aboutsummaryrefslogtreecommitdiff
path: root/glslang/MachineIndependent/linkValidate.cpp
blob: 4e84adbf0a0b66f07fcf6e909a0a9a991a24aa7e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
//
// Copyright (C) 2013 LunarG, Inc.
// Copyright (C) 2017 ARM Limited.
// Copyright (C) 2015-2018 Google, Inc.
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
//    Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
//
//    Redistributions in binary form must reproduce the above
//    copyright notice, this list of conditions and the following
//    disclaimer in the documentation and/or other materials provided
//    with the distribution.
//
//    Neither the name of 3Dlabs Inc. Ltd. nor the names of its
//    contributors may be used to endorse or promote products derived
//    from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//

//
// Do link-time merging and validation of intermediate representations.
//
// Basic model is that during compilation, each compilation unit (shader) is
// compiled into one TIntermediate instance.  Then, at link time, multiple
// units for the same stage can be merged together, which can generate errors.
// Then, after all merging, a single instance of TIntermediate represents
// the whole stage.  A final error check can be done on the resulting stage,
// even if no merging was done (i.e., the stage was only one compilation unit).
//

#include "localintermediate.h"
#include "../Include/InfoSink.h"

namespace glslang {

//
// Link-time error emitter.
//
void TIntermediate::error(TInfoSink& infoSink, const char* message)
{
#ifndef GLSLANG_WEB
    infoSink.info.prefix(EPrefixError);
    infoSink.info << "Linking " << StageName(language) << " stage: " << message << "\n";
#endif

    ++numErrors;
}

// Link-time warning.
void TIntermediate::warn(TInfoSink& infoSink, const char* message)
{
#ifndef GLSLANG_WEB
    infoSink.info.prefix(EPrefixWarning);
    infoSink.info << "Linking " << StageName(language) << " stage: " << message << "\n";
#endif
}

// TODO: 4.4 offset/align:  "Two blocks linked together in the same program with the same block
// name must have the exact same set of members qualified with offset and their integral-constant
// expression values must be the same, or a link-time error results."

//
// Merge the information from 'unit' into 'this'
//
void TIntermediate::merge(TInfoSink& infoSink, TIntermediate& unit)
{
#if !defined(GLSLANG_WEB) && !defined(GLSLANG_ANGLE)
    mergeCallGraphs(infoSink, unit);
    mergeModes(infoSink, unit);
    mergeTrees(infoSink, unit);
#endif
}

void TIntermediate::mergeCallGraphs(TInfoSink& infoSink, TIntermediate& unit)
{
    if (unit.getNumEntryPoints() > 0) {
        if (getNumEntryPoints() > 0)
            error(infoSink, "can't handle multiple entry points per stage");
        else {
            entryPointName = unit.getEntryPointName();
            entryPointMangledName = unit.getEntryPointMangledName();
        }
    }
    numEntryPoints += unit.getNumEntryPoints();

    callGraph.insert(callGraph.end(), unit.callGraph.begin(), unit.callGraph.end());
}

#if !defined(GLSLANG_WEB) && !defined(GLSLANG_ANGLE)

#define MERGE_MAX(member) member = std::max(member, unit.member)
#define MERGE_TRUE(member) if (unit.member) member = unit.member;

void TIntermediate::mergeModes(TInfoSink& infoSink, TIntermediate& unit)
{
    if (language != unit.language)
        error(infoSink, "stages must match when linking into a single stage");

    if (getSource() == EShSourceNone)
        setSource(unit.getSource());
    if (getSource() != unit.getSource())
        error(infoSink, "can't link compilation units from different source languages");

    if (treeRoot == nullptr) {
        profile = unit.profile;
        version = unit.version;
        requestedExtensions = unit.requestedExtensions;
    } else {
        if ((isEsProfile()) != (unit.isEsProfile()))
            error(infoSink, "Cannot cross link ES and desktop profiles");
        else if (unit.profile == ECompatibilityProfile)
            profile = ECompatibilityProfile;
        version = std::max(version, unit.version);
        requestedExtensions.insert(unit.requestedExtensions.begin(), unit.requestedExtensions.end());
    }

    MERGE_MAX(spvVersion.spv);
    MERGE_MAX(spvVersion.vulkanGlsl);
    MERGE_MAX(spvVersion.vulkan);
    MERGE_MAX(spvVersion.openGl);

    numErrors += unit.getNumErrors();
    // Only one push_constant is allowed, mergeLinkerObjects() will ensure the push_constant
    // is the same for all units.
    if (numPushConstants > 1 || unit.numPushConstants > 1)
        error(infoSink, "Only one push_constant block is allowed per stage");
    numPushConstants = std::min(numPushConstants + unit.numPushConstants, 1);

    if (unit.invocations != TQualifier::layoutNotSet) {
        if (invocations == TQualifier::layoutNotSet)
            invocations = unit.invocations;
        else if (invocations != unit.invocations)
            error(infoSink, "number of invocations must match between compilation units");
    }

    if (vertices == TQualifier::layoutNotSet)
        vertices = unit.vertices;
    else if (unit.vertices != TQualifier::layoutNotSet && vertices != unit.vertices) {
        if (language == EShLangGeometry || language == EShLangMeshNV)
            error(infoSink, "Contradictory layout max_vertices values");
        else if (language == EShLangTessControl)
            error(infoSink, "Contradictory layout vertices values");
        else
            assert(0);
    }
    if (primitives == TQualifier::layoutNotSet)
        primitives = unit.primitives;
    else if (primitives != unit.primitives) {
        if (language == EShLangMeshNV)
            error(infoSink, "Contradictory layout max_primitives values");
        else
            assert(0);
    }

    if (inputPrimitive == ElgNone)
        inputPrimitive = unit.inputPrimitive;
    else if (unit.inputPrimitive != ElgNone && inputPrimitive != unit.inputPrimitive)
        error(infoSink, "Contradictory input layout primitives");

    if (outputPrimitive == ElgNone)
        outputPrimitive = unit.outputPrimitive;
    else if (unit.outputPrimitive != ElgNone && outputPrimitive != unit.outputPrimitive)
        error(infoSink, "Contradictory output layout primitives");

    if (originUpperLeft != unit.originUpperLeft || pixelCenterInteger != unit.pixelCenterInteger)
        error(infoSink, "gl_FragCoord redeclarations must match across shaders");

    if (vertexSpacing == EvsNone)
        vertexSpacing = unit.vertexSpacing;
    else if (vertexSpacing != unit.vertexSpacing)
        error(infoSink, "Contradictory input vertex spacing");

    if (vertexOrder == EvoNone)
        vertexOrder = unit.vertexOrder;
    else if (vertexOrder != unit.vertexOrder)
        error(infoSink, "Contradictory triangle ordering");

    MERGE_TRUE(pointMode);

    for (int i = 0; i < 3; ++i) {
        if (unit.localSizeNotDefault[i]) {
            if (!localSizeNotDefault[i]) {
                localSize[i] = unit.localSize[i];
                localSizeNotDefault[i] = true;
            }
            else if (localSize[i] != unit.localSize[i])
                error(infoSink, "Contradictory local size");
        }

        if (localSizeSpecId[i] == TQualifier::layoutNotSet)
            localSizeSpecId[i] = unit.localSizeSpecId[i];
        else if (localSizeSpecId[i] != unit.localSizeSpecId[i])
            error(infoSink, "Contradictory local size specialization ids");
    }

    MERGE_TRUE(earlyFragmentTests);
    MERGE_TRUE(postDepthCoverage);

    if (depthLayout == EldNone)
        depthLayout = unit.depthLayout;
    else if (depthLayout != unit.depthLayout)
        error(infoSink, "Contradictory depth layouts");

    MERGE_TRUE(depthReplacing);
    MERGE_TRUE(hlslFunctionality1);

    blendEquations |= unit.blendEquations;

    MERGE_TRUE(xfbMode);

    for (size_t b = 0; b < xfbBuffers.size(); ++b) {
        if (xfbBuffers[b].stride == TQualifier::layoutXfbStrideEnd)
            xfbBuffers[b].stride = unit.xfbBuffers[b].stride;
        else if (xfbBuffers[b].stride != unit.xfbBuffers[b].stride)
            error(infoSink, "Contradictory xfb_stride");
        xfbBuffers[b].implicitStride = std::max(xfbBuffers[b].implicitStride, unit.xfbBuffers[b].implicitStride);
        if (unit.xfbBuffers[b].contains64BitType)
            xfbBuffers[b].contains64BitType = true;
        if (unit.xfbBuffers[b].contains32BitType)
            xfbBuffers[b].contains32BitType = true;
        if (unit.xfbBuffers[b].contains16BitType)
            xfbBuffers[b].contains16BitType = true;
        // TODO: 4.4 link: enhanced layouts: compare ranges
    }

    MERGE_TRUE(multiStream);
    MERGE_TRUE(layoutOverrideCoverage);
    MERGE_TRUE(geoPassthroughEXT);

    for (unsigned int i = 0; i < unit.shiftBinding.size(); ++i) {
        if (unit.shiftBinding[i] > 0)
            setShiftBinding((TResourceType)i, unit.shiftBinding[i]);
    }

    for (unsigned int i = 0; i < unit.shiftBindingForSet.size(); ++i) {
        for (auto it = unit.shiftBindingForSet[i].begin(); it != unit.shiftBindingForSet[i].end(); ++it)
            setShiftBindingForSet((TResourceType)i, it->second, it->first);
    }

    resourceSetBinding.insert(resourceSetBinding.end(), unit.resourceSetBinding.begin(), unit.resourceSetBinding.end());

    MERGE_TRUE(autoMapBindings);
    MERGE_TRUE(autoMapLocations);
    MERGE_TRUE(invertY);
    MERGE_TRUE(flattenUniformArrays);
    MERGE_TRUE(useUnknownFormat);
    MERGE_TRUE(hlslOffsets);
    MERGE_TRUE(useStorageBuffer);
    MERGE_TRUE(hlslIoMapping);

    // TODO: sourceFile
    // TODO: sourceText
    // TODO: processes

    MERGE_TRUE(needToLegalize);
    MERGE_TRUE(binaryDoubleOutput);
    MERGE_TRUE(usePhysicalStorageBuffer);
}

//
// Merge the 'unit' AST into 'this' AST.
// That includes rationalizing the unique IDs, which were set up independently,
// and might have overlaps that are not the same symbol, or might have different
// IDs for what should be the same shared symbol.
//
void TIntermediate::mergeTrees(TInfoSink& infoSink, TIntermediate& unit)
{
    if (unit.treeRoot == nullptr)
        return;

    if (treeRoot == nullptr) {
        treeRoot = unit.treeRoot;
        return;
    }

    // Getting this far means we have two existing trees to merge...
    numShaderRecordBlocks += unit.numShaderRecordBlocks;
    numTaskNVBlocks += unit.numTaskNVBlocks;

    // Get the top-level globals of each unit
    TIntermSequence& globals = treeRoot->getAsAggregate()->getSequence();
    TIntermSequence& unitGlobals = unit.treeRoot->getAsAggregate()->getSequence();

    // Get the linker-object lists
    TIntermSequence& linkerObjects = findLinkerObjects()->getSequence();
    const TIntermSequence& unitLinkerObjects = unit.findLinkerObjects()->getSequence();

    // Map by global name to unique ID to rationalize the same object having
    // differing IDs in different trees.
    TIdMaps idMaps;
    int maxId;
    seedIdMap(idMaps, maxId);
    remapIds(idMaps, maxId + 1, unit);

    mergeBodies(infoSink, globals, unitGlobals);
    mergeLinkerObjects(infoSink, linkerObjects, unitLinkerObjects);
    ioAccessed.insert(unit.ioAccessed.begin(), unit.ioAccessed.end());
}

#endif

static const TString& getNameForIdMap(TIntermSymbol* symbol)
{
    TShaderInterface si = symbol->getType().getShaderInterface();
    if (si == EsiNone)
        return symbol->getName();
    else
        return symbol->getType().getTypeName();
}



// Traverser that seeds an ID map with all built-ins, and tracks the
// maximum ID used.
// (It would be nice to put this in a function, but that causes warnings
// on having no bodies for the copy-constructor/operator=.)
class TBuiltInIdTraverser : public TIntermTraverser {
public:
    TBuiltInIdTraverser(TIdMaps& idMaps) : idMaps(idMaps), maxId(0) { }
    // If it's a built in, add it to the map.
    // Track the max ID.
    virtual void visitSymbol(TIntermSymbol* symbol)
    {
        const TQualifier& qualifier = symbol->getType().getQualifier();
        if (qualifier.builtIn != EbvNone) {
            TShaderInterface si = symbol->getType().getShaderInterface();
            idMaps[si][getNameForIdMap(symbol)] = symbol->getId();
        }
        maxId = std::max(maxId, symbol->getId());
    }
    int getMaxId() const { return maxId; }
protected:
    TBuiltInIdTraverser(TBuiltInIdTraverser&);
    TBuiltInIdTraverser& operator=(TBuiltInIdTraverser&);
    TIdMaps& idMaps;
    int maxId;
};

// Traverser that seeds an ID map with non-builtins.
// (It would be nice to put this in a function, but that causes warnings
// on having no bodies for the copy-constructor/operator=.)
class TUserIdTraverser : public TIntermTraverser {
public:
    TUserIdTraverser(TIdMaps& idMaps) : idMaps(idMaps) { }
    // If its a non-built-in global, add it to the map.
    virtual void visitSymbol(TIntermSymbol* symbol)
    {
        const TQualifier& qualifier = symbol->getType().getQualifier();
        if (qualifier.builtIn == EbvNone) {
            TShaderInterface si = symbol->getType().getShaderInterface();
            idMaps[si][getNameForIdMap(symbol)] = symbol->getId();
        }
    }

protected:
    TUserIdTraverser(TUserIdTraverser&);
    TUserIdTraverser& operator=(TUserIdTraverser&);
    TIdMaps& idMaps; // over biggest id
};

// Initialize the the ID map with what we know of 'this' AST.
void TIntermediate::seedIdMap(TIdMaps& idMaps, int& maxId)
{
    // all built-ins everywhere need to align on IDs and contribute to the max ID
    TBuiltInIdTraverser builtInIdTraverser(idMaps);
    treeRoot->traverse(&builtInIdTraverser);
    maxId = builtInIdTraverser.getMaxId();

    // user variables in the linker object list need to align on ids
    TUserIdTraverser userIdTraverser(idMaps);
    findLinkerObjects()->traverse(&userIdTraverser);
}

// Traverser to map an AST ID to what was known from the seeding AST.
// (It would be nice to put this in a function, but that causes warnings
// on having no bodies for the copy-constructor/operator=.)
class TRemapIdTraverser : public TIntermTraverser {
public:
    TRemapIdTraverser(const TIdMaps& idMaps, int idShift) : idMaps(idMaps), idShift(idShift) { }
    // Do the mapping:
    //  - if the same symbol, adopt the 'this' ID
    //  - otherwise, ensure a unique ID by shifting to a new space
    virtual void visitSymbol(TIntermSymbol* symbol)
    {
        const TQualifier& qualifier = symbol->getType().getQualifier();
        bool remapped = false;
        if (qualifier.isLinkable() || qualifier.builtIn != EbvNone) {
            TShaderInterface si = symbol->getType().getShaderInterface();
            auto it = idMaps[si].find(getNameForIdMap(symbol));
            if (it != idMaps[si].end()) {
                symbol->changeId(it->second);
                remapped = true;
            }
        }
        if (!remapped)
            symbol->changeId(symbol->getId() + idShift);
    }
protected:
    TRemapIdTraverser(TRemapIdTraverser&);
    TRemapIdTraverser& operator=(TRemapIdTraverser&);
    const TIdMaps& idMaps;
    int idShift;
};

void TIntermediate::remapIds(const TIdMaps& idMaps, int idShift, TIntermediate& unit)
{
    // Remap all IDs to either share or be unique, as dictated by the idMap and idShift.
    TRemapIdTraverser idTraverser(idMaps, idShift);
    unit.getTreeRoot()->traverse(&idTraverser);
}

//
// Merge the function bodies and global-level initializers from unitGlobals into globals.
// Will error check duplication of function bodies for the same signature.
//
void TIntermediate::mergeBodies(TInfoSink& infoSink, TIntermSequence& globals, const TIntermSequence& unitGlobals)
{
    // TODO: link-time performance: Processing in alphabetical order will be faster

    // Error check the global objects, not including the linker objects
    for (unsigned int child = 0; child < globals.size() - 1; ++child) {
        for (unsigned int unitChild = 0; unitChild < unitGlobals.size() - 1; ++unitChild) {
            TIntermAggregate* body = globals[child]->getAsAggregate();
            TIntermAggregate* unitBody = unitGlobals[unitChild]->getAsAggregate();
            if (body && unitBody && body->getOp() == EOpFunction && unitBody->getOp() == EOpFunction && body->getName() == unitBody->getName()) {
                error(infoSink, "Multiple function bodies in multiple compilation units for the same signature in the same stage:");
                infoSink.info << "    " << globals[child]->getAsAggregate()->getName() << "\n";
            }
        }
    }

    // Merge the global objects, just in front of the linker objects
    globals.insert(globals.end() - 1, unitGlobals.begin(), unitGlobals.end() - 1);
}

//
// Merge the linker objects from unitLinkerObjects into linkerObjects.
// Duplication is expected and filtered out, but contradictions are an error.
//
void TIntermediate::mergeLinkerObjects(TInfoSink& infoSink, TIntermSequence& linkerObjects, const TIntermSequence& unitLinkerObjects)
{
    // Error check and merge the linker objects (duplicates should not be created)
    std::size_t initialNumLinkerObjects = linkerObjects.size();
    for (unsigned int unitLinkObj = 0; unitLinkObj < unitLinkerObjects.size(); ++unitLinkObj) {
        bool merge = true;
        for (std::size_t linkObj = 0; linkObj < initialNumLinkerObjects; ++linkObj) {
            TIntermSymbol* symbol = linkerObjects[linkObj]->getAsSymbolNode();
            TIntermSymbol* unitSymbol = unitLinkerObjects[unitLinkObj]->getAsSymbolNode();
            assert(symbol && unitSymbol);

            bool isSameSymbol = false;
            // If they are both blocks in the same shader interface,
            // match by the block-name, not the identifier name.
            if (symbol->getType().getBasicType() == EbtBlock && unitSymbol->getType().getBasicType() == EbtBlock) {
                if (symbol->getType().getShaderInterface() == unitSymbol->getType().getShaderInterface()) {
                    isSameSymbol = symbol->getType().getTypeName() == unitSymbol->getType().getTypeName();
                }
            }
            else if (symbol->getName() == unitSymbol->getName())
                isSameSymbol = true;

            if (isSameSymbol) {
                // filter out copy
                merge = false;

                // but if one has an initializer and the other does not, update
                // the initializer
                if (symbol->getConstArray().empty() && ! unitSymbol->getConstArray().empty())
                    symbol->setConstArray(unitSymbol->getConstArray());

                // Similarly for binding
                if (! symbol->getQualifier().hasBinding() && unitSymbol->getQualifier().hasBinding())
                    symbol->getQualifier().layoutBinding = unitSymbol->getQualifier().layoutBinding;

                // Update implicit array sizes
                mergeImplicitArraySizes(symbol->getWritableType(), unitSymbol->getType());

                // Check for consistent types/qualification/initializers etc.
                mergeErrorCheck(infoSink, *symbol, *unitSymbol, false);
            }
            // If different symbols, verify they arn't push_constant since there can only be one per stage
            else if (symbol->getQualifier().isPushConstant() && unitSymbol->getQualifier().isPushConstant())
                error(infoSink, "Only one push_constant block is allowed per stage");
        }
        if (merge)
            linkerObjects.push_back(unitLinkerObjects[unitLinkObj]);
    }
}

// TODO 4.5 link functionality: cull distance array size checking

// Recursively merge the implicit array sizes through the objects' respective type trees.
void TIntermediate::mergeImplicitArraySizes(TType& type, const TType& unitType)
{
    if (type.isUnsizedArray()) {
        if (unitType.isUnsizedArray()) {
            type.updateImplicitArraySize(unitType.getImplicitArraySize());
            if (unitType.isArrayVariablyIndexed())
                type.setArrayVariablyIndexed();
        } else if (unitType.isSizedArray())
            type.changeOuterArraySize(unitType.getOuterArraySize());
    }

    // Type mismatches are caught and reported after this, just be careful for now.
    if (! type.isStruct() || ! unitType.isStruct() || type.getStruct()->size() != unitType.getStruct()->size())
        return;

    for (int i = 0; i < (int)type.getStruct()->size(); ++i)
        mergeImplicitArraySizes(*(*type.getStruct())[i].type, *(*unitType.getStruct())[i].type);
}

//
// Compare two global objects from two compilation units and see if they match
// well enough.  Rules can be different for intra- vs. cross-stage matching.
//
// This function only does one of intra- or cross-stage matching per call.
//
void TIntermediate::mergeErrorCheck(TInfoSink& infoSink, const TIntermSymbol& symbol, const TIntermSymbol& unitSymbol, bool crossStage)
{
#if !defined(GLSLANG_WEB) && !defined(GLSLANG_ANGLE)
    bool writeTypeComparison = false;

    // Types have to match
    if (symbol.getType() != unitSymbol.getType()) {
        // but, we make an exception if one is an implicit array and the other is sized
        if (! (symbol.getType().isArray() && unitSymbol.getType().isArray() &&
                symbol.getType().sameElementType(unitSymbol.getType()) &&
                (symbol.getType().isUnsizedArray() || unitSymbol.getType().isUnsizedArray()))) {
            error(infoSink, "Types must match:");
            writeTypeComparison = true;
        }
    }

    // Qualifiers have to (almost) match

    // Storage...
    if (symbol.getQualifier().storage != unitSymbol.getQualifier().storage) {
        error(infoSink, "Storage qualifiers must match:");
        writeTypeComparison = true;
    }

    // Uniform and buffer blocks must either both have an instance name, or
    // must both be anonymous. The names don't need to match though.
    if (symbol.getQualifier().isUniformOrBuffer() &&
        (IsAnonymous(symbol.getName()) != IsAnonymous(unitSymbol.getName()))) {
        error(infoSink, "Matched Uniform or Storage blocks must all be anonymous,"
                        " or all be named:");
        writeTypeComparison = true;
    }

    if (symbol.getQualifier().storage == unitSymbol.getQualifier().storage &&
        (IsAnonymous(symbol.getName()) != IsAnonymous(unitSymbol.getName()) ||
         (!IsAnonymous(symbol.getName()) && symbol.getName() != unitSymbol.getName()))) {
        warn(infoSink, "Matched shader interfaces are using different instance names.");
        writeTypeComparison = true;
    }

    // Precision...
    if (symbol.getQualifier().precision != unitSymbol.getQualifier().precision) {
        error(infoSink, "Precision qualifiers must match:");
        writeTypeComparison = true;
    }

    // Invariance...
    if (! crossStage && symbol.getQualifier().invariant != unitSymbol.getQualifier().invariant) {
        error(infoSink, "Presence of invariant qualifier must match:");
        writeTypeComparison = true;
    }

    // Precise...
    if (! crossStage && symbol.getQualifier().isNoContraction() != unitSymbol.getQualifier().isNoContraction()) {
        error(infoSink, "Presence of precise qualifier must match:");
        writeTypeComparison = true;
    }

    // Auxiliary and interpolation...
    if (symbol.getQualifier().centroid  != unitSymbol.getQualifier().centroid ||
        symbol.getQualifier().smooth    != unitSymbol.getQualifier().smooth ||
        symbol.getQualifier().flat      != unitSymbol.getQualifier().flat ||
        symbol.getQualifier().isSample()!= unitSymbol.getQualifier().isSample() ||
        symbol.getQualifier().isPatch() != unitSymbol.getQualifier().isPatch() ||
        symbol.getQualifier().isNonPerspective() != unitSymbol.getQualifier().isNonPerspective()) {
        error(infoSink, "Interpolation and auxiliary storage qualifiers must match:");
        writeTypeComparison = true;
    }

    // Memory...
    if (symbol.getQualifier().coherent          != unitSymbol.getQualifier().coherent ||
        symbol.getQualifier().devicecoherent    != unitSymbol.getQualifier().devicecoherent ||
        symbol.getQualifier().queuefamilycoherent  != unitSymbol.getQualifier().queuefamilycoherent ||
        symbol.getQualifier().workgroupcoherent != unitSymbol.getQualifier().workgroupcoherent ||
        symbol.getQualifier().subgroupcoherent  != unitSymbol.getQualifier().subgroupcoherent ||
        symbol.getQualifier().shadercallcoherent!= unitSymbol.getQualifier().shadercallcoherent ||
        symbol.getQualifier().nonprivate        != unitSymbol.getQualifier().nonprivate ||
        symbol.getQualifier().volatil           != unitSymbol.getQualifier().volatil ||
        symbol.getQualifier().restrict          != unitSymbol.getQualifier().restrict ||
        symbol.getQualifier().readonly          != unitSymbol.getQualifier().readonly ||
        symbol.getQualifier().writeonly         != unitSymbol.getQualifier().writeonly) {
        error(infoSink, "Memory qualifiers must match:");
        writeTypeComparison = true;
    }

    // Layouts...
    // TODO: 4.4 enhanced layouts: Generalize to include offset/align: current spec
    //       requires separate user-supplied offset from actual computed offset, but
    //       current implementation only has one offset.
    if (symbol.getQualifier().layoutMatrix    != unitSymbol.getQualifier().layoutMatrix ||
        symbol.getQualifier().layoutPacking   != unitSymbol.getQualifier().layoutPacking ||
        symbol.getQualifier().layoutLocation  != unitSymbol.getQualifier().layoutLocation ||
        symbol.getQualifier().layoutComponent != unitSymbol.getQualifier().layoutComponent ||
        symbol.getQualifier().layoutIndex     != unitSymbol.getQualifier().layoutIndex ||
        symbol.getQualifier().layoutBinding   != unitSymbol.getQualifier().layoutBinding ||
        (symbol.getQualifier().hasBinding() && (symbol.getQualifier().layoutOffset != unitSymbol.getQualifier().layoutOffset))) {
        error(infoSink, "Layout qualification must match:");
        writeTypeComparison = true;
    }

    // Initializers have to match, if both are present, and if we don't already know the types don't match
    if (! writeTypeComparison) {
        if (! symbol.getConstArray().empty() && ! unitSymbol.getConstArray().empty()) {
            if (symbol.getConstArray() != unitSymbol.getConstArray()) {
                error(infoSink, "Initializers must match:");
                infoSink.info << "    " << symbol.getName() << "\n";
            }
        }
    }

    if (writeTypeComparison) {
        infoSink.info << "    " << symbol.getName() << ": \"" << symbol.getType().getCompleteString() << "\" versus ";
        if (symbol.getName() != unitSymbol.getName())
            infoSink.info << unitSymbol.getName() << ": ";

        infoSink.info << "\"" << unitSymbol.getType().getCompleteString() << "\"\n";
    }
#endif
}

//
// Do final link-time error checking of a complete (merged) intermediate representation.
// (Much error checking was done during merging).
//
// Also, lock in defaults of things not set, including array sizes.
//
void TIntermediate::finalCheck(TInfoSink& infoSink, bool keepUncalled)
{
    if (getTreeRoot() == nullptr)
        return;

    if (numEntryPoints < 1) {
        if (getSource() == EShSourceGlsl)
            error(infoSink, "Missing entry point: Each stage requires one entry point");
        else
            warn(infoSink, "Entry point not found");
    }

    // recursion and missing body checking
    checkCallGraphCycles(infoSink);
    checkCallGraphBodies(infoSink, keepUncalled);

    // overlap/alias/missing I/O, etc.
    inOutLocationCheck(infoSink);

#ifndef GLSLANG_WEB
    if (getNumPushConstants() > 1)
        error(infoSink, "Only one push_constant block is allowed per stage");

    // invocations
    if (invocations == TQualifier::layoutNotSet)
        invocations = 1;

    if (inIoAccessed("gl_ClipDistance") && inIoAccessed("gl_ClipVertex"))
        error(infoSink, "Can only use one of gl_ClipDistance or gl_ClipVertex (gl_ClipDistance is preferred)");
    if (inIoAccessed("gl_CullDistance") && inIoAccessed("gl_ClipVertex"))
        error(infoSink, "Can only use one of gl_CullDistance or gl_ClipVertex (gl_ClipDistance is preferred)");

    if (userOutputUsed() && (inIoAccessed("gl_FragColor") || inIoAccessed("gl_FragData")))
        error(infoSink, "Cannot use gl_FragColor or gl_FragData when using user-defined outputs");
    if (inIoAccessed("gl_FragColor") && inIoAccessed("gl_FragData"))
        error(infoSink, "Cannot use both gl_FragColor and gl_FragData");

    for (size_t b = 0; b < xfbBuffers.size(); ++b) {
        if (xfbBuffers[b].contains64BitType)
            RoundToPow2(xfbBuffers[b].implicitStride, 8);
        else if (xfbBuffers[b].contains32BitType)
            RoundToPow2(xfbBuffers[b].implicitStride, 4);
        else if (xfbBuffers[b].contains16BitType)
            RoundToPow2(xfbBuffers[b].implicitStride, 2);

        // "It is a compile-time or link-time error to have
        // any xfb_offset that overflows xfb_stride, whether stated on declarations before or after the xfb_stride, or
        // in different compilation units. While xfb_stride can be declared multiple times for the same buffer, it is a
        // compile-time or link-time error to have different values specified for the stride for the same buffer."
        if (xfbBuffers[b].stride != TQualifier::layoutXfbStrideEnd && xfbBuffers[b].implicitStride > xfbBuffers[b].stride) {
            error(infoSink, "xfb_stride is too small to hold all buffer entries:");
            infoSink.info.prefix(EPrefixError);
            infoSink.info << "    xfb_buffer " << (unsigned int)b << ", xfb_stride " << xfbBuffers[b].stride << ", minimum stride needed: " << xfbBuffers[b].implicitStride << "\n";
        }
        if (xfbBuffers[b].stride == TQualifier::layoutXfbStrideEnd)
            xfbBuffers[b].stride = xfbBuffers[b].implicitStride;

        // "If the buffer is capturing any
        // outputs with double-precision or 64-bit integer components, the stride must be a multiple of 8, otherwise it must be a
        // multiple of 4, or a compile-time or link-time error results."
        if (xfbBuffers[b].contains64BitType && ! IsMultipleOfPow2(xfbBuffers[b].stride, 8)) {
            error(infoSink, "xfb_stride must be multiple of 8 for buffer holding a double or 64-bit integer:");
            infoSink.info.prefix(EPrefixError);
            infoSink.info << "    xfb_buffer " << (unsigned int)b << ", xfb_stride " << xfbBuffers[b].stride << "\n";
        } else if (xfbBuffers[b].contains32BitType && ! IsMultipleOfPow2(xfbBuffers[b].stride, 4)) {
            error(infoSink, "xfb_stride must be multiple of 4:");
            infoSink.info.prefix(EPrefixError);
            infoSink.info << "    xfb_buffer " << (unsigned int)b << ", xfb_stride " << xfbBuffers[b].stride << "\n";
        }
        // "If the buffer is capturing any
        // outputs with half-precision or 16-bit integer components, the stride must be a multiple of 2"
        else if (xfbBuffers[b].contains16BitType && ! IsMultipleOfPow2(xfbBuffers[b].stride, 2)) {
            error(infoSink, "xfb_stride must be multiple of 2 for buffer holding a half float or 16-bit integer:");
            infoSink.info.prefix(EPrefixError);
            infoSink.info << "    xfb_buffer " << (unsigned int)b << ", xfb_stride " << xfbBuffers[b].stride << "\n";
        }

        // "The resulting stride (implicit or explicit), when divided by 4, must be less than or equal to the
        // implementation-dependent constant gl_MaxTransformFeedbackInterleavedComponents."
        if (xfbBuffers[b].stride > (unsigned int)(4 * resources->maxTransformFeedbackInterleavedComponents)) {
            error(infoSink, "xfb_stride is too large:");
            infoSink.info.prefix(EPrefixError);
            infoSink.info << "    xfb_buffer " << (unsigned int)b << ", components (1/4 stride) needed are " << xfbBuffers[b].stride/4 << ", gl_MaxTransformFeedbackInterleavedComponents is " << resources->maxTransformFeedbackInterleavedComponents << "\n";
        }
    }

    switch (language) {
    case EShLangVertex:
        break;
    case EShLangTessControl:
        if (vertices == TQualifier::layoutNotSet)
            error(infoSink, "At least one shader must specify an output layout(vertices=...)");
        break;
    case EShLangTessEvaluation:
        if (getSource() == EShSourceGlsl) {
            if (inputPrimitive == ElgNone)
                error(infoSink, "At least one shader must specify an input layout primitive");
            if (vertexSpacing == EvsNone)
                vertexSpacing = EvsEqual;
            if (vertexOrder == EvoNone)
                vertexOrder = EvoCcw;
        }
        break;
    case EShLangGeometry:
        if (inputPrimitive == ElgNone)
            error(infoSink, "At least one shader must specify an input layout primitive");
        if (outputPrimitive == ElgNone)
            error(infoSink, "At least one shader must specify an output layout primitive");
        if (vertices == TQualifier::layoutNotSet)
            error(infoSink, "At least one shader must specify a layout(max_vertices = value)");
        break;
    case EShLangFragment:
        // for GL_ARB_post_depth_coverage, EarlyFragmentTest is set automatically in 
        // ParseHelper.cpp. So if we reach here, this must be GL_EXT_post_depth_coverage 
        // requiring explicit early_fragment_tests
        if (getPostDepthCoverage() && !getEarlyFragmentTests())
            error(infoSink, "post_depth_coverage requires early_fragment_tests");
        break;
    case EShLangCompute:
        break;
    case EShLangRayGen:
    case EShLangIntersect:
    case EShLangAnyHit:
    case EShLangClosestHit:
    case EShLangMiss:
    case EShLangCallable:
        if (numShaderRecordBlocks > 1)
            error(infoSink, "Only one shaderRecordNV buffer block is allowed per stage");
        break;
    case EShLangMeshNV:
        // NV_mesh_shader doesn't allow use of both single-view and per-view builtins.
        if (inIoAccessed("gl_Position") && inIoAccessed("gl_PositionPerViewNV"))
            error(infoSink, "Can only use one of gl_Position or gl_PositionPerViewNV");
        if (inIoAccessed("gl_ClipDistance") && inIoAccessed("gl_ClipDistancePerViewNV"))
            error(infoSink, "Can only use one of gl_ClipDistance or gl_ClipDistancePerViewNV");
        if (inIoAccessed("gl_CullDistance") && inIoAccessed("gl_CullDistancePerViewNV"))
            error(infoSink, "Can only use one of gl_CullDistance or gl_CullDistancePerViewNV");
        if (inIoAccessed("gl_Layer") && inIoAccessed("gl_LayerPerViewNV"))
            error(infoSink, "Can only use one of gl_Layer or gl_LayerPerViewNV");
        if (inIoAccessed("gl_ViewportMask") && inIoAccessed("gl_ViewportMaskPerViewNV"))
            error(infoSink, "Can only use one of gl_ViewportMask or gl_ViewportMaskPerViewNV");
        if (outputPrimitive == ElgNone)
            error(infoSink, "At least one shader must specify an output layout primitive");
        if (vertices == TQualifier::layoutNotSet)
            error(infoSink, "At least one shader must specify a layout(max_vertices = value)");
        if (primitives == TQualifier::layoutNotSet)
            error(infoSink, "At least one shader must specify a layout(max_primitives = value)");
        // fall through
    case EShLangTaskNV:
        if (numTaskNVBlocks > 1)
            error(infoSink, "Only one taskNV interface block is allowed per shader");
        break;
    default:
        error(infoSink, "Unknown Stage.");
        break;
    }

    // Process the tree for any node-specific work.
    class TFinalLinkTraverser : public TIntermTraverser {
    public:
        TFinalLinkTraverser() { }
        virtual ~TFinalLinkTraverser() { }

        virtual void visitSymbol(TIntermSymbol* symbol)
        {
            // Implicitly size arrays.
            // If an unsized array is left as unsized, it effectively
            // becomes run-time sized.
            symbol->getWritableType().adoptImplicitArraySizes(false);
        }
    } finalLinkTraverser;

    treeRoot->traverse(&finalLinkTraverser);
#endif
}

//
// See if the call graph contains any static recursion, which is disallowed
// by the specification.
//
void TIntermediate::checkCallGraphCycles(TInfoSink& infoSink)
{
    // Clear fields we'll use for this.
    for (TGraph::iterator call = callGraph.begin(); call != callGraph.end(); ++call) {
        call->visited = false;
        call->currentPath = false;
        call->errorGiven = false;
    }

    //
    // Loop, looking for a new connected subgraph.  One subgraph is handled per loop iteration.
    //

    TCall* newRoot;
    do {
        // See if we have unvisited parts of the graph.
        newRoot = 0;
        for (TGraph::iterator call = callGraph.begin(); call != callGraph.end(); ++call) {
            if (! call->visited) {
                newRoot = &(*call);
                break;
            }
        }

        // If not, we are done.
        if (! newRoot)
            break;

        // Otherwise, we found a new subgraph, process it:
        // See what all can be reached by this new root, and if any of
        // that is recursive.  This is done by depth-first traversals, seeing
        // if a new call is found that was already in the currentPath (a back edge),
        // thereby detecting recursion.
        std::list<TCall*> stack;
        newRoot->currentPath = true; // currentPath will be true iff it is on the stack
        stack.push_back(newRoot);
        while (! stack.empty()) {
            // get a caller
            TCall* call = stack.back();

            // Add to the stack just one callee.
            // This algorithm always terminates, because only !visited and !currentPath causes a push
            // and all pushes change currentPath to true, and all pops change visited to true.
            TGraph::iterator child = callGraph.begin();
            for (; child != callGraph.end(); ++child) {

                // If we already visited this node, its whole subgraph has already been processed, so skip it.
                if (child->visited)
                    continue;

                if (call->callee == child->caller) {
                    if (child->currentPath) {
                        // Then, we found a back edge
                        if (! child->errorGiven) {
                            error(infoSink, "Recursion detected:");
                            infoSink.info << "    " << call->callee << " calling " << child->callee << "\n";
                            child->errorGiven = true;
                            recursive = true;
                        }
                    } else {
                        child->currentPath = true;
                        stack.push_back(&(*child));
                        break;
                    }
                }
            }
            if (child == callGraph.end()) {
                // no more callees, we bottomed out, never look at this node again
                stack.back()->currentPath = false;
                stack.back()->visited = true;
                stack.pop_back();
            }
        }  // end while, meaning nothing left to process in this subtree

    } while (newRoot);  // redundant loop check; should always exit via the 'break' above
}

//
// See which functions are reachable from the entry point and which have bodies.
// Reachable ones with missing bodies are errors.
// Unreachable bodies are dead code.
//
void TIntermediate::checkCallGraphBodies(TInfoSink& infoSink, bool keepUncalled)
{
    // Clear fields we'll use for this.
    for (TGraph::iterator call = callGraph.begin(); call != callGraph.end(); ++call) {
        call->visited = false;
        call->calleeBodyPosition = -1;
    }

    // The top level of the AST includes function definitions (bodies).
    // Compare these to function calls in the call graph.
    // We'll end up knowing which have bodies, and if so,
    // how to map the call-graph node to the location in the AST.
    TIntermSequence &functionSequence = getTreeRoot()->getAsAggregate()->getSequence();
    std::vector<bool> reachable(functionSequence.size(), true); // so that non-functions are reachable
    for (int f = 0; f < (int)functionSequence.size(); ++f) {
        glslang::TIntermAggregate* node = functionSequence[f]->getAsAggregate();
        if (node && (node->getOp() == glslang::EOpFunction)) {
            if (node->getName().compare(getEntryPointMangledName().c_str()) != 0)
                reachable[f] = false; // so that function bodies are unreachable, until proven otherwise
            for (TGraph::iterator call = callGraph.begin(); call != callGraph.end(); ++call) {
                if (call->callee == node->getName())
                    call->calleeBodyPosition = f;
            }
        }
    }

    // Start call-graph traversal by visiting the entry point nodes.
    for (TGraph::iterator call = callGraph.begin(); call != callGraph.end(); ++call) {
        if (call->caller.compare(getEntryPointMangledName().c_str()) == 0)
            call->visited = true;
    }

    // Propagate 'visited' through the call-graph to every part of the graph it
    // can reach (seeded with the entry-point setting above).
    bool changed;
    do {
        changed = false;
        for (auto call1 = callGraph.begin(); call1 != callGraph.end(); ++call1) {
            if (call1->visited) {
                for (TGraph::iterator call2 = callGraph.begin(); call2 != callGraph.end(); ++call2) {
                    if (! call2->visited) {
                        if (call1->callee == call2->caller) {
                            changed = true;
                            call2->visited = true;
                        }
                    }
                }
            }
        }
    } while (changed);

    // Any call-graph node set to visited but without a callee body is an error.
    for (TGraph::iterator call = callGraph.begin(); call != callGraph.end(); ++call) {
        if (call->visited) {
            if (call->calleeBodyPosition == -1) {
                error(infoSink, "No function definition (body) found: ");
                infoSink.info << "    " << call->callee << "\n";
            } else
                reachable[call->calleeBodyPosition] = true;
        }
    }

    // Bodies in the AST not reached by the call graph are dead;
    // clear them out, since they can't be reached and also can't
    // be translated further due to possibility of being ill defined.
    if (! keepUncalled) {
        for (int f = 0; f < (int)functionSequence.size(); ++f) {
            if (! reachable[f])
                functionSequence[f] = nullptr;
        }
        functionSequence.erase(std::remove(functionSequence.begin(), functionSequence.end(), nullptr), functionSequence.end());
    }
}

//
// Satisfy rules for location qualifiers on inputs and outputs
//
void TIntermediate::inOutLocationCheck(TInfoSink& infoSink)
{
    // ES 3.0 requires all outputs to have location qualifiers if there is more than one output
    bool fragOutWithNoLocation = false;
    int numFragOut = 0;

    // TODO: linker functionality: location collision checking

    TIntermSequence& linkObjects = findLinkerObjects()->getSequence();
    for (size_t i = 0; i < linkObjects.size(); ++i) {
        const TType& type = linkObjects[i]->getAsTyped()->getType();
        const TQualifier& qualifier = type.getQualifier();
        if (language == EShLangFragment) {
            if (qualifier.storage == EvqVaryingOut && qualifier.builtIn == EbvNone) {
                ++numFragOut;
                if (!qualifier.hasAnyLocation())
                    fragOutWithNoLocation = true;
            }
        }
    }

    if (isEsProfile()) {
        if (numFragOut > 1 && fragOutWithNoLocation)
            error(infoSink, "when more than one fragment shader output, all must have location qualifiers");
    }
}

TIntermAggregate* TIntermediate::findLinkerObjects() const
{
    // Get the top-level globals
    TIntermSequence& globals = treeRoot->getAsAggregate()->getSequence();

    // Get the last member of the sequences, expected to be the linker-object lists
    assert(globals.back()->getAsAggregate()->getOp() == EOpLinkerObjects);

    return globals.back()->getAsAggregate();
}

// See if a variable was both a user-declared output and used.
// Note: the spec discusses writing to one, but this looks at read or write, which
// is more useful, and perhaps the spec should be changed to reflect that.
bool TIntermediate::userOutputUsed() const
{
    const TIntermSequence& linkerObjects = findLinkerObjects()->getSequence();

    bool found = false;
    for (size_t i = 0; i < linkerObjects.size(); ++i) {
        const TIntermSymbol& symbolNode = *linkerObjects[i]->getAsSymbolNode();
        if (symbolNode.getQualifier().storage == EvqVaryingOut &&
            symbolNode.getName().compare(0, 3, "gl_") != 0 &&
            inIoAccessed(symbolNode.getName())) {
            found = true;
            break;
        }
    }

    return found;
}

// Accumulate locations used for inputs, outputs, and uniforms, payload and callable data
// and check for collisions as the accumulation is done.
//
// Returns < 0 if no collision, >= 0 if collision and the value returned is a colliding value.
//
// typeCollision is set to true if there is no direct collision, but the types in the same location
// are different.
//
int TIntermediate::addUsedLocation(const TQualifier& qualifier, const TType& type, bool& typeCollision)
{
    typeCollision = false;

    int set;
    int setRT;
    if (qualifier.isPipeInput())
        set = 0;
    else if (qualifier.isPipeOutput())
        set = 1;
    else if (qualifier.storage == EvqUniform)
        set = 2;
    else if (qualifier.storage == EvqBuffer)
        set = 3;
    else if (qualifier.isAnyPayload())
        setRT = 0;
    else if (qualifier.isAnyCallable())
        setRT = 1;
    else
        return -1;

    int size;
    if (qualifier.isAnyPayload() || qualifier.isAnyCallable()) {
        size = 1;
    } else if (qualifier.isUniformOrBuffer() || qualifier.isTaskMemory()) {
        if (type.isSizedArray())
            size = type.getCumulativeArraySize();
        else
            size = 1;
    } else {
        // Strip off the outer array dimension for those having an extra one.
        if (type.isArray() && qualifier.isArrayedIo(language)) {
            TType elementType(type, 0);
            size = computeTypeLocationSize(elementType, language);
        } else
            size = computeTypeLocationSize(type, language);
    }

    // Locations, and components within locations.
    //
    // Almost always, dealing with components means a single location is involved.
    // The exception is a dvec3. From the spec:
    //
    // "A dvec3 will consume all four components of the first location and components 0 and 1 of
    // the second location. This leaves components 2 and 3 available for other component-qualified
    // declarations."
    //
    // That means, without ever mentioning a component, a component range
    // for a different location gets specified, if it's not a vertex shader input. (!)
    // (A vertex shader input will show using only one location, even for a dvec3/4.)
    //
    // So, for the case of dvec3, we need two independent ioRanges.
    //
    // For raytracing IO (payloads and callabledata) each declaration occupies a single
    // slot irrespective of type.
    int collision = -1; // no collision
#ifndef GLSLANG_WEB
    if (qualifier.isAnyPayload() || qualifier.isAnyCallable()) {
        TRange range(qualifier.layoutLocation, qualifier.layoutLocation);
        collision = checkLocationRT(setRT, qualifier.layoutLocation);
        if (collision < 0)
            usedIoRT[setRT].push_back(range);
    } else if (size == 2 && type.getBasicType() == EbtDouble && type.getVectorSize() == 3 &&
        (qualifier.isPipeInput() || qualifier.isPipeOutput())) {
        // Dealing with dvec3 in/out split across two locations.
        // Need two io-ranges.
        // The case where the dvec3 doesn't start at component 0 was previously caught as overflow.

        // First range:
        TRange locationRange(qualifier.layoutLocation, qualifier.layoutLocation);
        TRange componentRange(0, 3);
        TIoRange range(locationRange, componentRange, type.getBasicType(), 0);

        // check for collisions
        collision = checkLocationRange(set, range, type, typeCollision);
        if (collision < 0) {
            usedIo[set].push_back(range);

            // Second range:
            TRange locationRange2(qualifier.layoutLocation + 1, qualifier.layoutLocation + 1);
            TRange componentRange2(0, 1);
            TIoRange range2(locationRange2, componentRange2, type.getBasicType(), 0);

            // check for collisions
            collision = checkLocationRange(set, range2, type, typeCollision);
            if (collision < 0)
                usedIo[set].push_back(range2);
        }
    } else
#endif
    {
        // Not a dvec3 in/out split across two locations, generic path.
        // Need a single IO-range block.

        TRange locationRange(qualifier.layoutLocation, qualifier.layoutLocation + size - 1);
        TRange componentRange(0, 3);
        if (qualifier.hasComponent() || type.getVectorSize() > 0) {
            int consumedComponents = type.getVectorSize() * (type.getBasicType() == EbtDouble ? 2 : 1);
            if (qualifier.hasComponent())
                componentRange.start = qualifier.layoutComponent;
            componentRange.last  = componentRange.start + consumedComponents - 1;
        }

        // combine location and component ranges
        TIoRange range(locationRange, componentRange, type.getBasicType(), qualifier.hasIndex() ? qualifier.getIndex() : 0);

        // check for collisions, except for vertex inputs on desktop targeting OpenGL
        if (! (!isEsProfile() && language == EShLangVertex && qualifier.isPipeInput()) || spvVersion.vulkan > 0)
            collision = checkLocationRange(set, range, type, typeCollision);

        if (collision < 0)
            usedIo[set].push_back(range);
    }

    return collision;
}

// Compare a new (the passed in) 'range' against the existing set, and see
// if there are any collisions.
//
// Returns < 0 if no collision, >= 0 if collision and the value returned is a colliding value.
//
int TIntermediate::checkLocationRange(int set, const TIoRange& range, const TType& type, bool& typeCollision)
{
    for (size_t r = 0; r < usedIo[set].size(); ++r) {
        if (range.overlap(usedIo[set][r])) {
            // there is a collision; pick one
            return std::max(range.location.start, usedIo[set][r].location.start);
        } else if (range.location.overlap(usedIo[set][r].location) && type.getBasicType() != usedIo[set][r].basicType) {
            // aliased-type mismatch
            typeCollision = true;
            return std::max(range.location.start, usedIo[set][r].location.start);
        }
    }

    return -1; // no collision
}

int TIntermediate::checkLocationRT(int set, int location) {
    TRange range(location, location);
    for (size_t r = 0; r < usedIoRT[set].size(); ++r) {
        if (range.overlap(usedIoRT[set][r])) {
            return range.start;
        }
    }
    return -1; // no collision
}

// Accumulate bindings and offsets, and check for collisions
// as the accumulation is done.
//
// Returns < 0 if no collision, >= 0 if collision and the value returned is a colliding value.
//
int TIntermediate::addUsedOffsets(int binding, int offset, int numOffsets)
{
    TRange bindingRange(binding, binding);
    TRange offsetRange(offset, offset + numOffsets - 1);
    TOffsetRange range(bindingRange, offsetRange);

    // check for collisions, except for vertex inputs on desktop
    for (size_t r = 0; r < usedAtomics.size(); ++r) {
        if (range.overlap(usedAtomics[r])) {
            // there is a collision; pick one
            return std::max(offset, usedAtomics[r].offset.start);
        }
    }

    usedAtomics.push_back(range);

    return -1; // no collision
}

// Accumulate used constant_id values.
//
// Return false is one was already used.
bool TIntermediate::addUsedConstantId(int id)
{
    if (usedConstantId.find(id) != usedConstantId.end())
        return false;

    usedConstantId.insert(id);

    return true;
}

// Recursively figure out how many locations are used up by an input or output type.
// Return the size of type, as measured by "locations".
int TIntermediate::computeTypeLocationSize(const TType& type, EShLanguage stage)
{
    // "If the declared input is an array of size n and each element takes m locations, it will be assigned m * n
    // consecutive locations..."
    if (type.isArray()) {
        // TODO: perf: this can be flattened by using getCumulativeArraySize(), and a deref that discards all arrayness
        // TODO: are there valid cases of having an unsized array with a location?  If so, running this code too early.
        TType elementType(type, 0);
        if (type.isSizedArray() && !type.getQualifier().isPerView())
            return type.getOuterArraySize() * computeTypeLocationSize(elementType, stage);
        else {
#ifndef GLSLANG_WEB
            // unset perViewNV attributes for arrayed per-view outputs: "perviewNV vec4 v[MAX_VIEWS][3];"
            elementType.getQualifier().perViewNV = false;
#endif
            return computeTypeLocationSize(elementType, stage);
        }
    }

    // "The locations consumed by block and structure members are determined by applying the rules above
    // recursively..."
    if (type.isStruct()) {
        int size = 0;
        for (int member = 0; member < (int)type.getStruct()->size(); ++member) {
            TType memberType(type, member);
            size += computeTypeLocationSize(memberType, stage);
        }
        return size;
    }

    // ES: "If a shader input is any scalar or vector type, it will consume a single location."

    // Desktop: "If a vertex shader input is any scalar or vector type, it will consume a single location. If a non-vertex
    // shader input is a scalar or vector type other than dvec3 or dvec4, it will consume a single location, while
    // types dvec3 or dvec4 will consume two consecutive locations. Inputs of type double and dvec2 will
    // consume only a single location, in all stages."
    if (type.isScalar())
        return 1;
    if (type.isVector()) {
        if (stage == EShLangVertex && type.getQualifier().isPipeInput())
            return 1;
        if (type.getBasicType() == EbtDouble && type.getVectorSize() > 2)
            return 2;
        else
            return 1;
    }

    // "If the declared input is an n x m single- or double-precision matrix, ...
    // The number of locations assigned for each matrix will be the same as
    // for an n-element array of m-component vectors..."
    if (type.isMatrix()) {
        TType columnType(type, 0);
        return type.getMatrixCols() * computeTypeLocationSize(columnType, stage);
    }

    assert(0);
    return 1;
}

// Same as computeTypeLocationSize but for uniforms
int TIntermediate::computeTypeUniformLocationSize(const TType& type)
{
    // "Individual elements of a uniform array are assigned
    // consecutive locations with the first element taking location
    // location."
    if (type.isArray()) {
        // TODO: perf: this can be flattened by using getCumulativeArraySize(), and a deref that discards all arrayness
        TType elementType(type, 0);
        if (type.isSizedArray()) {
            return type.getOuterArraySize() * computeTypeUniformLocationSize(elementType);
        } else {
            // TODO: are there valid cases of having an implicitly-sized array with a location?  If so, running this code too early.
            return computeTypeUniformLocationSize(elementType);
        }
    }

    // "Each subsequent inner-most member or element gets incremental
    // locations for the entire structure or array."
    if (type.isStruct()) {
        int size = 0;
        for (int member = 0; member < (int)type.getStruct()->size(); ++member) {
            TType memberType(type, member);
            size += computeTypeUniformLocationSize(memberType);
        }
        return size;
    }

    return 1;
}

#ifndef GLSLANG_WEB

// Accumulate xfb buffer ranges and check for collisions as the accumulation is done.
//
// Returns < 0 if no collision, >= 0 if collision and the value returned is a colliding value.
//
int TIntermediate::addXfbBufferOffset(const TType& type)
{
    const TQualifier& qualifier = type.getQualifier();

    assert(qualifier.hasXfbOffset() && qualifier.hasXfbBuffer());
    TXfbBuffer& buffer = xfbBuffers[qualifier.layoutXfbBuffer];

    // compute the range
    unsigned int size = computeTypeXfbSize(type, buffer.contains64BitType, buffer.contains32BitType, buffer.contains16BitType);
    buffer.implicitStride = std::max(buffer.implicitStride, qualifier.layoutXfbOffset + size);
    TRange range(qualifier.layoutXfbOffset, qualifier.layoutXfbOffset + size - 1);

    // check for collisions
    for (size_t r = 0; r < buffer.ranges.size(); ++r) {
        if (range.overlap(buffer.ranges[r])) {
            // there is a collision; pick an example to return
            return std::max(range.start, buffer.ranges[r].start);
        }
    }

    buffer.ranges.push_back(range);

    return -1;  // no collision
}

// Recursively figure out how many bytes of xfb buffer are used by the given type.
// Return the size of type, in bytes.
// Sets contains64BitType to true if the type contains a 64-bit data type.
// Sets contains32BitType to true if the type contains a 32-bit data type.
// Sets contains16BitType to true if the type contains a 16-bit data type.
// N.B. Caller must set contains64BitType, contains32BitType, and contains16BitType to false before calling.
unsigned int TIntermediate::computeTypeXfbSize(const TType& type, bool& contains64BitType, bool& contains32BitType, bool& contains16BitType) const
{
    // "...if applied to an aggregate containing a double or 64-bit integer, the offset must also be a multiple of 8,
    // and the space taken in the buffer will be a multiple of 8.
    // ...within the qualified entity, subsequent components are each
    // assigned, in order, to the next available offset aligned to a multiple of
    // that component's size.  Aggregate types are flattened down to the component
    // level to get this sequence of components."

    if (type.isSizedArray()) {
        // TODO: perf: this can be flattened by using getCumulativeArraySize(), and a deref that discards all arrayness
        // Unsized array use to xfb should be a compile error.
        TType elementType(type, 0);
        return type.getOuterArraySize() * computeTypeXfbSize(elementType, contains64BitType, contains16BitType, contains16BitType);
    }

    if (type.isStruct()) {
        unsigned int size = 0;
        bool structContains64BitType = false;
        bool structContains32BitType = false;
        bool structContains16BitType = false;
        for (int member = 0; member < (int)type.getStruct()->size(); ++member) {
            TType memberType(type, member);
            // "... if applied to
            // an aggregate containing a double or 64-bit integer, the offset must also be a multiple of 8,
            // and the space taken in the buffer will be a multiple of 8."
            bool memberContains64BitType = false;
            bool memberContains32BitType = false;
            bool memberContains16BitType = false;
            int memberSize = computeTypeXfbSize(memberType, memberContains64BitType, memberContains32BitType, memberContains16BitType);
            if (memberContains64BitType) {
                structContains64BitType = true;
                RoundToPow2(size, 8);
            } else if (memberContains32BitType) {
                structContains32BitType = true;
                RoundToPow2(size, 4);
            } else if (memberContains16BitType) {
                structContains16BitType = true;
                RoundToPow2(size, 2);
            }
            size += memberSize;
        }

        if (structContains64BitType) {
            contains64BitType = true;
            RoundToPow2(size, 8);
        } else if (structContains32BitType) {
            contains32BitType = true;
            RoundToPow2(size, 4);
        } else if (structContains16BitType) {
            contains16BitType = true;
            RoundToPow2(size, 2);
        }
        return size;
    }

    int numComponents;
    if (type.isScalar())
        numComponents = 1;
    else if (type.isVector())
        numComponents = type.getVectorSize();
    else if (type.isMatrix())
        numComponents = type.getMatrixCols() * type.getMatrixRows();
    else {
        assert(0);
        numComponents = 1;
    }

    if (type.getBasicType() == EbtDouble || type.getBasicType() == EbtInt64 || type.getBasicType() == EbtUint64) {
        contains64BitType = true;
        return 8 * numComponents;
    } else if (type.getBasicType() == EbtFloat16 || type.getBasicType() == EbtInt16 || type.getBasicType() == EbtUint16) {
        contains16BitType = true;
        return 2 * numComponents;
    } else if (type.getBasicType() == EbtInt8 || type.getBasicType() == EbtUint8)
        return numComponents;
    else {
        contains32BitType = true;
        return 4 * numComponents;
    }
}

#endif

const int baseAlignmentVec4Std140 = 16;

// Return the size and alignment of a component of the given type.
// The size is returned in the 'size' parameter
// Return value is the alignment..
int TIntermediate::getBaseAlignmentScalar(const TType& type, int& size)
{
#ifdef GLSLANG_WEB
    size = 4; return 4;
#endif

    switch (type.getBasicType()) {
    case EbtInt64:
    case EbtUint64:
    case EbtDouble:  size = 8; return 8;
    case EbtFloat16: size = 2; return 2;
    case EbtInt8:
    case EbtUint8:   size = 1; return 1;
    case EbtInt16:
    case EbtUint16:  size = 2; return 2;
    case EbtReference: size = 8; return 8;
    default:         size = 4; return 4;
    }
}

// Implement base-alignment and size rules from section 7.6.2.2 Standard Uniform Block Layout
// Operates recursively.
//
// If std140 is true, it does the rounding up to vec4 size required by std140,
// otherwise it does not, yielding std430 rules.
//
// The size is returned in the 'size' parameter
//
// The stride is only non-0 for arrays or matrices, and is the stride of the
// top-level object nested within the type.  E.g., for an array of matrices,
// it is the distances needed between matrices, despite the rules saying the
// stride comes from the flattening down to vectors.
//
// Return value is the alignment of the type.
int TIntermediate::getBaseAlignment(const TType& type, int& size, int& stride, TLayoutPacking layoutPacking, bool rowMajor)
{
    int alignment;

    bool std140 = layoutPacking == glslang::ElpStd140;
    // When using the std140 storage layout, structures will be laid out in buffer
    // storage with its members stored in monotonically increasing order based on their
    // location in the declaration. A structure and each structure member have a base
    // offset and a base alignment, from which an aligned offset is computed by rounding
    // the base offset up to a multiple of the base alignment. The base offset of the first
    // member of a structure is taken from the aligned offset of the structure itself. The
    // base offset of all other structure members is derived by taking the offset of the
    // last basic machine unit consumed by the previous member and adding one. Each
    // structure member is stored in memory at its aligned offset. The members of a top-
    // level uniform block are laid out in buffer storage by treating the uniform block as
    // a structure with a base offset of zero.
    //
    //   1. If the member is a scalar consuming N basic machine units, the base alignment is N.
    //
    //   2. If the member is a two- or four-component vector with components consuming N basic
    //      machine units, the base alignment is 2N or 4N, respectively.
    //
    //   3. If the member is a three-component vector with components consuming N
    //      basic machine units, the base alignment is 4N.
    //
    //   4. If the member is an array of scalars or vectors, the base alignment and array
    //      stride are set to match the base alignment of a single array element, according
    //      to rules (1), (2), and (3), and rounded up to the base alignment of a vec4. The
    //      array may have padding at the end; the base offset of the member following
    //      the array is rounded up to the next multiple of the base alignment.
    //
    //   5. If the member is a column-major matrix with C columns and R rows, the
    //      matrix is stored identically to an array of C column vectors with R
    //      components each, according to rule (4).
    //
    //   6. If the member is an array of S column-major matrices with C columns and
    //      R rows, the matrix is stored identically to a row of S X C column vectors
    //      with R components each, according to rule (4).
    //
    //   7. If the member is a row-major matrix with C columns and R rows, the matrix
    //      is stored identically to an array of R row vectors with C components each,
    //      according to rule (4).
    //
    //   8. If the member is an array of S row-major matrices with C columns and R
    //      rows, the matrix is stored identically to a row of S X R row vectors with C
    //      components each, according to rule (4).
    //
    //   9. If the member is a structure, the base alignment of the structure is N , where
    //      N is the largest base alignment value of any    of its members, and rounded
    //      up to the base alignment of a vec4. The individual members of this substructure
    //      are then assigned offsets by applying this set of rules recursively,
    //      where the base offset of the first member of the sub-structure is equal to the
    //      aligned offset of the structure. The structure may have padding at the end;
    //      the base offset of the member following the sub-structure is rounded up to
    //      the next multiple of the base alignment of the structure.
    //
    //   10. If the member is an array of S structures, the S elements of the array are laid
    //       out in order, according to rule (9).
    //
    //   Assuming, for rule 10:  The stride is the same as the size of an element.

    stride = 0;
    int dummyStride;

    // rules 4, 6, 8, and 10
    if (type.isArray()) {
        // TODO: perf: this might be flattened by using getCumulativeArraySize(), and a deref that discards all arrayness
        TType derefType(type, 0);
        alignment = getBaseAlignment(derefType, size, dummyStride, layoutPacking, rowMajor);
        if (std140)
            alignment = std::max(baseAlignmentVec4Std140, alignment);
        RoundToPow2(size, alignment);
        stride = size;  // uses full matrix size for stride of an array of matrices (not quite what rule 6/8, but what's expected)
                        // uses the assumption for rule 10 in the comment above
        // use one element to represent the last member of SSBO which is unsized array
        int arraySize = (type.isUnsizedArray() && (type.getOuterArraySize() == 0)) ? 1 : type.getOuterArraySize();
        size = stride * arraySize;
        return alignment;
    }

    // rule 9
    if (type.getBasicType() == EbtStruct) {
        const TTypeList& memberList = *type.getStruct();

        size = 0;
        int maxAlignment = std140 ? baseAlignmentVec4Std140 : 0;
        for (size_t m = 0; m < memberList.size(); ++m) {
            int memberSize;
            // modify just the children's view of matrix layout, if there is one for this member
            TLayoutMatrix subMatrixLayout = memberList[m].type->getQualifier().layoutMatrix;
            int memberAlignment = getBaseAlignment(*memberList[m].type, memberSize, dummyStride, layoutPacking,
                                                   (subMatrixLayout != ElmNone) ? (subMatrixLayout == ElmRowMajor) : rowMajor);
            maxAlignment = std::max(maxAlignment, memberAlignment);
            RoundToPow2(size, memberAlignment);
            size += memberSize;
        }

        // The structure may have padding at the end; the base offset of
        // the member following the sub-structure is rounded up to the next
        // multiple of the base alignment of the structure.
        RoundToPow2(size, maxAlignment);

        return maxAlignment;
    }

    // rule 1
    if (type.isScalar())
        return getBaseAlignmentScalar(type, size);

    // rules 2 and 3
    if (type.isVector()) {
        int scalarAlign = getBaseAlignmentScalar(type, size);
        switch (type.getVectorSize()) {
        case 1: // HLSL has this, GLSL does not
            return scalarAlign;
        case 2:
            size *= 2;
            return 2 * scalarAlign;
        default:
            size *= type.getVectorSize();
            return 4 * scalarAlign;
        }
    }

    // rules 5 and 7
    if (type.isMatrix()) {
        // rule 5: deref to row, not to column, meaning the size of vector is num columns instead of num rows
        TType derefType(type, 0, rowMajor);

        alignment = getBaseAlignment(derefType, size, dummyStride, layoutPacking, rowMajor);
        if (std140)
            alignment = std::max(baseAlignmentVec4Std140, alignment);
        RoundToPow2(size, alignment);
        stride = size;  // use intra-matrix stride for stride of a just a matrix
        if (rowMajor)
            size = stride * type.getMatrixRows();
        else
            size = stride * type.getMatrixCols();

        return alignment;
    }

    assert(0);  // all cases should be covered above
    size = baseAlignmentVec4Std140;
    return baseAlignmentVec4Std140;
}

// To aid the basic HLSL rule about crossing vec4 boundaries.
bool TIntermediate::improperStraddle(const TType& type, int size, int offset)
{
    if (! type.isVector() || type.isArray())
        return false;

    return size <= 16 ? offset / 16 != (offset + size - 1) / 16
                      : offset % 16 != 0;
}

int TIntermediate::getScalarAlignment(const TType& type, int& size, int& stride, bool rowMajor)
{
    int alignment;

    stride = 0;
    int dummyStride;

    if (type.isArray()) {
        TType derefType(type, 0);
        alignment = getScalarAlignment(derefType, size, dummyStride, rowMajor);

        stride = size;
        RoundToPow2(stride, alignment);

        size = stride * (type.getOuterArraySize() - 1) + size;
        return alignment;
    }

    if (type.getBasicType() == EbtStruct) {
        const TTypeList& memberList = *type.getStruct();

        size = 0;
        int maxAlignment = 0;
        for (size_t m = 0; m < memberList.size(); ++m) {
            int memberSize;
            // modify just the children's view of matrix layout, if there is one for this member
            TLayoutMatrix subMatrixLayout = memberList[m].type->getQualifier().layoutMatrix;
            int memberAlignment = getScalarAlignment(*memberList[m].type, memberSize, dummyStride,
                                                     (subMatrixLayout != ElmNone) ? (subMatrixLayout == ElmRowMajor) : rowMajor);
            maxAlignment = std::max(maxAlignment, memberAlignment);
            RoundToPow2(size, memberAlignment);
            size += memberSize;
        }

        return maxAlignment;
    }

    if (type.isScalar())
        return getBaseAlignmentScalar(type, size);

    if (type.isVector()) {
        int scalarAlign = getBaseAlignmentScalar(type, size);
        
        size *= type.getVectorSize();
        return scalarAlign;
    }

    if (type.isMatrix()) {
        TType derefType(type, 0, rowMajor);

        alignment = getScalarAlignment(derefType, size, dummyStride, rowMajor);

        stride = size;  // use intra-matrix stride for stride of a just a matrix
        if (rowMajor)
            size = stride * type.getMatrixRows();
        else
            size = stride * type.getMatrixCols();

        return alignment;
    }

    assert(0);  // all cases should be covered above
    size = 1;
    return 1;    
}

int TIntermediate::getMemberAlignment(const TType& type, int& size, int& stride, TLayoutPacking layoutPacking, bool rowMajor)
{
    if (layoutPacking == glslang::ElpScalar) {
        return getScalarAlignment(type, size, stride, rowMajor);
    } else {
        return getBaseAlignment(type, size, stride, layoutPacking, rowMajor);
    }
}

// shared calculation by getOffset and getOffsets
void TIntermediate::updateOffset(const TType& parentType, const TType& memberType, int& offset, int& memberSize)
{
    int dummyStride;

    // modify just the children's view of matrix layout, if there is one for this member
    TLayoutMatrix subMatrixLayout = memberType.getQualifier().layoutMatrix;
    int memberAlignment = getMemberAlignment(memberType, memberSize, dummyStride,
                                             parentType.getQualifier().layoutPacking,
                                             subMatrixLayout != ElmNone
                                                 ? subMatrixLayout == ElmRowMajor
                                                 : parentType.getQualifier().layoutMatrix == ElmRowMajor);
    RoundToPow2(offset, memberAlignment);
}

// Lookup or calculate the offset of a block member, using the recursively
// defined block offset rules.
int TIntermediate::getOffset(const TType& type, int index)
{
    const TTypeList& memberList = *type.getStruct();

    // Don't calculate offset if one is present, it could be user supplied
    // and different than what would be calculated.  That is, this is faster,
    // but not just an optimization.
    if (memberList[index].type->getQualifier().hasOffset())
        return memberList[index].type->getQualifier().layoutOffset;

    int memberSize = 0;
    int offset = 0;
    for (int m = 0; m <= index; ++m) {
        updateOffset(type, *memberList[m].type, offset, memberSize);

        if (m < index)
            offset += memberSize;
    }

    return offset;
}

// Calculate the block data size.
// Block arrayness is not taken into account, each element is backed by a separate buffer.
int TIntermediate::getBlockSize(const TType& blockType)
{
    const TTypeList& memberList = *blockType.getStruct();
    int lastIndex = (int)memberList.size() - 1;
    int lastOffset = getOffset(blockType, lastIndex);

    int lastMemberSize;
    int dummyStride;
    getMemberAlignment(*memberList[lastIndex].type, lastMemberSize, dummyStride,
                       blockType.getQualifier().layoutPacking,
                       blockType.getQualifier().layoutMatrix == ElmRowMajor);

    return lastOffset + lastMemberSize;
}

int TIntermediate::computeBufferReferenceTypeSize(const TType& type)
{
    assert(type.isReference());
    int size = getBlockSize(*type.getReferentType());

    int align = type.getBufferReferenceAlignment();

    if (align) {
        size = (size + align - 1) & ~(align-1);
    }

    return size;
}

} // end namespace glslang