTypeVector";
  }

  if (_.GetComponentType(vector_type) != result_type) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "Expected Vector component type to be equal to Result Type";
  }

  const auto index = _.FindDef(inst->GetOperandAs<uint32_t>(3));
  if (!index || index->type_id() == 0 || !_.IsIntScalarType(index->type_id())) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "Expected Index to be int scalar";
  }

  if (_.HasCapability(SpvCapabilityShader) &&
      _.ContainsLimitedUseIntOrFloatType(inst->type_id())) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "Cannot extract from a vector of 8- or 16-bit types";
  }
  return SPV_SUCCESS;
}

spv_result_t ValidateVectorInsertDyanmic(ValidationState_t& _,
                                         const Instruction* inst) {
  const uint32_t result_type = inst->type_id();
  const SpvOp result_opcode = _.GetIdOpcode(result_type);
  if (result_opcode != SpvOpTypeVector) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "Expected Result Type to be OpTypeVector";
  }

  const uint32_t vector_type = _.GetOperandTypeId(inst, 2);
  if (vector_type != result_type) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "Expected Vector type to be equal to Result Type";
  }

  const uint32_t component_type = _.GetOperandTypeId(inst, 3);
  if (_.GetComponentType(result_type) != component_type) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "Expected Component type to be equal to Result Type "
           << "component type";
  }

  const uint32_t index_type = _.GetOperandTypeId(inst, 4);
  if (!_.IsIntScalarType(index_type)) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "Expected Index to be int scalar";
  }

  if (_.HasCapability(SpvCapabilityShader) &&
      _.ContainsLimitedUseIntOrFloatType(inst->type_id())) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "Cannot insert into a vector of 8- or 16-bit types";
  }
  return SPV_SUCCESS;
}

spv_result_t ValidateCompositeConstruct(ValidationState_t& _,
                                        const Instruction* inst) {
  const uint32_t num_operands = static_cast<uint32_t>(inst->operands().size());
  const uint32_t result_type = inst->type_id();
  const SpvOp result_opcode = _.GetIdOpcode(result_type);
  switch (result_opcode) {
    case SpvOpTypeVector: {
      const uint32_t num_result_components = _.GetDimension(result_type);
      const uint32_t result_component_type = _.GetComponentType(result_type);
      uint32_t given_component_count = 0;

      if (num_operands <= 3) {
        return _.diag(SPV_ERROR_INVALID_DATA, inst)
               << "Expected number of constituents to be at least 2";
      }

      for (uint32_t operand_index = 2; operand_index < num_operands;
           ++operand_index) {
        const uint32_t operand_type = _.GetOperandTypeId(inst, operand_index);
        if (operand_type == result_component_type) {
          ++given_component_count;
        } else {
          if (_.GetIdOpcode(operand_type) != SpvOpTypeVector ||
              _.GetComponentType(operand_type) != result_component_type) {
            return _.diag(SPV_ERROR_INVALID_DATA, inst)
                   << "Expected Constituents to be scalars or vectors of"
                   << " the same type as Result Type components";
          }

          given_component_count += _.GetDimension(operand_type);
        }
      }

      if (num_result_components != given_component_count) {
        return _.diag(SPV_ERROR_INVALID_DATA, inst)
               << "Expected total number of given components to be equal "
               << "to the size of Result Type vector";
      }

      break;
    }
    case SpvOpTypeMatrix: {
      uint32_t result_num_rows = 0;
      uint32_t result_num_cols = 0;
      uint32_t result_col_type = 0;
      uint32_t result_component_type = 0;
      if (!_.GetMatrixTypeInfo(result_type, &result_num_rows, &result_num_cols,
                               &result_col_type, &result_component_type)) {
        assert(0);
      }

      if (result_num_cols + 2 != num_operands) {
        return _.diag(SPV_ERROR_INVALID_DATA, inst)
               << "Expected total number of Constituents to be equal "
               << "to the number of columns of Result Type matrix";
      }

      for (uint32_t operand_index = 2; operand_index < num_operands;
           ++operand_index) {
        const uint32_t operand_type = _.GetOperandTypeId(inst, operand_index);
        if (operand_type != result_col_type) {
          return _.diag(SPV_ERROR_INVALID_DATA, inst)
                 << "Expected Constituent type to be equal to the column "
                 << "type Result Type matrix";
        }
      }

      break;
    }
    case SpvOpTypeArray: {
      const Instruction* const array_inst = _.FindDef(result_type);
      assert(array_inst);
      assert(array_inst->opcode() == SpvOpTypeArray);

      auto size = _.FindDef(array_inst->word(3));
      if (spvOpcodeIsSpecConstant(size->opcode())) {
        // Cannot verify against the size of this array.
        break;
      }

      uint64_t array_size = 0;
      if (!_.GetConstantValUint64(array_inst->word(3), &array_size)) {
        assert(0 && "Array type definition is corrupt");
      }

      if (array_size + 2 != num_operands) {
        return _.diag(SPV_ERROR_INVALID_DATA, inst)
               << "Expected total number of Constituents to be equal "
               << "to the number of elements of Result Type array";
      }

      const uint32_t result_component_type = array_inst->word(2);
      for (uint32_t operand_index = 2; operand_index < num_operands;
           ++operand_index) {
        const uint32_t operand_type = _.GetOperandTypeId(inst, operand_index);
        if (operand_type != result_component_type) {
          return _.diag(SPV_ERROR_INVALID_DATA, inst)
                 << "Expected Constituent type to be equal to the column "
                 << "type Result Type array";
        }
      }

      break;
    }
    case SpvOpTypeStruct: {
      const Instruction* const struct_inst = _.FindDef(result_type);
      assert(struct_inst);
      assert(struct_inst->opcode() == SpvOpTypeStruct);

      if (struct_inst->operands().size() + 1 != num_operands) {
        return _.diag(SPV_ERROR_INVALID_DATA, inst)
               << "Expected total number of Constituents to be equal "
               << "to the number of members of Result Type struct";
      }

      for (uint32_t operand_index = 2; operand_index < num_operands;
           ++operand_index) {
        const uint32_t operand_type = _.GetOperandTypeId(inst, operand_index);
        const uint32_t member_type = struct_inst->word(operand_index);
        if (operand_type != member_type) {
          return _.diag(SPV_ERROR_INVALID_DATA, inst)
                 << "Expected Constituent type to be equal to the "
                 << "corresponding member type of Result Type struct";
        }
      }

      break;
    }
    case SpvOpTypeCooperativeMatrixNV: {
      const auto result_type_inst = _.FindDef(result_type);
      assert(result_type_inst);
      const auto component_type_id =
          result_type_inst->GetOperandAs<uint32_t>(1);

      if (3 != num_operands) {
        return _.diag(SPV_ERROR_INVALID_DATA, inst)
               << "Expected single constituent";
      }

      const uint32_t operand_type_id = _.GetOperandTypeId(inst, 2);

      if (operand_type_id != component_type_id) {
        return _.diag(SPV_ERROR_INVALID_DATA, inst)
               << "Expected Constituent type to be equal to the component type";
      }

      break;
    }
    default: {
      return _.diag(SPV_ERROR_INVALID_DATA, inst)
             << "Expected Result Type to be a composite type";
    }
  }

  if (_.HasCapability(SpvCapabilityShader) &&
      _.ContainsLimitedUseIntOrFloatType(inst->type_id())) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "Cannot create a composite containing 8- or 16-bit types";
  }
  return SPV_SUCCESS;
}

spv_result_t ValidateCompositeExtract(ValidationState_t& _,
                                      const Instruction* inst) {
  uint32_t member_type = 0;
  if (spv_result_t error = GetExtractInsertValueType(_, inst, &member_type)) {
    return error;
  }

  const uint32_t result_type = inst->type_id();
  if (result_type != member_type) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "Result type (Op" << spvOpcodeString(_.GetIdOpcode(result_type))
           << ") does not match the type that results from indexing into "
              "the composite (Op"
           << spvOpcodeString(_.GetIdOpcode(member_type)) << ").";
  }

  if (_.HasCapability(SpvCapabilityShader) &&
      _.ContainsLimitedUseIntOrFloatType(inst->type_id())) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "Cannot extract from a composite of 8- or 16-bit types";
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateCompositeInsert(ValidationState_t& _,
                                     const Instruction* inst) {
  const uint32_t object_type = _.GetOperandTypeId(inst, 2);
  const uint32_t composite_type = _.GetOperandTypeId(inst, 3);
  const uint32_t result_type = inst->type_id();
  if (result_type != composite_type) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "The Result Type must be the same as Composite type in Op"
           << spvOpcodeString(inst->opcode()) << " yielding Result Id "
           << result_type << ".";
  }

  uint32_t member_type = 0;
  if (spv_result_t error = GetExtractInsertValueType(_, inst, &member_type)) {
    return error;
  }

  if (object_type != member_type) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "The Object type (Op"
           << spvOpcodeString(_.GetIdOpcode(object_type))
           << ") does not match the type that results from indexing into the "
              "Composite (Op"
           << spvOpcodeString(_.GetIdOpcode(member_type)) << ").";
  }

  if (_.HasCapability(SpvCapabilityShader) &&
      _.ContainsLimitedUseIntOrFloatType(inst->type_id())) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "Cannot insert into a composite of 8- or 16-bit types";
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateCopyObject(ValidationState_t& _, const Instruction* inst) {
  const uint32_t result_type = inst->type_id();
  const uint32_t operand_type = _.GetOperandTypeId(inst, 2);
  if (operand_type != result_type) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "Expected Result Type and Operand type to be the same";
  }
  if (_.IsVoidType(result_type)) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "OpCopyObject cannot have void result type";
  }
  return SPV_SUCCESS;
}

spv_result_t ValidateTranspose(ValidationState_t& _, const Instruction* inst) {
  uint32_t result_num_rows = 0;
  uint32_t result_num_cols = 0;
  uint32_t result_col_type = 0;
  uint32_t result_component_type = 0;
  const uint32_t result_type = inst->type_id();
  if (!_.GetMatrixTypeInfo(result_type, &result_num_rows, &result_num_cols,
                           &result_col_type, &result_component_type)) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "Expected Result Type to be a matrix type";
  }

  const uint32_t matrix_type = _.GetOperandTypeId(inst, 2);
  uint32_t matrix_num_rows = 0;
  uint32_t matrix_num_cols = 0;
  uint32_t matrix_col_type = 0;
  uint32_t matrix_component_type = 0;
  if (!_.GetMatrixTypeInfo(matrix_type, &matrix_num_rows, &matrix_num_cols,
                           &matrix_col_type, &matrix_component_type)) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "Expected Matrix to be of type OpTypeMatrix";
  }

  if (result_component_type != matrix_component_type) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "Expected component types of Matrix and Result Type to be "
           << "identical";
  }

  if (result_num_rows != matrix_num_cols ||
      result_num_cols != matrix_num_rows) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "Expected number of columns and the column size of Matrix "
           << "to be the reverse of those of Result Type";
  }

  if (_.HasCapability(SpvCapabilityShader) &&
      _.ContainsLimitedUseIntOrFloatType(inst->type_id())) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "Cannot transpose matrices of 16-bit floats";
  }
  return SPV_SUCCESS;
}

spv_result_t ValidateVectorShuffle(ValidationState_t& _,
                                   const Instruction* inst) {
  auto resultType = _.FindDef(inst->type_id());
  if (!resultType || resultType->opcode() != SpvOpTypeVector) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "The Result Type of OpVectorShuffle must be"
           << " OpTypeVector. Found Op"
           << spvOpcodeString(static_cast<SpvOp>(resultType->opcode())) << ".";
  }

  // The number of components in Result Type must be the same as the number of
  // Component operands.
  auto componentCount = inst->operands().size() - 4;
  auto resultVectorDimension = resultType->GetOperandAs<uint32_t>(2);
  if (componentCount != resultVectorDimension) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "OpVectorShuffle component literals count does not match "
              "Result Type <id> '"
           << _.getIdName(resultType->id()) << "'s vector component count.";
  }

  // Vector 1 and Vector 2 must both have vector types, with the same Component
  // Type as Result Type.
  auto vector1Object = _.FindDef(inst->GetOperandAs<uint32_t>(2));
  auto vector1Type = _.FindDef(vector1Object->type_id());
  auto vector2Object = _.FindDef(inst->GetOperandAs<uint32_t>(3));
  auto vector2Type = _.FindDef(vector2Object->type_id());
  if (!vector1Type || vector1Type->opcode() != SpvOpTypeVector) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "The type of Vector 1 must be OpTypeVector.";
  }
  if (!vector2Type || vector2Type->opcode() != SpvOpTypeVector) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "The type of Vector 2 must be OpTypeVector.";
  }

  auto resultComponentType = resultType->GetOperandAs<uint32_t>(1);
  if (vector1Type->GetOperandAs<uint32_t>(1) != resultComponentType) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "The Component Type of Vector 1 must be the same as ResultType.";
  }
  if (vector2Type->GetOperandAs<uint32_t>(1) != resultComponentType) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "The Component Type of Vector 2 must be the same as ResultType.";
  }

  // All Component literals must either be FFFFFFFF or in [0, N - 1].
  // For WebGPU specifically, Component literals cannot be FFFFFFFF.
  auto vector1ComponentCount = vector1Type->GetOperandAs<uint32_t>(2);
  auto vector2ComponentCount = vector2Type->GetOperandAs<uint32_t>(2);
  auto N = vector1ComponentCount + vector2ComponentCount;
  auto firstLiteralIndex = 4;
  const auto is_webgpu_env = spvIsWebGPUEnv(_.context()->target_env);
  for (size_t i = firstLiteralIndex; i < inst->operands().size(); ++i) {
    auto literal = inst->GetOperandAs<uint32_t>(i);
    if (literal != 0xFFFFFFFF && literal >= N) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "Component index " << literal << " is out of bounds for "
             << "combined (Vector1 + Vector2) size of " << N << ".";
    }

    if (is_webgpu_env && literal == 0xFFFFFFFF) {
      return _.diag(SPV_ERROR_INVALID_ID, inst)
             << "Component literal at operand " << i - firstLiteralIndex
             << " cannot be 0xFFFFFFFF in WebGPU execution environment.";
    }
  }

  if (_.HasCapability(SpvCapabilityShader) &&
      _.ContainsLimitedUseIntOrFloatType(inst->type_id())) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "Cannot shuffle a vector of 8- or 16-bit types";
  }

  return SPV_SUCCESS;
}

spv_result_t ValidateCopyLogical(ValidationState_t& _,
                                 const Instruction* inst) {
  const auto result_type = _.FindDef(inst->type_id());
  const auto source = _.FindDef(inst->GetOperandAs<uint32_t>(2u));
  const auto source_type = _.FindDef(source->type_id());
  if (!source_type || !result_type || source_type == result_type) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "Result Type must not equal the Operand type";
  }

  if (!_.LogicallyMatch(source_type, result_type, false)) {
    return _.diag(SPV_ERROR_INVALID_ID, inst)
           << "Result Type does not logically match the Operand type";
  }

  if (_.HasCapability(SpvCapabilityShader) &&
      _.ContainsLimitedUseIntOrFloatType(inst->type_id())) {
    return _.diag(SPV_ERROR_INVALID_DATA, inst)
           << "Cannot copy composites of 8- or 16-bit types";
  }

  return SPV_SUCCESS;
}

}  // anonymous namespace

// Validates correctness of composite instructions.
spv_result_t CompositesPass(ValidationState_t& _, const Instruction* inst) {
  switch (inst->opcode()) {
    case SpvOpVectorExtractDynamic:
      return ValidateVectorExtractDynamic(_, inst);
    case SpvOpVectorInsertDynamic:
      return ValidateVectorInsertDyanmic(_, inst);
    case SpvOpVectorShuffle:
      return ValidateVectorShuffle(_, inst);
    case SpvOpCompositeConstruct:
      return ValidateCompositeConstruct(_, inst);
    case SpvOpCompositeExtract:
      return ValidateCompositeExtract(_, inst);
    case SpvOpCompositeInsert:
      return ValidateCompositeInsert(_, inst);
    case SpvOpCopyObject:
      return ValidateCopyObject(_, inst);
    case SpvOpTranspose:
      return ValidateTranspose(_, inst);
    case SpvOpCopyLogical:
      return ValidateCopyLogical(_, inst);
    default:
      break;
  }

  return SPV_SUCCESS;
}

}  // namespace val
}  // namespace spvtools