aboutsummaryrefslogtreecommitdiff
path: root/source/opt/loop_fission.cpp
blob: b4df8c62164c1eb089075be60c6e1c435940d8a4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
// Copyright (c) 2018 Google LLC.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "source/opt/loop_fission.h"

#include <set>

#include "source/opt/register_pressure.h"

// Implement loop fission with an optional parameter to split only
// if the register pressure in a given loop meets a certain criteria. This is
// controlled via the constructors of LoopFissionPass.
//
// 1 - Build a list of loops to be split, these are top level loops (loops
// without child loops themselves) which meet the register pressure criteria, as
// determined by the ShouldSplitLoop method of LoopFissionPass.
//
// 2 - For each loop in the list, group each instruction into a set of related
// instructions by traversing each instructions users and operands recursively.
// We stop if we encounter an instruction we have seen before or an instruction
// which we don't consider relevant (i.e OpLoopMerge). We then group these
// groups into two different sets, one for the first loop and one for the
// second.
//
// 3 - We then run CanPerformSplit to check that it would be legal to split a
// loop using those two sets. We check that we haven't altered the relative
// order load/stores appear in the binary and that we aren't breaking any
// dependency between load/stores by splitting them into two loops. We also
// check that none of the OpBranch instructions are dependent on a load as we
// leave control flow structure intact and move only instructions in the body so
// we want to avoid any loads with side affects or aliasing.
//
// 4 - We then split the loop by calling SplitLoop. This function clones the
// loop and attaches it to the preheader and connects the new loops merge block
// to the current loop header block. We then use the two sets built in step 2 to
// remove instructions from each loop. If an instruction appears in the first
// set it is removed from the second loop and vice versa.
//
// 5 - If the multiple split passes flag is set we check if each of the loops
// still meet the register pressure criteria. If they do then we add them to the
// list of loops to be split (created in step one) to allow for loops to be
// split multiple times.
//

namespace spvtools {
namespace opt {

class LoopFissionImpl {
 public:
  LoopFissionImpl(IRContext* context, Loop* loop)
      : context_(context), loop_(loop), load_used_in_condition_(false) {}

  // Group each instruction in the loop into sets of instructions related by
  // their usedef chains. An instruction which uses another will appear in the
  // same set. Then merge those sets into just two sets. Returns false if there
  // was one or less sets created.
  bool GroupInstructionsByUseDef();

  // Check if the sets built by GroupInstructionsByUseDef violate any data
  // dependence rules.
  bool CanPerformSplit();

  // Split the loop and return a pointer to the new loop.
  Loop* SplitLoop();

  // Checks if |inst| is safe to move. We can only move instructions which don't
  // have any side effects and OpLoads and OpStores.
  bool MovableInstruction(const Instruction& inst) const;

 private:
  // Traverse the def use chain of |inst| and add the users and uses of |inst|
  // which are in the same loop to the |returned_set|.
  void TraverseUseDef(Instruction* inst, std::set<Instruction*>* returned_set,
                      bool ignore_phi_users = false, bool report_loads = false);

  // We group the instructions in the block into two different groups, the
  // instructions to be kept in the original loop and the ones to be cloned into
  // the new loop. As the cloned loop is attached to the preheader it will be
  // the first loop and the second loop will be the original.
  std::set<Instruction*> cloned_loop_instructions_;
  std::set<Instruction*> original_loop_instructions_;

  // We need a set of all the instructions to be seen so we can break any
  // recursion and also so we can ignore certain instructions by preemptively
  // adding them to this set.
  std::set<Instruction*> seen_instructions_;

  // A map of instructions to their relative position in the function.
  std::map<Instruction*, size_t> instruction_order_;

  IRContext* context_;

  Loop* loop_;

  // This is set to true by TraverseUseDef when traversing the instructions
  // related to the loop condition and any if conditions should any of those
  // instructions be a load.
  bool load_used_in_condition_;
};

bool LoopFissionImpl::MovableInstruction(const Instruction& inst) const {
  return inst.opcode() == SpvOp::SpvOpLoad ||
         inst.opcode() == SpvOp::SpvOpStore ||
         inst.opcode() == SpvOp::SpvOpSelectionMerge ||
         inst.opcode() == SpvOp::SpvOpPhi || inst.IsOpcodeCodeMotionSafe();
}

void LoopFissionImpl::TraverseUseDef(Instruction* inst,
                                     std::set<Instruction*>* returned_set,
                                     bool ignore_phi_users, bool report_loads) {
  assert(returned_set && "Set to be returned cannot be null.");

  analysis::DefUseManager* def_use = context_->get_def_use_mgr();
  std::set<Instruction*>& inst_set = *returned_set;

  // We create this functor to traverse the use def chain to build the
  // grouping of related instructions. The lambda captures the std::function
  // to allow it to recurse.
  std::function<void(Instruction*)> traverser_functor;
  traverser_functor = [this, def_use, &inst_set, &traverser_functor,
                       ignore_phi_users, report_loads](Instruction* user) {
    // If we've seen the instruction before or it is not inside the loop end the
    // traversal.
    if (!user || seen_instructions_.count(user) != 0 ||
        !context_->get_instr_block(user) ||
        !loop_->IsInsideLoop(context_->get_instr_block(user))) {
      return;
    }

    // Don't include labels or loop merge instructions in the instruction sets.
    // Including them would mean we group instructions related only by using the
    // same labels (i.e phis). We already preempt the inclusion of
    // OpSelectionMerge by adding related instructions to the seen_instructions_
    // set.
    if (user->opcode() == SpvOp::SpvOpLoopMerge ||
        user->opcode() == SpvOp::SpvOpLabel)
      return;

    // If the |report_loads| flag is set, set the class field
    // load_used_in_condition_ to false. This is used to check that none of the
    // condition checks in the loop rely on loads.
    if (user->opcode() == SpvOp::SpvOpLoad && report_loads) {
      load_used_in_condition_ = true;
    }

    // Add the instruction to the set of instructions already seen, this breaks
    // recursion and allows us to ignore certain instructions.
    seen_instructions_.insert(user);

    inst_set.insert(user);

    // Wrapper functor to traverse the operands of each instruction.
    auto traverse_operand = [&traverser_functor, def_use](const uint32_t* id) {
      traverser_functor(def_use->GetDef(*id));
    };
    user->ForEachInOperand(traverse_operand);

    // For the first traversal we want to ignore the users of the phi.
    if (ignore_phi_users && user->opcode() == SpvOp::SpvOpPhi) return;

    // Traverse each user with this lambda.
    def_use->ForEachUser(user, traverser_functor);

    // Wrapper functor for the use traversal.
    auto traverse_use = [&traverser_functor](Instruction* use, uint32_t) {
      traverser_functor(use);
    };
    def_use->ForEachUse(user, traverse_use);

  };

  // We start the traversal of the use def graph by invoking the above
  // lambda with the |inst| parameter.
  traverser_functor(inst);
}

bool LoopFissionImpl::GroupInstructionsByUseDef() {
  std::vector<std::set<Instruction*>> sets{};

  // We want to ignore all the instructions stemming from the loop condition
  // instruction.
  BasicBlock* condition_block = loop_->FindConditionBlock();

  if (!condition_block) return false;
  Instruction* condition = &*condition_block->tail();

  // We iterate over the blocks via iterating over all the blocks in the
  // function, we do this so we are iterating in the same order which the blocks
  // appear in the binary.
  Function& function = *loop_->GetHeaderBlock()->GetParent();

  // Create a temporary set to ignore certain groups of instructions within the
  // loop. We don't want any instructions related to control flow to be removed
  // from either loop only instructions within the control flow bodies.
  std::set<Instruction*> instructions_to_ignore{};
  TraverseUseDef(condition, &instructions_to_ignore, true, true);

  // Traverse control flow instructions to ensure they are added to the
  // seen_instructions_ set and will be ignored when it it called with actual
  // sets.
  for (BasicBlock& block : function) {
    if (!loop_->IsInsideLoop(block.id())) continue;

    for (Instruction& inst : block) {
      // Ignore all instructions related to control flow.
      if (inst.opcode() == SpvOp::SpvOpSelectionMerge || inst.IsBranch()) {
        TraverseUseDef(&inst, &instructions_to_ignore, true, true);
      }
    }
  }

  // Traverse the instructions and generate the sets, automatically ignoring any
  // instructions in instructions_to_ignore.
  for (BasicBlock& block : function) {
    if (!loop_->IsInsideLoop(block.id()) ||
        loop_->GetHeaderBlock()->id() == block.id())
      continue;

    for (Instruction& inst : block) {
      // Record the order that each load/store is seen.
      if (inst.opcode() == SpvOp::SpvOpLoad ||
          inst.opcode() == SpvOp::SpvOpStore) {
        instruction_order_[&inst] = instruction_order_.size();
      }

      // Ignore instructions already seen in a traversal.
      if (seen_instructions_.count(&inst) != 0) {
        continue;
      }

      // Build the set.
      std::set<Instruction*> inst_set{};
      TraverseUseDef(&inst, &inst_set);
      if (!inst_set.empty()) sets.push_back(std::move(inst_set));
    }
  }

  // If we have one or zero sets return false to indicate that due to
  // insufficient instructions we couldn't split the loop into two groups and
  // thus the loop can't be split any further.
  if (sets.size() < 2) {
    return false;
  }

  // Merge the loop sets into two different sets. In CanPerformSplit we will
  // validate that we don't break the relative ordering of loads/stores by doing
  // this.
  for (size_t index = 0; index < sets.size() / 2; ++index) {
    cloned_loop_instructions_.insert(sets[index].begin(), sets[index].end());
  }
  for (size_t index = sets.size() / 2; index < sets.size(); ++index) {
    original_loop_instructions_.insert(sets[index].begin(), sets[index].end());
  }

  return true;
}

bool LoopFissionImpl::CanPerformSplit() {
  // Return false if any of the condition instructions in the loop depend on a
  // load.
  if (load_used_in_condition_) {
    return false;
  }

  // Build a list of all parent loops of this loop. Loop dependence analysis
  // needs this structure.
  std::vector<const Loop*> loops;
  Loop* parent_loop = loop_;
  while (parent_loop) {
    loops.push_back(parent_loop);
    parent_loop = parent_loop->GetParent();
  }

  LoopDependenceAnalysis analysis{context_, loops};

  // A list of all the stores in the cloned loop.
  std::vector<Instruction*> set_one_stores{};

  // A list of all the loads in the cloned loop.
  std::vector<Instruction*> set_one_loads{};

  // Populate the above lists.
  for (Instruction* inst : cloned_loop_instructions_) {
    if (inst->opcode() == SpvOp::SpvOpStore) {
      set_one_stores.push_back(inst);
    } else if (inst->opcode() == SpvOp::SpvOpLoad) {
      set_one_loads.push_back(inst);
    }

    // If we find any instruction which we can't move (such as a barrier),
    // return false.
    if (!MovableInstruction(*inst)) return false;
  }

  // We need to calculate the depth of the loop to create the loop dependency
  // distance vectors.
  const size_t loop_depth = loop_->GetDepth();

  // Check the dependencies between loads in the cloned loop and stores in the
  // original and vice versa.
  for (Instruction* inst : original_loop_instructions_) {
    // If we find any instruction which we can't move (such as a barrier),
    // return false.
    if (!MovableInstruction(*inst)) return false;

    // Look at the dependency between the loads in the original and stores in
    // the cloned loops.
    if (inst->opcode() == SpvOp::SpvOpLoad) {
      for (Instruction* store : set_one_stores) {
        DistanceVector vec{loop_depth};

        // If the store actually should appear after the load, return false.
        // This means the store has been placed in the wrong grouping.
        if (instruction_order_[store] > instruction_order_[inst]) {
          return false;
        }
        // If not independent check the distance vector.
        if (!analysis.GetDependence(store, inst, &vec)) {
          for (DistanceEntry& entry : vec.GetEntries()) {
            // A distance greater than zero means that the store in the cloned
            // loop has a dependency on the load in the original loop.
            if (entry.distance > 0) return false;
          }
        }
      }
    } else if (inst->opcode() == SpvOp::SpvOpStore) {
      for (Instruction* load : set_one_loads) {
        DistanceVector vec{loop_depth};

        // If the load actually should appear after the store, return false.
        if (instruction_order_[load] > instruction_order_[inst]) {
          return false;
        }

        // If not independent check the distance vector.
        if (!analysis.GetDependence(inst, load, &vec)) {
          for (DistanceEntry& entry : vec.GetEntries()) {
            // A distance less than zero means the load in the cloned loop is
            // dependent on the store instruction in the original loop.
            if (entry.distance < 0) return false;
          }
        }
      }
    }
  }
  return true;
}

Loop* LoopFissionImpl::SplitLoop() {
  // Clone the loop.
  LoopUtils util{context_, loop_};
  LoopUtils::LoopCloningResult clone_results;
  Loop* cloned_loop = util.CloneAndAttachLoopToHeader(&clone_results);

  // Update the OpLoopMerge in the cloned loop.
  cloned_loop->UpdateLoopMergeInst();

  // Add the loop_ to the module.
  // TODO(1841): Handle failure to create pre-header.
  Function::iterator it =
      util.GetFunction()->FindBlock(loop_->GetOrCreatePreHeaderBlock()->id());
  util.GetFunction()->AddBasicBlocks(clone_results.cloned_bb_.begin(),
                                     clone_results.cloned_bb_.end(), ++it);
  loop_->SetPreHeaderBlock(cloned_loop->GetMergeBlock());

  std::vector<Instruction*> instructions_to_kill{};

  // Kill all the instructions which should appear in the cloned loop but not in
  // the original loop.
  for (uint32_t id : loop_->GetBlocks()) {
    BasicBlock* block = context_->cfg()->block(id);

    for (Instruction& inst : *block) {
      // If the instruction appears in the cloned loop instruction group, kill
      // it.
      if (cloned_loop_instructions_.count(&inst) == 1 &&
          original_loop_instructions_.count(&inst) == 0) {
        instructions_to_kill.push_back(&inst);
        if (inst.opcode() == SpvOp::SpvOpPhi) {
          context_->ReplaceAllUsesWith(
              inst.result_id(), clone_results.value_map_[inst.result_id()]);
        }
      }
    }
  }

  // Kill all instructions which should appear in the original loop and not in
  // the cloned loop.
  for (uint32_t id : cloned_loop->GetBlocks()) {
    BasicBlock* block = context_->cfg()->block(id);
    for (Instruction& inst : *block) {
      Instruction* old_inst = clone_results.ptr_map_[&inst];
      // If the instruction belongs to the original loop instruction group, kill
      // it.
      if (cloned_loop_instructions_.count(old_inst) == 0 &&
          original_loop_instructions_.count(old_inst) == 1) {
        instructions_to_kill.push_back(&inst);
      }
    }
  }

  for (Instruction* i : instructions_to_kill) {
    context_->KillInst(i);
  }

  return cloned_loop;
}

LoopFissionPass::LoopFissionPass(const size_t register_threshold_to_split,
                                 bool split_multiple_times)
    : split_multiple_times_(split_multiple_times) {
  // Split if the number of registers in the loop exceeds
  // |register_threshold_to_split|.
  split_criteria_ =
      [register_threshold_to_split](
          const RegisterLiveness::RegionRegisterLiveness& liveness) {
        return liveness.used_registers_ > register_threshold_to_split;
      };
}

LoopFissionPass::LoopFissionPass() : split_multiple_times_(false) {
  // Split by default.
  split_criteria_ = [](const RegisterLiveness::RegionRegisterLiveness&) {
    return true;
  };
}

bool LoopFissionPass::ShouldSplitLoop(const Loop& loop, IRContext* c) {
  LivenessAnalysis* analysis = c->GetLivenessAnalysis();

  RegisterLiveness::RegionRegisterLiveness liveness{};

  Function* function = loop.GetHeaderBlock()->GetParent();
  analysis->Get(function)->ComputeLoopRegisterPressure(loop, &liveness);

  return split_criteria_(liveness);
}

Pass::Status LoopFissionPass::Process() {
  bool changed = false;

  for (Function& f : *context()->module()) {
    // We collect all the inner most loops in the function and run the loop
    // splitting util on each. The reason we do this is to allow us to iterate
    // over each, as creating new loops will invalidate the loop iterator.
    std::vector<Loop*> inner_most_loops{};
    LoopDescriptor& loop_descriptor = *context()->GetLoopDescriptor(&f);
    for (Loop& loop : loop_descriptor) {
      if (!loop.HasChildren() && ShouldSplitLoop(loop, context())) {
        inner_most_loops.push_back(&loop);
      }
    }

    // List of new loops which meet the criteria to be split again.
    std::vector<Loop*> new_loops_to_split{};

    while (!inner_most_loops.empty()) {
      for (Loop* loop : inner_most_loops) {
        LoopFissionImpl impl{context(), loop};

        // Group the instructions in the loop into two different sets of related
        // instructions. If we can't group the instructions into the two sets
        // then we can't split the loop any further.
        if (!impl.GroupInstructionsByUseDef()) {
          continue;
        }

        if (impl.CanPerformSplit()) {
          Loop* second_loop = impl.SplitLoop();
          changed = true;
          context()->InvalidateAnalysesExceptFor(
              IRContext::kAnalysisLoopAnalysis);

          // If the newly created loop meets the criteria to be split, split it
          // again.
          if (ShouldSplitLoop(*second_loop, context()))
            new_loops_to_split.push_back(second_loop);

          // If the original loop (now split) still meets the criteria to be
          // split, split it again.
          if (ShouldSplitLoop(*loop, context()))
            new_loops_to_split.push_back(loop);
        }
      }

      // If the split multiple times flag has been set add the new loops which
      // meet the splitting criteria into the list of loops to be split on the
      // next iteration.
      if (split_multiple_times_) {
        inner_most_loops = std::move(new_loops_to_split);
      } else {
        break;
      }
    }
  }

  return changed ? Pass::Status::SuccessWithChange
                 : Pass::Status::SuccessWithoutChange;
}

}  // namespace opt
}  // namespace spvtools