aboutsummaryrefslogtreecommitdiff
path: root/source/opt/loop_descriptor.cpp
blob: 13982d1819c29f2f9001940a28c2171c7393f859 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "source/opt/loop_descriptor.h"

#include <algorithm>
#include <iostream>
#include <limits>
#include <stack>
#include <type_traits>
#include <utility>
#include <vector>

#include "source/opt/cfg.h"
#include "source/opt/constants.h"
#include "source/opt/dominator_tree.h"
#include "source/opt/ir_builder.h"
#include "source/opt/ir_context.h"
#include "source/opt/iterator.h"
#include "source/opt/tree_iterator.h"
#include "source/util/make_unique.h"

namespace spvtools {
namespace opt {

// Takes in a phi instruction |induction| and the loop |header| and returns the
// step operation of the loop.
Instruction* Loop::GetInductionStepOperation(
    const Instruction* induction) const {
  // Induction must be a phi instruction.
  assert(induction->opcode() == SpvOpPhi);

  Instruction* step = nullptr;

  analysis::DefUseManager* def_use_manager = context_->get_def_use_mgr();

  // Traverse the incoming operands of the phi instruction.
  for (uint32_t operand_id = 1; operand_id < induction->NumInOperands();
       operand_id += 2) {
    // Incoming edge.
    BasicBlock* incoming_block =
        context_->cfg()->block(induction->GetSingleWordInOperand(operand_id));

    // Check if the block is dominated by header, and thus coming from within
    // the loop.
    if (IsInsideLoop(incoming_block)) {
      step = def_use_manager->GetDef(
          induction->GetSingleWordInOperand(operand_id - 1));
      break;
    }
  }

  if (!step || !IsSupportedStepOp(step->opcode())) {
    return nullptr;
  }

  // The induction variable which binds the loop must only be modified once.
  uint32_t lhs = step->GetSingleWordInOperand(0);
  uint32_t rhs = step->GetSingleWordInOperand(1);

  // One of the left hand side or right hand side of the step instruction must
  // be the induction phi and the other must be an OpConstant.
  if (lhs != induction->result_id() && rhs != induction->result_id()) {
    return nullptr;
  }

  if (def_use_manager->GetDef(lhs)->opcode() != SpvOp::SpvOpConstant &&
      def_use_manager->GetDef(rhs)->opcode() != SpvOp::SpvOpConstant) {
    return nullptr;
  }

  return step;
}

// Returns true if the |step| operation is an induction variable step operation
// which is currently handled.
bool Loop::IsSupportedStepOp(SpvOp step) const {
  switch (step) {
    case SpvOp::SpvOpISub:
    case SpvOp::SpvOpIAdd:
      return true;
    default:
      return false;
  }
}

bool Loop::IsSupportedCondition(SpvOp condition) const {
  switch (condition) {
    // <
    case SpvOp::SpvOpULessThan:
    case SpvOp::SpvOpSLessThan:
    // >
    case SpvOp::SpvOpUGreaterThan:
    case SpvOp::SpvOpSGreaterThan:

    // >=
    case SpvOp::SpvOpSGreaterThanEqual:
    case SpvOp::SpvOpUGreaterThanEqual:
    // <=
    case SpvOp::SpvOpSLessThanEqual:
    case SpvOp::SpvOpULessThanEqual:

      return true;
    default:
      return false;
  }
}

int64_t Loop::GetResidualConditionValue(SpvOp condition, int64_t initial_value,
                                        int64_t step_value,
                                        size_t number_of_iterations,
                                        size_t factor) {
  int64_t remainder =
      initial_value + (number_of_iterations % factor) * step_value;

  // We subtract or add one as the above formula calculates the remainder if the
  // loop where just less than or greater than. Adding or subtracting one should
  // give a functionally equivalent value.
  switch (condition) {
    case SpvOp::SpvOpSGreaterThanEqual:
    case SpvOp::SpvOpUGreaterThanEqual: {
      remainder -= 1;
      break;
    }
    case SpvOp::SpvOpSLessThanEqual:
    case SpvOp::SpvOpULessThanEqual: {
      remainder += 1;
      break;
    }

    default:
      break;
  }
  return remainder;
}

Instruction* Loop::GetConditionInst() const {
  BasicBlock* condition_block = FindConditionBlock();
  if (!condition_block) {
    return nullptr;
  }
  Instruction* branch_conditional = &*condition_block->tail();
  if (!branch_conditional ||
      branch_conditional->opcode() != SpvOpBranchConditional) {
    return nullptr;
  }
  Instruction* condition_inst = context_->get_def_use_mgr()->GetDef(
      branch_conditional->GetSingleWordInOperand(0));
  if (IsSupportedCondition(condition_inst->opcode())) {
    return condition_inst;
  }

  return nullptr;
}

// Extract the initial value from the |induction| OpPhi instruction and store it
// in |value|. If the function couldn't find the initial value of |induction|
// return false.
bool Loop::GetInductionInitValue(const Instruction* induction,
                                 int64_t* value) const {
  Instruction* constant_instruction = nullptr;
  analysis::DefUseManager* def_use_manager = context_->get_def_use_mgr();

  for (uint32_t operand_id = 0; operand_id < induction->NumInOperands();
       operand_id += 2) {
    BasicBlock* bb = context_->cfg()->block(
        induction->GetSingleWordInOperand(operand_id + 1));

    if (!IsInsideLoop(bb)) {
      constant_instruction = def_use_manager->GetDef(
          induction->GetSingleWordInOperand(operand_id));
    }
  }

  if (!constant_instruction) return false;

  const analysis::Constant* constant =
      context_->get_constant_mgr()->FindDeclaredConstant(
          constant_instruction->result_id());
  if (!constant) return false;

  if (value) {
    const analysis::Integer* type = constant->type()->AsInteger();
    if (!type) {
      return false;
    }

    *value = type->IsSigned() ? constant->GetSignExtendedValue()
                              : constant->GetZeroExtendedValue();
  }

  return true;
}

Loop::Loop(IRContext* context, DominatorAnalysis* dom_analysis,
           BasicBlock* header, BasicBlock* continue_target,
           BasicBlock* merge_target)
    : context_(context),
      loop_header_(header),
      loop_continue_(continue_target),
      loop_merge_(merge_target),
      loop_preheader_(nullptr),
      parent_(nullptr),
      loop_is_marked_for_removal_(false) {
  assert(context);
  assert(dom_analysis);
  loop_preheader_ = FindLoopPreheader(dom_analysis);
  loop_latch_ = FindLatchBlock();
}

BasicBlock* Loop::FindLoopPreheader(DominatorAnalysis* dom_analysis) {
  CFG* cfg = context_->cfg();
  DominatorTree& dom_tree = dom_analysis->GetDomTree();
  DominatorTreeNode* header_node = dom_tree.GetTreeNode(loop_header_);

  // The loop predecessor.
  BasicBlock* loop_pred = nullptr;

  auto header_pred = cfg->preds(loop_header_->id());
  for (uint32_t p_id : header_pred) {
    DominatorTreeNode* node = dom_tree.GetTreeNode(p_id);
    if (node && !dom_tree.Dominates(header_node, node)) {
      // The predecessor is not part of the loop, so potential loop preheader.
      if (loop_pred && node->bb_ != loop_pred) {
        // If we saw 2 distinct predecessors that are outside the loop, we don't
        // have a loop preheader.
        return nullptr;
      }
      loop_pred = node->bb_;
    }
  }
  // Safe guard against invalid code, SPIR-V spec forbids loop with the entry
  // node as header.
  assert(loop_pred && "The header node is the entry block ?");

  // So we have a unique basic block that can enter this loop.
  // If this loop is the unique successor of this block, then it is a loop
  // preheader.
  bool is_preheader = true;
  uint32_t loop_header_id = loop_header_->id();
  const auto* const_loop_pred = loop_pred;
  const_loop_pred->ForEachSuccessorLabel(
      [&is_preheader, loop_header_id](const uint32_t id) {
        if (id != loop_header_id) is_preheader = false;
      });
  if (is_preheader) return loop_pred;
  return nullptr;
}

bool Loop::IsInsideLoop(Instruction* inst) const {
  const BasicBlock* parent_block = context_->get_instr_block(inst);
  if (!parent_block) return false;
  return IsInsideLoop(parent_block);
}

bool Loop::IsBasicBlockInLoopSlow(const BasicBlock* bb) {
  assert(bb->GetParent() && "The basic block does not belong to a function");
  DominatorAnalysis* dom_analysis =
      context_->GetDominatorAnalysis(bb->GetParent());
  if (dom_analysis->IsReachable(bb) &&
      !dom_analysis->Dominates(GetHeaderBlock(), bb))
    return false;

  return true;
}

BasicBlock* Loop::GetOrCreatePreHeaderBlock() {
  if (loop_preheader_) return loop_preheader_;

  CFG* cfg = context_->cfg();
  loop_header_ = cfg->SplitLoopHeader(loop_header_);
  return loop_preheader_;
}

void Loop::SetContinueBlock(BasicBlock* continue_block) {
  assert(IsInsideLoop(continue_block));
  loop_continue_ = continue_block;
}

void Loop::SetLatchBlock(BasicBlock* latch) {
#ifndef NDEBUG
  assert(latch->GetParent() && "The basic block does not belong to a function");

  const auto* const_latch = latch;
  const_latch->ForEachSuccessorLabel([this](uint32_t id) {
    assert((!IsInsideLoop(id) || id == GetHeaderBlock()->id()) &&
           "A predecessor of the continue block does not belong to the loop");
  });
#endif  // NDEBUG
  assert(IsInsideLoop(latch) && "The continue block is not in the loop");

  SetLatchBlockImpl(latch);
}

void Loop::SetMergeBlock(BasicBlock* merge) {
#ifndef NDEBUG
  assert(merge->GetParent() && "The basic block does not belong to a function");
#endif  // NDEBUG
  assert(!IsInsideLoop(merge) && "The merge block is in the loop");

  SetMergeBlockImpl(merge);
  if (GetHeaderBlock()->GetLoopMergeInst()) {
    UpdateLoopMergeInst();
  }
}

void Loop::SetPreHeaderBlock(BasicBlock* preheader) {
  if (preheader) {
    assert(!IsInsideLoop(preheader) && "The preheader block is in the loop");
    assert(preheader->tail()->opcode() == SpvOpBranch &&
           "The preheader block does not unconditionally branch to the header "
           "block");
    assert(preheader->tail()->GetSingleWordOperand(0) ==
               GetHeaderBlock()->id() &&
           "The preheader block does not unconditionally branch to the header "
           "block");
  }
  loop_preheader_ = preheader;
}

BasicBlock* Loop::FindLatchBlock() {
  CFG* cfg = context_->cfg();

  DominatorAnalysis* dominator_analysis =
      context_->GetDominatorAnalysis(loop_header_->GetParent());

  // Look at the predecessors of the loop header to find a predecessor block
  // which is dominated by the loop continue target. There should only be one
  // block which meets this criteria and this is the latch block, as per the
  // SPIR-V spec.
  for (uint32_t block_id : cfg->preds(loop_header_->id())) {
    if (dominator_analysis->Dominates(loop_continue_->id(), block_id)) {
      return cfg->block(block_id);
    }
  }

  assert(
      false &&
      "Every loop should have a latch block dominated by the continue target");
  return nullptr;
}

void Loop::GetExitBlocks(std::unordered_set<uint32_t>* exit_blocks) const {
  CFG* cfg = context_->cfg();
  exit_blocks->clear();

  for (uint32_t bb_id : GetBlocks()) {
    const BasicBlock* bb = cfg->block(bb_id);
    bb->ForEachSuccessorLabel([exit_blocks, this](uint32_t succ) {
      if (!IsInsideLoop(succ)) {
        exit_blocks->insert(succ);
      }
    });
  }
}

void Loop::GetMergingBlocks(
    std::unordered_set<uint32_t>* merging_blocks) const {
  assert(GetMergeBlock() && "This loop is not structured");
  CFG* cfg = context_->cfg();
  merging_blocks->clear();

  std::stack<const BasicBlock*> to_visit;
  to_visit.push(GetMergeBlock());
  while (!to_visit.empty()) {
    const BasicBlock* bb = to_visit.top();
    to_visit.pop();
    merging_blocks->insert(bb->id());
    for (uint32_t pred_id : cfg->preds(bb->id())) {
      if (!IsInsideLoop(pred_id) && !merging_blocks->count(pred_id)) {
        to_visit.push(cfg->block(pred_id));
      }
    }
  }
}

namespace {

static inline bool IsBasicBlockSafeToClone(IRContext* context, BasicBlock* bb) {
  for (Instruction& inst : *bb) {
    if (!inst.IsBranch() && !context->IsCombinatorInstruction(&inst))
      return false;
  }

  return true;
}

}  // namespace

bool Loop::IsSafeToClone() const {
  CFG& cfg = *context_->cfg();

  for (uint32_t bb_id : GetBlocks()) {
    BasicBlock* bb = cfg.block(bb_id);
    assert(bb);
    if (!IsBasicBlockSafeToClone(context_, bb)) return false;
  }

  // Look at the merge construct.
  if (GetHeaderBlock()->GetLoopMergeInst()) {
    std::unordered_set<uint32_t> blocks;
    GetMergingBlocks(&blocks);
    blocks.erase(GetMergeBlock()->id());
    for (uint32_t bb_id : blocks) {
      BasicBlock* bb = cfg.block(bb_id);
      assert(bb);
      if (!IsBasicBlockSafeToClone(context_, bb)) return false;
    }
  }

  return true;
}

bool Loop::IsLCSSA() const {
  CFG* cfg = context_->cfg();
  analysis::DefUseManager* def_use_mgr = context_->get_def_use_mgr();

  std::unordered_set<uint32_t> exit_blocks;
  GetExitBlocks(&exit_blocks);

  // Declare ir_context so we can capture context_ in the below lambda
  IRContext* ir_context = context_;

  for (uint32_t bb_id : GetBlocks()) {
    for (Instruction& insn : *cfg->block(bb_id)) {
      // All uses must be either:
      //  - In the loop;
      //  - In an exit block and in a phi instruction.
      if (!def_use_mgr->WhileEachUser(
              &insn,
              [&exit_blocks, ir_context, this](Instruction* use) -> bool {
                BasicBlock* parent = ir_context->get_instr_block(use);
                assert(parent && "Invalid analysis");
                if (IsInsideLoop(parent)) return true;
                if (use->opcode() != SpvOpPhi) return false;
                return exit_blocks.count(parent->id());
              }))
        return false;
    }
  }
  return true;
}

bool Loop::ShouldHoistInstruction(IRContext* context, Instruction* inst) {
  return AreAllOperandsOutsideLoop(context, inst) &&
         inst->IsOpcodeCodeMotionSafe();
}

bool Loop::AreAllOperandsOutsideLoop(IRContext* context, Instruction* inst) {
  analysis::DefUseManager* def_use_mgr = context->get_def_use_mgr();
  bool all_outside_loop = true;

  const std::function<void(uint32_t*)> operand_outside_loop =
      [this, &def_use_mgr, &all_outside_loop](uint32_t* id) {
        if (this->IsInsideLoop(def_use_mgr->GetDef(*id))) {
          all_outside_loop = false;
          return;
        }
      };

  inst->ForEachInId(operand_outside_loop);
  return all_outside_loop;
}

void Loop::ComputeLoopStructuredOrder(
    std::vector<BasicBlock*>* ordered_loop_blocks, bool include_pre_header,
    bool include_merge) const {
  CFG& cfg = *context_->cfg();

  // Reserve the memory: all blocks in the loop + extra if needed.
  ordered_loop_blocks->reserve(GetBlocks().size() + include_pre_header +
                               include_merge);

  if (include_pre_header && GetPreHeaderBlock())
    ordered_loop_blocks->push_back(loop_preheader_);

  bool is_shader =
      context_->get_feature_mgr()->HasCapability(SpvCapabilityShader);
  if (!is_shader) {
    cfg.ForEachBlockInReversePostOrder(
        loop_header_, [ordered_loop_blocks, this](BasicBlock* bb) {
          if (IsInsideLoop(bb)) ordered_loop_blocks->push_back(bb);
        });
  } else {
    // If this is a shader, it is possible that there are unreachable merge and
    // continue blocks that must be copied to retain the structured order.
    // The structured order will include these.
    std::list<BasicBlock*> order;
    cfg.ComputeStructuredOrder(loop_header_->GetParent(), loop_header_,
                               loop_merge_, &order);
    for (BasicBlock* bb : order) {
      if (bb == GetMergeBlock()) {
        break;
      }
      ordered_loop_blocks->push_back(bb);
    }
  }
  if (include_merge && GetMergeBlock())
    ordered_loop_blocks->push_back(loop_merge_);
}

LoopDescriptor::LoopDescriptor(IRContext* context, const Function* f)
    : loops_(), placeholder_top_loop_(nullptr) {
  PopulateList(context, f);
}

LoopDescriptor::~LoopDescriptor() { ClearLoops(); }

void LoopDescriptor::PopulateList(IRContext* context, const Function* f) {
  DominatorAnalysis* dom_analysis = context->GetDominatorAnalysis(f);

  ClearLoops();

  // Post-order traversal of the dominator tree to find all the OpLoopMerge
  // instructions.
  DominatorTree& dom_tree = dom_analysis->GetDomTree();
  for (DominatorTreeNode& node :
       make_range(dom_tree.post_begin(), dom_tree.post_end())) {
    Instruction* merge_inst = node.bb_->GetLoopMergeInst();
    if (merge_inst) {
      bool all_backedge_unreachable = true;
      for (uint32_t pid : context->cfg()->preds(node.bb_->id())) {
        if (dom_analysis->IsReachable(pid) &&
            dom_analysis->Dominates(node.bb_->id(), pid)) {
          all_backedge_unreachable = false;
          break;
        }
      }
      if (all_backedge_unreachable)
        continue;  // ignore this one, we actually never branch back.

      // The id of the merge basic block of this loop.
      uint32_t merge_bb_id = merge_inst->GetSingleWordOperand(0);

      // The id of the continue basic block of this loop.
      uint32_t continue_bb_id = merge_inst->GetSingleWordOperand(1);

      // The merge target of this loop.
      BasicBlock* merge_bb = context->cfg()->block(merge_bb_id);

      // The continue target of this loop.
      BasicBlock* continue_bb = context->cfg()->block(continue_bb_id);

      // The basic block containing the merge instruction.
      BasicBlock* header_bb = context->get_instr_block(merge_inst);

      // Add the loop to the list of all the loops in the function.
      Loop* current_loop =
          new Loop(context, dom_analysis, header_bb, continue_bb, merge_bb);
      loops_.push_back(current_loop);

      // We have a bottom-up construction, so if this loop has nested-loops,
      // they are by construction at the tail of the loop list.
      for (auto itr = loops_.rbegin() + 1; itr != loops_.rend(); ++itr) {
        Loop* previous_loop = *itr;

        // If the loop already has a parent, then it has been processed.
        if (previous_loop->HasParent()) continue;

        // If the current loop does not dominates the previous loop then it is
        // not nested loop.
        if (!dom_analysis->Dominates(header_bb,
                                     previous_loop->GetHeaderBlock()))
          continue;
        // If the current loop merge dominates the previous loop then it is
        // not nested loop.
        if (dom_analysis->Dominates(merge_bb, previous_loop->GetHeaderBlock()))
          continue;

        current_loop->AddNestedLoop(previous_loop);
      }
      DominatorTreeNode* dom_merge_node = dom_tree.GetTreeNode(merge_bb);
      for (DominatorTreeNode& loop_node :
           make_range(node.df_begin(), node.df_end())) {
        // Check if we are in the loop.
        if (dom_tree.Dominates(dom_merge_node, &loop_node)) continue;
        current_loop->AddBasicBlock(loop_node.bb_);
        basic_block_to_loop_.insert(
            std::make_pair(loop_node.bb_->id(), current_loop));
      }
    }
  }
  for (Loop* loop : loops_) {
    if (!loop->HasParent()) placeholder_top_loop_.nested_loops_.push_back(loop);
  }
}

std::vector<Loop*> LoopDescriptor::GetLoopsInBinaryLayoutOrder() {
  std::vector<uint32_t> ids{};

  for (size_t i = 0; i < NumLoops(); ++i) {
    ids.push_back(GetLoopByIndex(i).GetHeaderBlock()->id());
  }

  std::vector<Loop*> loops{};
  if (!ids.empty()) {
    auto function = GetLoopByIndex(0).GetHeaderBlock()->GetParent();
    for (const auto& block : *function) {
      auto block_id = block.id();

      auto element = std::find(std::begin(ids), std::end(ids), block_id);
      if (element != std::end(ids)) {
        loops.push_back(&GetLoopByIndex(element - std::begin(ids)));
      }
    }
  }

  return loops;
}

BasicBlock* Loop::FindConditionBlock() const {
  if (!loop_merge_) {
    return nullptr;
  }
  BasicBlock* condition_block = nullptr;

  uint32_t in_loop_pred = 0;
  for (uint32_t p : context_->cfg()->preds(loop_merge_->id())) {
    if (IsInsideLoop(p)) {
      if (in_loop_pred) {
        // 2 in-loop predecessors.
        return nullptr;
      }
      in_loop_pred = p;
    }
  }
  if (!in_loop_pred) {
    // Merge block is unreachable.
    return nullptr;
  }

  BasicBlock* bb = context_->cfg()->block(in_loop_pred);

  if (!bb) return nullptr;

  const Instruction& branch = *bb->ctail();

  // Make sure the branch is a conditional branch.
  if (branch.opcode() != SpvOpBranchConditional) return nullptr;

  // Make sure one of the two possible branches is to the merge block.
  if (branch.GetSingleWordInOperand(1) == loop_merge_->id() ||
      branch.GetSingleWordInOperand(2) == loop_merge_->id()) {
    condition_block = bb;
  }

  return condition_block;
}

bool Loop::FindNumberOfIterations(const Instruction* induction,
                                  const Instruction* branch_inst,
                                  size_t* iterations_out,
                                  int64_t* step_value_out,
                                  int64_t* init_value_out) const {
  // From the branch instruction find the branch condition.
  analysis::DefUseManager* def_use_manager = context_->get_def_use_mgr();

  // Condition instruction from the OpConditionalBranch.
  Instruction* condition =
      def_use_manager->GetDef(branch_inst->GetSingleWordOperand(0));

  assert(IsSupportedCondition(condition->opcode()));

  // Get the constant manager from the ir context.
  analysis::ConstantManager* const_manager = context_->get_constant_mgr();

  // Find the constant value used by the condition variable. Exit out if it
  // isn't a constant int.
  const analysis::Constant* upper_bound =
      const_manager->FindDeclaredConstant(condition->GetSingleWordOperand(3));
  if (!upper_bound) return false;

  // Must be integer because of the opcode on the condition.
  const analysis::Integer* type = upper_bound->type()->AsInteger();

  if (!type || type->width() > 64) {
    return false;
  }

  int64_t condition_value = type->IsSigned()
                                ? upper_bound->GetSignExtendedValue()
                                : upper_bound->GetZeroExtendedValue();

  // Find the instruction which is stepping through the loop.
  //
  // GetInductionStepOperation returns nullptr if |step_inst| is OpConstantNull.
  Instruction* step_inst = GetInductionStepOperation(induction);
  if (!step_inst) return false;

  // Find the constant value used by the condition variable.
  const analysis::Constant* step_constant =
      const_manager->FindDeclaredConstant(step_inst->GetSingleWordOperand(3));
  if (!step_constant) return false;

  // Must be integer because of the opcode on the condition.
  int64_t step_value = 0;

  const analysis::Integer* step_type =
      step_constant->AsIntConstant()->type()->AsInteger();

  if (step_type->IsSigned()) {
    step_value = step_constant->AsIntConstant()->GetS32BitValue();
  } else {
    step_value = step_constant->AsIntConstant()->GetU32BitValue();
  }

  // If this is a subtraction step we should negate the step value.
  if (step_inst->opcode() == SpvOp::SpvOpISub) {
    step_value = -step_value;
  }

  // Find the initial value of the loop and make sure it is a constant integer.
  int64_t init_value = 0;
  if (!GetInductionInitValue(induction, &init_value)) return false;

  // If iterations is non null then store the value in that.
  int64_t num_itrs = GetIterations(condition->opcode(), condition_value,
                                   init_value, step_value);

  // If the loop body will not be reached return false.
  if (num_itrs <= 0) {
    return false;
  }

  if (iterations_out) {
    assert(static_cast<size_t>(num_itrs) <= std::numeric_limits<size_t>::max());
    *iterations_out = static_cast<size_t>(num_itrs);
  }

  if (step_value_out) {
    *step_value_out = step_value;
  }

  if (init_value_out) {
    *init_value_out = init_value;
  }

  return true;
}

// We retrieve the number of iterations using the following formula, diff /
// |step_value| where diff is calculated differently according to the
// |condition| and uses the |condition_value| and |init_value|. If diff /
// |step_value| is NOT cleanly divisible then we add one to the sum.
int64_t Loop::GetIterations(SpvOp condition, int64_t condition_value,
                            int64_t init_value, int64_t step_value) const {
  if (step_value == 0) {
    return 0;
  }

  int64_t diff = 0;

  switch (condition) {
    case SpvOp::SpvOpSLessThan:
    case SpvOp::SpvOpULessThan: {
      // If the condition is not met to begin with the loop will never iterate.
      if (!(init_value < condition_value)) return 0;

      diff = condition_value - init_value;

      // If the operation is a less then operation then the diff and step must
      // have the same sign otherwise the induction will never cross the
      // condition (either never true or always true).
      if ((diff < 0 && step_value > 0) || (diff > 0 && step_value < 0)) {
        return 0;
      }

      break;
    }
    case SpvOp::SpvOpSGreaterThan:
    case SpvOp::SpvOpUGreaterThan: {
      // If the condition is not met to begin with the loop will never iterate.
      if (!(init_value > condition_value)) return 0;

      diff = init_value - condition_value;

      // If the operation is a greater than operation then the diff and step
      // must have opposite signs. Otherwise the condition will always be true
      // or will never be true.
      if ((diff < 0 && step_value < 0) || (diff > 0 && step_value > 0)) {
        return 0;
      }

      break;
    }

    case SpvOp::SpvOpSGreaterThanEqual:
    case SpvOp::SpvOpUGreaterThanEqual: {
      // If the condition is not met to begin with the loop will never iterate.
      if (!(init_value >= condition_value)) return 0;

      // We subtract one to make it the same as SpvOpGreaterThan as it is
      // functionally equivalent.
      diff = init_value - (condition_value - 1);

      // If the operation is a greater than operation then the diff and step
      // must have opposite signs. Otherwise the condition will always be true
      // or will never be true.
      if ((diff > 0 && step_value > 0) || (diff < 0 && step_value < 0)) {
        return 0;
      }

      break;
    }

    case SpvOp::SpvOpSLessThanEqual:
    case SpvOp::SpvOpULessThanEqual: {
      // If the condition is not met to begin with the loop will never iterate.
      if (!(init_value <= condition_value)) return 0;

      // We add one to make it the same as SpvOpLessThan as it is functionally
      // equivalent.
      diff = (condition_value + 1) - init_value;

      // If the operation is a less than operation then the diff and step must
      // have the same sign otherwise the induction will never cross the
      // condition (either never true or always true).
      if ((diff < 0 && step_value > 0) || (diff > 0 && step_value < 0)) {
        return 0;
      }

      break;
    }

    default:
      assert(false &&
             "Could not retrieve number of iterations from the loop condition. "
             "Condition is not supported.");
  }

  // Take the abs of - step values.
  step_value = llabs(step_value);
  diff = llabs(diff);
  int64_t result = diff / step_value;

  if (diff % step_value != 0) {
    result += 1;
  }
  return result;
}

// Returns the list of induction variables within the loop.
void Loop::GetInductionVariables(
    std::vector<Instruction*>& induction_variables) const {
  for (Instruction& inst : *loop_header_) {
    if (inst.opcode() == SpvOp::SpvOpPhi) {
      induction_variables.push_back(&inst);
    }
  }
}

Instruction* Loop::FindConditionVariable(
    const BasicBlock* condition_block) const {
  // Find the branch instruction.
  const Instruction& branch_inst = *condition_block->ctail();

  Instruction* induction = nullptr;
  // Verify that the branch instruction is a conditional branch.
  if (branch_inst.opcode() == SpvOp::SpvOpBranchConditional) {
    // From the branch instruction find the branch condition.
    analysis::DefUseManager* def_use_manager = context_->get_def_use_mgr();

    // Find the instruction representing the condition used in the conditional
    // branch.
    Instruction* condition =
        def_use_manager->GetDef(branch_inst.GetSingleWordOperand(0));

    // Ensure that the condition is a less than operation.
    if (condition && IsSupportedCondition(condition->opcode())) {
      // The left hand side operand of the operation.
      Instruction* variable_inst =
          def_use_manager->GetDef(condition->GetSingleWordOperand(2));

      // Make sure the variable instruction used is a phi.
      if (!variable_inst || variable_inst->opcode() != SpvOpPhi) return nullptr;

      // Make sure the phi instruction only has two incoming blocks. Each
      // incoming block will be represented by two in operands in the phi
      // instruction, the value and the block which that value came from. We
      // assume the cannocalised phi will have two incoming values, one from the
      // preheader and one from the continue block.
      size_t max_supported_operands = 4;
      if (variable_inst->NumInOperands() == max_supported_operands) {
        // The operand index of the first incoming block label.
        uint32_t operand_label_1 = 1;

        // The operand index of the second incoming block label.
        uint32_t operand_label_2 = 3;

        // Make sure one of them is the preheader.
        if (!IsInsideLoop(
                variable_inst->GetSingleWordInOperand(operand_label_1)) &&
            !IsInsideLoop(
                variable_inst->GetSingleWordInOperand(operand_label_2))) {
          return nullptr;
        }

        // And make sure that the other is the latch block.
        if (variable_inst->GetSingleWordInOperand(operand_label_1) !=
                loop_latch_->id() &&
            variable_inst->GetSingleWordInOperand(operand_label_2) !=
                loop_latch_->id()) {
          return nullptr;
        }
      } else {
        return nullptr;
      }

      if (!FindNumberOfIterations(variable_inst, &branch_inst, nullptr))
        return nullptr;
      induction = variable_inst;
    }
  }

  return induction;
}

bool LoopDescriptor::CreatePreHeaderBlocksIfMissing() {
  auto modified = false;

  for (auto& loop : *this) {
    if (!loop.GetPreHeaderBlock()) {
      modified = true;
      // TODO(1841): Handle failure to create pre-header.
      loop.GetOrCreatePreHeaderBlock();
    }
  }

  return modified;
}

// Add and remove loops which have been marked for addition and removal to
// maintain the state of the loop descriptor class.
void LoopDescriptor::PostModificationCleanup() {
  LoopContainerType loops_to_remove_;
  for (Loop* loop : loops_) {
    if (loop->IsMarkedForRemoval()) {
      loops_to_remove_.push_back(loop);
      if (loop->HasParent()) {
        loop->GetParent()->RemoveChildLoop(loop);
      }
    }
  }

  for (Loop* loop : loops_to_remove_) {
    loops_.erase(std::find(loops_.begin(), loops_.end(), loop));
    delete loop;
  }

  for (auto& pair : loops_to_add_) {
    Loop* parent = pair.first;
    std::unique_ptr<Loop> loop = std::move(pair.second);

    if (parent) {
      loop->SetParent(nullptr);
      parent->AddNestedLoop(loop.get());

      for (uint32_t block_id : loop->GetBlocks()) {
        parent->AddBasicBlock(block_id);
      }
    }

    loops_.emplace_back(loop.release());
  }

  loops_to_add_.clear();
}

void LoopDescriptor::ClearLoops() {
  for (Loop* loop : loops_) {
    delete loop;
  }
  loops_.clear();
}

// Adds a new loop nest to the descriptor set.
Loop* LoopDescriptor::AddLoopNest(std::unique_ptr<Loop> new_loop) {
  Loop* loop = new_loop.release();
  if (!loop->HasParent()) placeholder_top_loop_.nested_loops_.push_back(loop);
  // Iterate from inner to outer most loop, adding basic block to loop mapping
  // as we go.
  for (Loop& current_loop :
       make_range(iterator::begin(loop), iterator::end(nullptr))) {
    loops_.push_back(&current_loop);
    for (uint32_t bb_id : current_loop.GetBlocks())
      basic_block_to_loop_.insert(std::make_pair(bb_id, &current_loop));
  }

  return loop;
}

void LoopDescriptor::RemoveLoop(Loop* loop) {
  Loop* parent = loop->GetParent() ? loop->GetParent() : &placeholder_top_loop_;
  parent->nested_loops_.erase(std::find(parent->nested_loops_.begin(),
                                        parent->nested_loops_.end(), loop));
  std::for_each(
      loop->nested_loops_.begin(), loop->nested_loops_.end(),
      [loop](Loop* sub_loop) { sub_loop->SetParent(loop->GetParent()); });
  parent->nested_loops_.insert(parent->nested_loops_.end(),
                               loop->nested_loops_.begin(),
                               loop->nested_loops_.end());
  for (uint32_t bb_id : loop->GetBlocks()) {
    Loop* l = FindLoopForBasicBlock(bb_id);
    if (l == loop) {
      SetBasicBlockToLoop(bb_id, l->GetParent());
    } else {
      ForgetBasicBlock(bb_id);
    }
  }

  LoopContainerType::iterator it =
      std::find(loops_.begin(), loops_.end(), loop);
  assert(it != loops_.end());
  delete loop;
  loops_.erase(it);
}

}  // namespace opt
}  // namespace spvtools