aboutsummaryrefslogtreecommitdiff
path: root/source/opt/mem_pass.cpp
blob: 5f5929186580f7a07ac1c75ecad27af9cbb6e93c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
// Copyright (c) 2017 The Khronos Group Inc.
// Copyright (c) 2017 Valve Corporation
// Copyright (c) 2017 LunarG Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "source/opt/mem_pass.h"

#include <memory>
#include <set>
#include <vector>

#include "source/cfa.h"
#include "source/opt/basic_block.h"
#include "source/opt/dominator_analysis.h"
#include "source/opt/ir_context.h"
#include "source/opt/iterator.h"

namespace spvtools {
namespace opt {
namespace {
constexpr uint32_t kCopyObjectOperandInIdx = 0;
constexpr uint32_t kTypePointerStorageClassInIdx = 0;
constexpr uint32_t kTypePointerTypeIdInIdx = 1;
}  // namespace

bool MemPass::IsBaseTargetType(const Instruction* typeInst) const {
  switch (typeInst->opcode()) {
    case spv::Op::OpTypeInt:
    case spv::Op::OpTypeFloat:
    case spv::Op::OpTypeBool:
    case spv::Op::OpTypeVector:
    case spv::Op::OpTypeMatrix:
    case spv::Op::OpTypeImage:
    case spv::Op::OpTypeSampler:
    case spv::Op::OpTypeSampledImage:
    case spv::Op::OpTypePointer:
      return true;
    default:
      break;
  }
  return false;
}

bool MemPass::IsTargetType(const Instruction* typeInst) const {
  if (IsBaseTargetType(typeInst)) return true;
  if (typeInst->opcode() == spv::Op::OpTypeArray) {
    if (!IsTargetType(
            get_def_use_mgr()->GetDef(typeInst->GetSingleWordOperand(1)))) {
      return false;
    }
    return true;
  }
  if (typeInst->opcode() != spv::Op::OpTypeStruct) return false;
  // All struct members must be math type
  return typeInst->WhileEachInId([this](const uint32_t* tid) {
    Instruction* compTypeInst = get_def_use_mgr()->GetDef(*tid);
    if (!IsTargetType(compTypeInst)) return false;
    return true;
  });
}

bool MemPass::IsNonPtrAccessChain(const spv::Op opcode) const {
  return opcode == spv::Op::OpAccessChain ||
         opcode == spv::Op::OpInBoundsAccessChain;
}

bool MemPass::IsPtr(uint32_t ptrId) {
  uint32_t varId = ptrId;
  Instruction* ptrInst = get_def_use_mgr()->GetDef(varId);
  while (ptrInst->opcode() == spv::Op::OpCopyObject) {
    varId = ptrInst->GetSingleWordInOperand(kCopyObjectOperandInIdx);
    ptrInst = get_def_use_mgr()->GetDef(varId);
  }
  const spv::Op op = ptrInst->opcode();
  if (op == spv::Op::OpVariable || IsNonPtrAccessChain(op)) return true;
  const uint32_t varTypeId = ptrInst->type_id();
  if (varTypeId == 0) return false;
  const Instruction* varTypeInst = get_def_use_mgr()->GetDef(varTypeId);
  return varTypeInst->opcode() == spv::Op::OpTypePointer;
}

Instruction* MemPass::GetPtr(uint32_t ptrId, uint32_t* varId) {
  *varId = ptrId;
  Instruction* ptrInst = get_def_use_mgr()->GetDef(*varId);
  Instruction* varInst;

  if (ptrInst->opcode() == spv::Op::OpConstantNull) {
    *varId = 0;
    return ptrInst;
  }

  if (ptrInst->opcode() != spv::Op::OpVariable &&
      ptrInst->opcode() != spv::Op::OpFunctionParameter) {
    varInst = ptrInst->GetBaseAddress();
  } else {
    varInst = ptrInst;
  }
  if (varInst->opcode() == spv::Op::OpVariable) {
    *varId = varInst->result_id();
  } else {
    *varId = 0;
  }

  while (ptrInst->opcode() == spv::Op::OpCopyObject) {
    uint32_t temp = ptrInst->GetSingleWordInOperand(0);
    ptrInst = get_def_use_mgr()->GetDef(temp);
  }

  return ptrInst;
}

Instruction* MemPass::GetPtr(Instruction* ip, uint32_t* varId) {
  assert(ip->opcode() == spv::Op::OpStore || ip->opcode() == spv::Op::OpLoad ||
         ip->opcode() == spv::Op::OpImageTexelPointer ||
         ip->IsAtomicWithLoad());

  // All of these opcode place the pointer in position 0.
  const uint32_t ptrId = ip->GetSingleWordInOperand(0);
  return GetPtr(ptrId, varId);
}

bool MemPass::HasOnlyNamesAndDecorates(uint32_t id) const {
  return get_def_use_mgr()->WhileEachUser(id, [this](Instruction* user) {
    spv::Op op = user->opcode();
    if (op != spv::Op::OpName && !IsNonTypeDecorate(op)) {
      return false;
    }
    return true;
  });
}

void MemPass::KillAllInsts(BasicBlock* bp, bool killLabel) {
  bp->KillAllInsts(killLabel);
}

bool MemPass::HasLoads(uint32_t varId) const {
  return !get_def_use_mgr()->WhileEachUser(varId, [this](Instruction* user) {
    spv::Op op = user->opcode();
    // TODO(): The following is slightly conservative. Could be
    // better handling of non-store/name.
    if (IsNonPtrAccessChain(op) || op == spv::Op::OpCopyObject) {
      if (HasLoads(user->result_id())) {
        return false;
      }
    } else if (op != spv::Op::OpStore && op != spv::Op::OpName &&
               !IsNonTypeDecorate(op)) {
      return false;
    }
    return true;
  });
}

bool MemPass::IsLiveVar(uint32_t varId) const {
  const Instruction* varInst = get_def_use_mgr()->GetDef(varId);
  // assume live if not a variable eg. function parameter
  if (varInst->opcode() != spv::Op::OpVariable) return true;
  // non-function scope vars are live
  const uint32_t varTypeId = varInst->type_id();
  const Instruction* varTypeInst = get_def_use_mgr()->GetDef(varTypeId);
  if (spv::StorageClass(varTypeInst->GetSingleWordInOperand(
          kTypePointerStorageClassInIdx)) != spv::StorageClass::Function)
    return true;
  // test if variable is loaded from
  return HasLoads(varId);
}

void MemPass::AddStores(uint32_t ptr_id, std::queue<Instruction*>* insts) {
  get_def_use_mgr()->ForEachUser(ptr_id, [this, insts](Instruction* user) {
    spv::Op op = user->opcode();
    if (IsNonPtrAccessChain(op)) {
      AddStores(user->result_id(), insts);
    } else if (op == spv::Op::OpStore) {
      insts->push(user);
    }
  });
}

void MemPass::DCEInst(Instruction* inst,
                      const std::function<void(Instruction*)>& call_back) {
  std::queue<Instruction*> deadInsts;
  deadInsts.push(inst);
  while (!deadInsts.empty()) {
    Instruction* di = deadInsts.front();
    // Don't delete labels
    if (di->opcode() == spv::Op::OpLabel) {
      deadInsts.pop();
      continue;
    }
    // Remember operands
    std::set<uint32_t> ids;
    di->ForEachInId([&ids](uint32_t* iid) { ids.insert(*iid); });
    uint32_t varId = 0;
    // Remember variable if dead load
    if (di->opcode() == spv::Op::OpLoad) (void)GetPtr(di, &varId);
    if (call_back) {
      call_back(di);
    }
    context()->KillInst(di);
    // For all operands with no remaining uses, add their instruction
    // to the dead instruction queue.
    for (auto id : ids)
      if (HasOnlyNamesAndDecorates(id)) {
        Instruction* odi = get_def_use_mgr()->GetDef(id);
        if (context()->IsCombinatorInstruction(odi)) deadInsts.push(odi);
      }
    // if a load was deleted and it was the variable's
    // last load, add all its stores to dead queue
    if (varId != 0 && !IsLiveVar(varId)) AddStores(varId, &deadInsts);
    deadInsts.pop();
  }
}

MemPass::MemPass() {}

bool MemPass::HasOnlySupportedRefs(uint32_t varId) {
  return get_def_use_mgr()->WhileEachUser(varId, [this](Instruction* user) {
    auto dbg_op = user->GetCommonDebugOpcode();
    if (dbg_op == CommonDebugInfoDebugDeclare ||
        dbg_op == CommonDebugInfoDebugValue) {
      return true;
    }
    spv::Op op = user->opcode();
    if (op != spv::Op::OpStore && op != spv::Op::OpLoad &&
        op != spv::Op::OpName && !IsNonTypeDecorate(op)) {
      return false;
    }
    return true;
  });
}

uint32_t MemPass::Type2Undef(uint32_t type_id) {
  const auto uitr = type2undefs_.find(type_id);
  if (uitr != type2undefs_.end()) return uitr->second;
  const uint32_t undefId = TakeNextId();
  if (undefId == 0) {
    return 0;
  }

  std::unique_ptr<Instruction> undef_inst(
      new Instruction(context(), spv::Op::OpUndef, type_id, undefId, {}));
  get_def_use_mgr()->AnalyzeInstDefUse(&*undef_inst);
  get_module()->AddGlobalValue(std::move(undef_inst));
  type2undefs_[type_id] = undefId;
  return undefId;
}

bool MemPass::IsTargetVar(uint32_t varId) {
  if (varId == 0) {
    return false;
  }

  if (seen_non_target_vars_.find(varId) != seen_non_target_vars_.end())
    return false;
  if (seen_target_vars_.find(varId) != seen_target_vars_.end()) return true;
  const Instruction* varInst = get_def_use_mgr()->GetDef(varId);
  if (varInst->opcode() != spv::Op::OpVariable) return false;
  const uint32_t varTypeId = varInst->type_id();
  const Instruction* varTypeInst = get_def_use_mgr()->GetDef(varTypeId);
  if (spv::StorageClass(varTypeInst->GetSingleWordInOperand(
          kTypePointerStorageClassInIdx)) != spv::StorageClass::Function) {
    seen_non_target_vars_.insert(varId);
    return false;
  }
  const uint32_t varPteTypeId =
      varTypeInst->GetSingleWordInOperand(kTypePointerTypeIdInIdx);
  Instruction* varPteTypeInst = get_def_use_mgr()->GetDef(varPteTypeId);
  if (!IsTargetType(varPteTypeInst)) {
    seen_non_target_vars_.insert(varId);
    return false;
  }
  seen_target_vars_.insert(varId);
  return true;
}

// Remove all |phi| operands coming from unreachable blocks (i.e., blocks not in
// |reachable_blocks|).  There are two types of removal that this function can
// perform:
//
// 1- Any operand that comes directly from an unreachable block is completely
//    removed.  Since the block is unreachable, the edge between the unreachable
//    block and the block holding |phi| has been removed.
//
// 2- Any operand that comes via a live block and was defined at an unreachable
//    block gets its value replaced with an OpUndef value. Since the argument
//    was generated in an unreachable block, it no longer exists, so it cannot
//    be referenced.  However, since the value does not reach |phi| directly
//    from the unreachable block, the operand cannot be removed from |phi|.
//    Therefore, we replace the argument value with OpUndef.
//
// For example, in the switch() below, assume that we want to remove the
// argument with value %11 coming from block %41.
//
//          [ ... ]
//          %41 = OpLabel                    <--- Unreachable block
//          %11 = OpLoad %int %y
//          [ ... ]
//                OpSelectionMerge %16 None
//                OpSwitch %12 %16 10 %13 13 %14 18 %15
//          %13 = OpLabel
//                OpBranch %16
//          %14 = OpLabel
//                OpStore %outparm %int_14
//                OpBranch %16
//          %15 = OpLabel
//                OpStore %outparm %int_15
//                OpBranch %16
//          %16 = OpLabel
//          %30 = OpPhi %int %11 %41 %int_42 %13 %11 %14 %11 %15
//
// Since %41 is now an unreachable block, the first operand of |phi| needs to
// be removed completely.  But the operands (%11 %14) and (%11 %15) cannot be
// removed because %14 and %15 are reachable blocks.  Since %11 no longer exist,
// in those arguments, we replace all references to %11 with an OpUndef value.
// This results in |phi| looking like:
//
//           %50 = OpUndef %int
//           [ ... ]
//           %30 = OpPhi %int %int_42 %13 %50 %14 %50 %15
void MemPass::RemovePhiOperands(
    Instruction* phi, const std::unordered_set<BasicBlock*>& reachable_blocks) {
  std::vector<Operand> keep_operands;
  uint32_t type_id = 0;
  // The id of an undefined value we've generated.
  uint32_t undef_id = 0;

  // Traverse all the operands in |phi|. Build the new operand vector by adding
  // all the original operands from |phi| except the unwanted ones.
  for (uint32_t i = 0; i < phi->NumOperands();) {
    if (i < 2) {
      // The first two arguments are always preserved.
      keep_operands.push_back(phi->GetOperand(i));
      ++i;
      continue;
    }

    // The remaining Phi arguments come in pairs. Index 'i' contains the
    // variable id, index 'i + 1' is the originating block id.
    assert(i % 2 == 0 && i < phi->NumOperands() - 1 &&
           "malformed Phi arguments");

    BasicBlock* in_block = cfg()->block(phi->GetSingleWordOperand(i + 1));
    if (reachable_blocks.find(in_block) == reachable_blocks.end()) {
      // If the incoming block is unreachable, remove both operands as this
      // means that the |phi| has lost an incoming edge.
      i += 2;
      continue;
    }

    // In all other cases, the operand must be kept but may need to be changed.
    uint32_t arg_id = phi->GetSingleWordOperand(i);
    Instruction* arg_def_instr = get_def_use_mgr()->GetDef(arg_id);
    BasicBlock* def_block = context()->get_instr_block(arg_def_instr);
    if (def_block &&
        reachable_blocks.find(def_block) == reachable_blocks.end()) {
      // If the current |phi| argument was defined in an unreachable block, it
      // means that this |phi| argument is no longer defined. Replace it with
      // |undef_id|.
      if (!undef_id) {
        type_id = arg_def_instr->type_id();
        undef_id = Type2Undef(type_id);
      }
      keep_operands.push_back(
          Operand(spv_operand_type_t::SPV_OPERAND_TYPE_ID, {undef_id}));
    } else {
      // Otherwise, the argument comes from a reachable block or from no block
      // at all (meaning that it was defined in the global section of the
      // program).  In both cases, keep the argument intact.
      keep_operands.push_back(phi->GetOperand(i));
    }

    keep_operands.push_back(phi->GetOperand(i + 1));

    i += 2;
  }

  context()->ForgetUses(phi);
  phi->ReplaceOperands(keep_operands);
  context()->AnalyzeUses(phi);
}

void MemPass::RemoveBlock(Function::iterator* bi) {
  auto& rm_block = **bi;

  // Remove instructions from the block.
  rm_block.ForEachInst([&rm_block, this](Instruction* inst) {
    // Note that we do not kill the block label instruction here. The label
    // instruction is needed to identify the block, which is needed by the
    // removal of phi operands.
    if (inst != rm_block.GetLabelInst()) {
      context()->KillInst(inst);
    }
  });

  // Remove the label instruction last.
  auto label = rm_block.GetLabelInst();
  context()->KillInst(label);

  *bi = bi->Erase();
}

bool MemPass::RemoveUnreachableBlocks(Function* func) {
  bool modified = false;

  // Mark reachable all blocks reachable from the function's entry block.
  std::unordered_set<BasicBlock*> reachable_blocks;
  std::unordered_set<BasicBlock*> visited_blocks;
  std::queue<BasicBlock*> worklist;
  reachable_blocks.insert(func->entry().get());

  // Initially mark the function entry point as reachable.
  worklist.push(func->entry().get());

  auto mark_reachable = [&reachable_blocks, &visited_blocks, &worklist,
                         this](uint32_t label_id) {
    auto successor = cfg()->block(label_id);
    if (visited_blocks.count(successor) == 0) {
      reachable_blocks.insert(successor);
      worklist.push(successor);
      visited_blocks.insert(successor);
    }
  };

  // Transitively mark all blocks reachable from the entry as reachable.
  while (!worklist.empty()) {
    BasicBlock* block = worklist.front();
    worklist.pop();

    // All the successors of a live block are also live.
    static_cast<const BasicBlock*>(block)->ForEachSuccessorLabel(
        mark_reachable);

    // All the Merge and ContinueTarget blocks of a live block are also live.
    block->ForMergeAndContinueLabel(mark_reachable);
  }

  // Update operands of Phi nodes that reference unreachable blocks.
  for (auto& block : *func) {
    // If the block is about to be removed, don't bother updating its
    // Phi instructions.
    if (reachable_blocks.count(&block) == 0) {
      continue;
    }

    // If the block is reachable and has Phi instructions, remove all
    // operands from its Phi instructions that reference unreachable blocks.
    // If the block has no Phi instructions, this is a no-op.
    block.ForEachPhiInst([&reachable_blocks, this](Instruction* phi) {
      RemovePhiOperands(phi, reachable_blocks);
    });
  }

  // Erase unreachable blocks.
  for (auto ebi = func->begin(); ebi != func->end();) {
    if (reachable_blocks.count(&*ebi) == 0) {
      RemoveBlock(&ebi);
      modified = true;
    } else {
      ++ebi;
    }
  }

  return modified;
}

bool MemPass::CFGCleanup(Function* func) {
  bool modified = false;
  modified |= RemoveUnreachableBlocks(func);
  return modified;
}

void MemPass::CollectTargetVars(Function* func) {
  seen_target_vars_.clear();
  seen_non_target_vars_.clear();
  type2undefs_.clear();

  // Collect target (and non-) variable sets. Remove variables with
  // non-load/store refs from target variable set
  for (auto& blk : *func) {
    for (auto& inst : blk) {
      switch (inst.opcode()) {
        case spv::Op::OpStore:
        case spv::Op::OpLoad: {
          uint32_t varId;
          (void)GetPtr(&inst, &varId);
          if (!IsTargetVar(varId)) break;
          if (HasOnlySupportedRefs(varId)) break;
          seen_non_target_vars_.insert(varId);
          seen_target_vars_.erase(varId);
        } break;
        default:
          break;
      }
    }
  }
}

}  // namespace opt
}  // namespace spvtools